首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
In Pseudomonas aeruginosa, the GacS/GacA two-component system positively controls the quorum-sensing machinery and the expression of extracellular products via two small regulatory RNAs, RsmY and RsmZ. An rsmY rsmZ double mutant and a gacA mutant were similarly impaired in the synthesis of the quorum-sensing signal N-butanoyl-homoserine lactone, the disulfide bond-forming enzyme DsbA, and the exoproducts hydrogen cyanide, pyocyanin, elastase, chitinase (ChiC), and chitin-binding protein (CbpD). Both mutants showed increased swarming ability, azurin release, and early biofilm development.  相似文献   

6.
7.
Colony phase variation is a regulatory mechanism at the DNA level which usually results in high frequency, reversible switches between colonies with a different phenotype. A number of molecular mechanisms underlying phase variation are known: slipped-strand mispairing, genomic rearrangements, spontaneous mutations and epigenetic mechanisms such as differential methylation. Most examples of phenotypic variation or phase variation have been described in the context of host-pathogen interactions as mechanisms allowing pathogens to evade host immune responses. Recent reports indicate that phase variation is also relevant in competitive root colonization and biological control of phytopathogens. Many rhizospere Pseudomonas species show phenotypic variation, based on spontaneous mutation of the gacA and gacS genes. These morphological variants do not express secondary metabolites and have improved growth characteristics. The latter could contribute to efficient root colonization and success in competition, especially since (as shown for one strain) these variants were observed to revert to their wild-type form. The observation that these variants are present in rhizosphere-competent Pseudomonas bacteria suggests the existence of a conserved strategy to increase their success in the rhizosphere.  相似文献   

8.
姜维芳  吴小刚  闫庆  张力群 《微生物学报》2008,48(12):1588-1594
Pseudomonas fluorescens 2P24是分离自麦田的植物病害生物防治菌株,产生抗生素2, 4-二乙酰基间苯三酚(2,4-diacetylphloroglucinol;2,4-DAPG)是其主要防病机制。菌株2P24中小RNA基因rsmZ正调控抗生素2,4-DAPG的产量。【目的】本文研究上游调控因子对RsmZ转录表达的影响,以进一步理解抗生素产生机制。【方法】构建了rsmZ: : lacZ的转录融合结构,将含有该结构的报告载体转入2P24的多个调控基因缺失突变体中,检测相应的缺失基因对rsmZ转录水平的调控作用。【结果】结果表明,反应调控因子GacA对rsmZ基因的转录具有正调控作用,二硫键合成蛋白DsbA对其负调控;双因子调控系统PhoP/PhoQ突变后,rsmZ基因的转录明显滞后。【结论】小RNA基因rsmZ在菌株2P24中受到多个基因的调控,并在信号传递网络中起到重要作用。  相似文献   

9.
A two-component system comprising GacS and GacA affects a large number of traits in many Gram-negative bacteria. However, the signals to which GacS responds, the regulation mechanism for GacA expression, and the genes GacA controls are not yet clear. In this study, several phenotypic tests and tobacco-leaf pathogenicity assays were conducted using a gacA deletion mutant strain (BL473) of Pseudomonas syringae pv. tabaci 11528. To determine the regulation mechanism for gacA gene expression and to identify GacA-regulated genes, we conducted quantitative RT-PCR and electrophoretic mobility shift assay (EMSA) experiments. The results indicated that virulence traits related to the pathogenesis of P. syringae pv. tabaci 11528 are regulated coordinately by GacA and iron availability. They also revealed that several systems coordinately regulate gacA gene expression in response to iron concentration and bacterial cell density and that GacA and iron together control the expression of several virulence genes. EMSA results provided genetic and molecular evidence for direct control of virulence genes by GacA.  相似文献   

10.
Pseudomonas sp. strain PCL1171 displays colony phase variation between opaque phase I and translucent phase II colonies, thereby regulating the production of secondary metabolites and exoenzymes. Complementation and sequence analysis of 26 phase II mutants and of 13 wild-type phase II sectors growing out of phase I colonies showed that in all these cases the phase II phenotype is caused by spontaneous mutations in gacA or/and gacS. Mutation of gac reduced both the length of the lag phase and the generation time. Isolation and sequencing of the gacS genes from the phase II bacteria revealed one insertion as well as several random point mutations, deletions, and DNA rearrangements. Most phase II colonies reverted with a high frequency, resulting in wild-type gacA and gacS genes and a phase I phenotype. Some phase II bacteria retained the phase II phenotype but changed genotypically as a result of (re)introduction of mutations in either gacA or gacS. The reversion of gacA or gacS to the wild type was not affected by mutation of recA and recB. We conclude that in Pseudomonas sp. strain PCL1171, mutations in gacA and gacS are the basis for phase variation from phase I to phase II colonies and that, since these mutations are efficiently removed, mutations in gac result in dynamic switches between the "wild-type" population and the subpopulations harboring spontaneous mutations in gacA and or gacS, thereby enabling both populations to be maintained.  相似文献   

11.
12.
13.
Phenotypic variants of Pseudomonas fluorescens F113 showing a translucent and diffuse colony morphology show enhanced colonization of the alfalfa rhizosphere. We have previously shown that in the biocontrol agent P. fluorescens F113, phenotypic variation is mediated by the activity of two site-specific recombinases, Sss and XerD. By overexpressing the genes encoding either of the recombinases, we have now generated a large number of variants (mutants) after selection either by prolonged laboratory cultivation or by rhizosphere passage. All the isolated variants were more motile than the wild-type strain and appear to contain mutations in the gacA and/or gacS gene. By disrupting these genes and complementation analysis, we have observed that the Gac system regulates swimming motility by a repression pathway. Variants isolated after selection by prolonged cultivation formed a single population with a swimming motility that was equal to the motility of gac mutants, being 150% more motile than the wild type. The motility phenotype of these variants was complemented by the cloned gac genes. Variants isolated after rhizosphere selection belonged to two different populations: one identical to the population isolated after prolonged cultivation and the other comprising variants that besides a gac mutation harbored additional mutations conferring higher motility. Our results show that gac mutations are selected both in the stationary phase and during rhizosphere colonization. The enhanced motility phenotype is in turn selected during rhizosphere colonization. Several of these highly motile variants were more competitive than the wild-type strain, displacing it from the root tip within 2 weeks.  相似文献   

14.
15.
Plant-beneficial fluorescent Pseudomonas spp. play important ecological roles. Here, their evolutionary history was investigated by a multilocus approach targeting genes involved in synthesis of secondary antimicrobial metabolites implicated in biocontrol of phytopathogens. Some of these genes were proposed to be ancestral, and this was investigated using a worldwide collection of 30 plant-colonizing fluorescent pseudomonads, based on phylogenetic analysis of 14 loci involved in production of 2,4-diacetylphloroglucinol (phlACBDE, phlF, intergenic locus phlA/phlF), hydrogen cyanide (hcnABC, anr) or global regulation of secondary metabolism (gacA, gacS, rsmZ). The 10 housekeeping loci rrs, dsbA, gyrB, rpoD, fdxA, recA, rpoB, rpsL, rpsG, and fusA served as controls. Each strain was readily distinguished from the others when considering allelic combinations for these 14 biocontrol-relevant loci. Topology comparisons based on Shimodaira-Hasegawa tests showed extensive incongruence when comparing single-locus phylogenetic trees with one another, but less when comparing (after sequence concatenation) trees inferred for genes involved in 2,4-diacetylphloroglucinol synthesis, hydrogen cyanide synthesis, or secondary metabolism global regulation with trees for housekeeping genes. The 14 loci displayed linkage disequilibrium, as housekeeping loci did, and all 12 protein-coding loci were subjected to purifying selection except for one positively-selected site in HcnA. Overall, the evolutionary history of Pseudomonas genes involved in synthesis of secondary antimicrobial metabolites important for biocontrol functions is in fact similar to that of housekeeping genes, and results suggest that they are ancestral in pseudomonads producing hydrogen cyanide and 2,4-diacetylphloroglucinol.  相似文献   

16.
The genes lemA (which we here redesignate gacS ) and gacA encode members of a widely conserved two-component regulatory system. In Pseudomonas syringae strain B728a, gacS and gacA are required for lesion formation on bean, as well as for the production of protease and the toxin syringomycin. A gene, designated salA , was discovered that restored syringomycin production to a gacS mutant when present on a multiple-copy plasmid. Disruption of chromosomal salA resulted in loss of syringomycin production and lesion formation in laboratory assays. Sequence analysis of salA suggests that it encodes a protein with a DNA-binding motif but without other significant similarity to proteins in current databases. Chromosomal reporter fusions revealed that gacS and gacA positively regulate salA , that salA upregulates its own expression and that salA positively regulates the expression of a syringomycin biosynthetic gene, syrB . Loss of syringomycin production does not account for the salA mutant's attenuated pathogenicity, as a syrB mutant was found to retain full virulence. The salA gene did not similarly suppress the protease deficient phenotype of gacS mutants, nor were salA mutants affected for protease production. A gacS/gacA -dependent homoserine lactone activity as detected by bioassay was also unaffected by the disruption of salA . Thus, salA appears to encode a novel regulator that activates the expression of at least two separate genetic subsets of the gacS/gacA regulon, one pathway leading to syringomycin production and the other resulting in plant disease.  相似文献   

17.
The GacS/GacA two-component regulatory system in pseudomonads regulates genes involved in virulence, secondary metabolism and biofilm formation. Despite these regulatory functions, some Pseudomonas species are prone to spontaneous inactivating mutations in gacA and gacS. A gacS(-) strain of Pseudomonas aeruginosa PA14 was constructed to study the physiological role of this sensor histidine kinase. This loss-of-function mutation was associated with hypermotility, reduced production of acylhomoserine lactones, impaired biofilm maturation, and decreased antimicrobial resistance. Biofilms of the gacS(-) mutant gave rise to phenotypically stable small colony variants (SCVs) with increasing frequency when exposed to silver cations, hydrogen peroxide, human serum, or certain antibiotics (tobramicin, amikacin, azetronam, ceftrioxone, oxacilin, piperacillin or rifampicin). When cultured, the SCV produced thicker biofilms with greater cell density and greater antimicrobial resistance than did the wild-type or parental gacS(-) strains. Similar to other colony morphology variants described in the literature, this SCV was less motile than the wild-type strain and autoaggregated in broth culture. Complementation with gacS in trans restored the ability of the SCV to revert to a normal colony morphotype. These findings indicate that mutation of gacS is associated with the occurrence of stress-resistant SCV cells in P. aeruginosa biofilms and suggests that in some instances GacS may be necessary for reversion of these variants to a wild-type state.  相似文献   

18.
19.
GacS/GacA comprises a two-component regulatory system that controls the expression of secondary metabolites required for the control of plant diseases in many pseudomonads. High mutation frequencies of gacS and gacA have been observed in liquid culture. We examined whether gacS/gacA mutants could competitively displace the wild-type populations on roots and thus pose a threat to the efficacy of biological control. The survival of a gac mutant alone and in competition with the wild type on roots was examined in the biological control strain Pseudomonas aureofaciens 30-84. In this bacterium, GacS/GacA controls the expression of phenazine antibiotics that are inhibitory to plant pathogenic fungi and enhance the competitive survival of the bacterium. Wheat seedlings were inoculated with strain 30-84, and bacteria were recovered from roots after 21 days in sterile or nonsterile soil to check for the presence of gacS or gacA mutants. Although no mutants were detected in the inoculum, gacS/gacA mutants were recovered from 29 out of 31 roots and comprised up to 36% of the total bacterial populations. Southern hybridization analysis of the recovered gacA mutants did not indicate a conserved mutational mechanism. Replacement series analysis on roots utilizing strain 30-84 and a gacA mutant (30-84.gacA) or a gacS mutant (30-84.A2) demonstrated that although the mutant population partially displaced the wild type in sterile soil, it did not do so in natural soil. In fact, in natural soil final rhizosphere populations of wild-type strain 30-84 starting from mixtures were at least 1.5 times larger than would be predicted from their inoculation ratio and generally were greater than or equal to the population of wild type alone despite lower inoculation rates. These results indicate that although gacS/gacA mutants survive in natural rhizosphere populations, they do not displace wild-type populations. Better survival of wild-type populations in mixtures with mutants suggests that mutants arising de novo or introduced within the inoculum may be beneficial for the survival of wild-type populations in the rhizosphere.  相似文献   

20.
Mutations in the global regulatory genes gacS and gacA render Pseudomonas syringae pv. syringae strain B728a completely nonpathogenic in foliar infiltration assays on bean plants. It had been previously demonstrated that gac genes regulate alginate production in Pseudomonas species, while other published work indicated that alginate is involved in the pathogenic interaction of P. syringae on bean plants. Together, these results suggested that the effects of gacS and gacA mutations on virulence in B728a might stem directly from a role in regulating alginate. In this report, we confirm a role for gac genes in both algD expression and alginate production in B728a. However, B728a mutants completely devoid of detectable alginate were as virulent as the wild-type strain in our assay. Thus, factors other than, or in addition to, a deficiency of alginate must be involved in the lack of pathogenicity observed with gacS and gacA mutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号