首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structures of the bacterial and archaeal communities in an anaerobic digester were monitored over a 2 year period. The study was performed on a fluidized bed reactor fed with vinasse. The objective was to characterize the population dynamics over a long time period under constant environmental parameters. Total bacterial and archaeal populations were measured independently by fluorescence-based polymerase chain reaction (PCR) single-strand conformation polymorphism (SSCP) analysis using an automated DNA sequencer. With the current level of accuracy, the technique was able to monitor 45 bacterial and seven archaeal 16S rDNA molecules. The community dynamics were compared with molecular inventories of the microbial community based on 16S rDNA sequences done at the beginning of the study. The six archaeal and the 22 most frequent bacterial operational taxonomic units (OTUs) identified were associated with their SSCP peak counterparts. Overall, the data indicated that, throughout the period of the study, rapid significant shifts in the species composition of the bacterial community occurred, whereas the archaeal community remained relatively stable.  相似文献   

2.
The leachate generated by the decomposition of animal carcass has been implicated as an environmental contaminant surrounding the burial site. High-throughput nucleotide sequencing was conducted to investigate the bacterial communities in leachates from the decomposition of pig carcasses. We acquired 51,230 reads from six different samples (1, 2, 3, 4, 6 and 14 week-old carcasses) and found that sequences representing the phylum Firmicutes predominated. The diversity of bacterial 16S rRNA gene sequences in the leachate was the highest at 6 weeks, in contrast to those at 2 and 14 weeks. The relative abundance of Firmicutes was reduced, while the proportion of Bacteroidetes and Proteobacteria increased from 3–6 weeks. The representation of phyla was restored after 14 weeks. However, the community structures between the samples taken at 1–2 and 14 weeks differed at the bacterial classification level. The trend in pH was similar to the changes seen in bacterial communities, indicating that the pH of the leachate could be related to the shift in the microbial community. The results indicate that the composition of bacterial communities in leachates of decomposing pig carcasses shifted continuously during the study period and might be influenced by the burial site.  相似文献   

3.
Freezing stool samples prior to DNA extraction and downstream analysis is widely used in metagenomic studies of the human microbiota but may affect the inferred community composition. In this study, DNA was extracted either directly or following freeze storage of three homogenized human fecal samples using three different extraction methods. No consistent differences were observed in DNA yields between extractions on fresh and frozen samples; however, differences were observed between extraction methods. Quantitative PCR analysis was subsequently performed on all DNA samples using six different primer pairs targeting 16S rRNA genes of significant bacterial groups, and the community composition was evaluated by comparing specific ratios of the calculated abundances. In seven of nine cases, the Firmicutes to Bacteroidetes 16S rRNA gene ratio was significantly higher in fecal samples that had been frozen compared to identical samples that had not. This effect was further supported by qPCR analysis of bacterial groups within these two phyla. The results demonstrate that storage conditions of fecal samples may adversely affect the determined Firmicutes to Bacteroidetes ratio, which is a frequently used biomarker in gut microbiology.  相似文献   

4.
Earthworms ingest large amounts of soil and have the potential to radically alter the biomass, activity, and structure of the soil microbial community. In this study, the diversity of eight bacterial groups from fresh soil, gut, and casts of the earthworms Lumbricus terrestris and Aporrectodea caliginosa were studied by single-strand conformation polymorphism (SSCP) analysis using both newly designed 16S rRNA gene-specific primer sets targeting Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Deltaproteobacteria, Bacteroidetes, Verrucomicrobia, Planctomycetes, and Firmicutes and a conventional universal primer set for SSCP, with RNA and DNA as templates. In parallel, the study of the relative abundance of these taxonomic groups in the same samples was performed using fluorescence in situ hybridization. Bacteroidetes, Alphaproteobacteria, and Betaproteobacteria were predominant in communities from the soil and worm cast samples. Representatives of classes Flavobacteria and Sphingobacteria (Bacteroidetes) and Pseudomonas spp. (low-abundant Gammaproteobacteria) were detected in soil and worm cast samples with conventional and taxon-targeting SSCP and through the sequence analysis of 16S rRNA clone libraries. Physiologically active unclassified Sphingomonadaceae (Alphaproteobacteria) and Alcaligenes spp. (Betaproteobacteria) also maintained their diversities during transit through the earthworm intestine and were found on taxon-targeting SSCP profiles from the soil and worm cast samples. In conclusion, our results suggest that some specific bacterial taxonomic groups maintain their diversity and even increase their relative numbers during transit through the gastrointestinal tract of earthworms.  相似文献   

5.
To gain insight into the factors driving the structure of bacterial communities in soil, we applied real-time PCR, PCR-denaturing gradient gel electrophoreses, and phylogenetic microarray approaches targeting the 16S rRNA gene across a range of different land usages in the Netherlands. We observed that the main differences in the bacterial communities were not related to land-use type, but rather to soil factors. An exception was the bacterial community of pine forest soils (PFS), which was clearly different from all other sites. PFS had lowest bacterial abundance, lowest numbers of operational taxonomic units (OTUs), lowest soil pH, and highest C : N ratios. C : N ratio strongly influenced bacterial community structure and was the main factor separating PFS from other fields. For the sites other than PFS, phosphate was the most important factor explaining the differences in bacterial communities across fields. Firmicutes were the most dominant group in almost all fields, except in PFS and deciduous forest soils (DFS). In PFS, Alphaproteobacteria was most represented, while in DFS, Firmicutes and Gammaproteobacteria were both highly represented. Interestingly, Bacillii and Clostridium OTUs correlated with pH and phosphate, which might explain their high abundance across many of the Dutch soils. Numerous bacterial groups were highly correlated with specific soil factors, suggesting that they might be useful as indicators of soil status.  相似文献   

6.
The gut of insects may harbour one of the largest reservoirs of a yet unexplored microbial diversity. To understand how specific insects select for their own bacterial communities, the structural diversity and variability of bacteria found in the gut of different bee species was analysed. For three successive years, adults and larvae of Apis mellifera ssp. carnica (honey bee), and Bombus terrestris (bumble bee), as well as larvae of Osmia bicornis (red mason bee) were collected at a flowering oilseed rape field. Total DNA was extracted from gut material and the bacterial diversity was analysed, independent of cultivation, by genetic profiling with single-strand conformation polymorphism (SSCP) of polymerase chain reaction (PCR)-amplified partial 16S rRNA genes. The SSCP profiles were specific for all bee species and for larvae and adults. Qualitative and quantitative differences were found in the bacterial community structure of larvae and adults of A. mellifera, but differences in B. terrestris were mainly quantitative. Sequencing of the PCR products revealed a dominance of Alpha-, Beta-, and Gammaproteobacteria, Bacteroidetes, and Firmicutes in all bee species. Single-strand conformation polymorphism profiles suggested a higher abundance and diversity of lactobacilli in adults of A. mellifera than in larvae. Further phylogenetic analyses indicated common bacterial phylotypes for all three bee species, e.g. those related to Simonsiella, Serratia, and Lactobacillus. Clades related to Delftia acidovorans, Pseudomonas aeruginosa or Lactobacillus intestinalis only contained sequences from larvae. Several of the bee-specific clusters also contained identical or highly similar sequences from bacteria detected in other A. mellifera subspecies from South Africa, suggesting the existence of cosmopolitan gut bacteria in bees.  相似文献   

7.
This study investigated the effects of dietary supplementation with a prebiotic mannan oligosaccharide (MOS) on broiler performance, bacterial community structure, and phylogenetic populations of cecal contents. Bird performance data were collected, and cecal samples were extracted from randomly caught poults from each treatment group every 7 days from hatching to the age of 42 days. Weight gain, feed consumption, and feed efficiency ratios did not differ significantly between groups. Automated ribosomal intergenic spacer analysis (ARISA) of the bacterial communities in birds receiving MOS-supplemented diets indicated that dietary supplementation with MOS at either of 2 levels significantly altered the bacterial community structure from that of the control group on all sample days. The phylogenetic identities of bacteria contained within the cecum were determined by constructing a 16S rRNA gene clone library. A total of 594 partial 16S rRNA gene sequences from the cecal contents were analyzed and compared for the three dietary treatments. The dominant bacteria of the cecum belonged to three phyla, Firmicutes, Bacteroidetes, and Proteobacteria; of these, Firmicutes were the most dominant in all treatment groups. Statistical analysis of the bacterial 16S rRNA gene clone libraries showed that the compositions of the clone libraries from broilers receiving MOS-supplemented diets were, in most cases, significantly different from that of the control group. It can be concluded that in this trial MOS supplementation significantly altered the cecal bacterial community structure.  相似文献   

8.
水稻土是非常复杂又典型的生态系统, 分析淹水培养过程中水稻土细菌的丰度和群落结构变化规律, 可以客观反映水稻土中细菌群落结构信息, 为深入探讨水稻土细菌微生物对稻田的影响和在生态系统中的作用(营养元素转换、重金属还原与抑制甲烷生成过程等)提供实验基础与理论依据。作者采用淹水非种植水稻土微环境模式系统, 提取水稻土淹水培养1 h和1、5、10、20、30、40、60 d后的微生物总DNA, 利用Real-time PCR和PCR-DGGE (denaturing gradient gel electrophoresis)技术检测了淹水培养过程中细菌丰度与群落结构的变化。结果表明: 淹水水稻土中细菌的丰度在1 d时最大, 并在40 d到达第二个峰值, 说明淹水过程改变了细菌的丰度。基于16S rRNA基因V3区的DGGE图谱分析显示, 淹水过程中细菌的群落结构发生了演替性变化: r-策略生存的细菌仅存在于淹水初期; k-策略生存的细菌存在于淹水后期; r-和k-策略共生存的细菌存在于整个淹水过程中, 淹水后期k-策略的细菌占据优势。淹水培养过程中优势种群多样性指数大体呈现先上升后减小的趋势。主成分分析(PCA)将淹水处理过程分成几类不同的生境, 反映出中、后期细菌群落结构较为稳定; 测序结果表明, 32个优势条带所代表的细菌分别属于厚壁菌门、绿弯菌门、拟杆菌门、变形菌门和酸杆菌门, 且与来自不同地域的水稻土、其他类型土壤、活性污泥以及湖泊沉积物等生态系统的细菌关系密切。  相似文献   

9.
通过构建16S rRNA克隆文库及采用核糖体DNA扩增片段酶切分析(ARDRA)的方法,研究施用生物防治剂枯草芽孢杆菌菌剂对烟草根际土壤细菌群落结构以及多样性的影响.采用文库库容值(C)、Shannon多样性指数(H)、Pielou 均匀度指数(E)和Margalef丰富度指数(R)对细菌多样性进行评价.系统发育分析表明: 对照及处理样品均检测到12个细菌类群:酸杆菌门(Acidobacteria)、变形菌门(α 、β 、δ 、γ-Proteobacteria)、浮霉菌门(Planctomycetes)、厚壁菌门(Firmicutes)、硝化螺旋菌门(Nitrospirae)、芽单胞菌门(Gemmatimonadetes)、放线菌门(Actinobacteria)、绿弯菌门(Chloroflexi)和拟杆菌门(Bacteroidetes);但各细菌类群的结构组成及所占比例在不同样品间有较大差别.对照土壤中优势菌群为Acidobacteria(27.1%)和Proteobacteria(26.5%);处理土壤中则为Proteobacteria(38.0%)和Acidobacteria(29.6%);菌剂处理后土壤中,γ-Proteobacteria和α Proteobacteria所占比例明显提高,而β Proteobacteria、Planctomycetes和Firmicutes等菌群的数量则相对降低.多样性分析表明,土壤样品均具有丰富的细菌多样性,经枯草芽孢杆菌菌剂处理后,土壤细菌多样性指数和丰富度指数均提高.
  相似文献   

10.
The structure and composition of microbial communities inhabiting the soft coral Alcyonium antarcticum were investigated across three differentially contaminated sites within McMurdo Sound, Antarctica. Diverse microbial communities were revealed at all sites using culture-based analysis, denaturing gradient gel electrophoresis (DGGE), 16S rRNA gene clone-library analysis, and FISH. Phylogenetic analysis of isolates and retrieved sequences demonstrated close affiliation with known psychrophiles from the Antarctic environment and high similarity to Gammaproteobacteria clades of sponge-associated microorganisms. The majority of bacteria detected with all techniques reside within the Gammaproteobacteria, although other phylogenetic groups including Alpha- and Betaproteobacteria, Bacteroidetes, Firmicutes, Actinomycetales, Planctomycetes, and Chlorobi and bacteria from the functional group of sulfate-reducing bacteria were also present. Multivariate (nMDS) analysis of DGGE banding patterns and principal component analysis of quantitative FISH data revealed no distinct differences in community composition between differentially contaminated sites. Rather, conserved coral-associated bacterial groups were observed within and between sites, providing evidence to support specific coral-microbial interactions. This is the first investigation of microbial communities associated with Antarctic soft corals, and the results suggest that spatially stable microbial associations exist across an environmental impact gradient.  相似文献   

11.
A 20-day trial was conducted to reveal bacterial community dynamics in a commercial nursery of larval Litopenaeus vannamei larvae. The bacterial communities in the ambient water were profiled by high-throughput sequencing of the V4–V5 hypervariable region of the 16S rRNA gene. The results indicated that the dominant bacterial phyla between the metamorphosis stage and postlarval stage were Bacteroidetes, Proteobacteria, Cyanobacteria, and Firmicutes, representing more than 80.09% of the bacterial operational taxonomic units. The relative abundance among bacterial phyla notably differed between the two stages. The relative abundance of Cyanobacteria was higher in the metamorphosis stage, while that of Bacteroidetes was higher and more stable in the postlarval stage. At the class level, the relative abundance of Sphingobacteriia and Alphaproteobacteria increased markedly in the postlarval stage, while that of Flavobacteriia decreased. Redundancy analysis showed that bacterial composition in the metamorphosis stage was positively correlated with salinity, alkalinity, and pH, while in the postlarval stage, it was positively correlated with ammonium nitrogen and nitrite nitrogen. Thus, microbial community diversity in the nursery phase varies per rearing stage.  相似文献   

12.
The compost environment consists of complex organic materials that form a habitat for a rich and diverse microbial community. The aim of this research was to study the dynamics of microbial communities during the compost-curing phase. Three different methods based on 16S rRNA gene sequence were applied to monitor changes in the microbial communities: (1) denaturing gradient gel electrophoresis of PCR-generated rRNA gene fragments; (2) partial rRNA gene clone libraries; and (3) a microarray of oligonucleotide probes targeting rRNA gene sequences. All three methods indicated distinctive community shifts during curing and the dominant species prevailing during the different curing stages were identified. We found a successional transition of different bacterial phylogenetic groups during compost curing. The Proteobacteria were the most abundant phylum in all cases. The Bacteroidetes and the Gammaproteobacteria were ubiquitous. During the midcuring stage, Actinobacteria were dominant. Different members of nitrifying bacteria and cellulose and macromolecule-degrading bacteria were found throughout the curing process. In contrast, pathogens were not detected. In the cured compost, bacterial population shifts were still observed after the compost organic matter and other biochemical properties had seemingly stabilized.  相似文献   

13.
Archaea and bacteria are important drivers for nutrient transformations in soils and catalyse the production and consumption of important greenhouse gases. In this study, we investigate changes in archaeal and bacterial communities of four Czech grassland soils affected by outdoor cattle husbandry. Two show short-term (3 years; STI) and long-term impact (17 years; LTI), one is regenerating from cattle impact (REG) and a control is unaffected by cattle (CON). Cattle manure (CMN), the source of allochthonous microbes, was collected from the same area. We used pyrosequencing of 16S rRNA genes to assess the composition of archaeal and bacterial communities in each soil type and CMN. Both short- and long- term cattle impact negatively altered archaeal and bacterial diversity, leading to increase of homogenization of microbial communities in overwintering soils over time. Moreover, strong shifts in the prokaryotic communities were observed in response to cattle overwintering, with the greatest impact on archaea. Oligotrophic and acidophilic microorganisms (e.g. Thaumarchaeota, Acidobacteria, and α-Proteobacteria) dominated in CON and expressed strong negative response to increased pH, total C and N. Whereas copiotrophic and alkalophilic microbes (e.g. methanogenic Euryarchaeota, Firmicutes, Chloroflexi, Actinobacteria, and Bacteroidetes) were common in LTI showing opposite trends. Crenarchaeota were also found in LTI, though their trophic interactions remain cryptic. Firmicutes, Bacteroidetes, Methanobacteriaceae, and Methanomicrobiaceae indicated the introduction and establishment of faecal microbes into the impacted soils, while Chloroflexi and Methanosarcinaceae suggested increased abundance of soil-borne microbes under altered environmental conditions. The observed changes in prokaryotic community composition may have driven corresponding changes in soil functioning.  相似文献   

14.
To examine the bacterial community structure in the Fildes Peninsula, King George Island, Antarctica, we examined the bacterial diversity and community composition of samples collected from lacustrine sediment, marine sediment, penguin ornithogenic sediments, and soils using culture-dependent and culture-independent methods. The 70 strains fell into five groups: Actinobacteria, Bacteroidetes, Firmicutes, Gammaproteobacteria, and Betaproteobacteria. Bacterial diversity at the phylum level detected in Denaturing Gradient Gel Electrophoresis (DGGE) profiles comprised Proteobacteria (including the subphyla Alpha-, Beta-, Gamma-, Deltaproteobacteria), Bacteroidetes, Firmicutes, Chlorobi, and Deinococcus-Thermus. Gammaproteobacteria was identified to be the dominant bacterial subphylum by cultivation and DGGE method. By cluster analysis, the overall structure and composition of bacterial communities in the soil and lacustrine sediment were similar to one another but significantly different from bacterial communities in penguin ornithogenic sediment and marine sediment, which were similar to one another. The majority of 16S rDNA sequences from cultured bacteria were closely related to sequences found in cold environments. In contrast, a minority of 16S rDNA sequences from the DGGE approach were closely related to sequences found in cold environments.  相似文献   

15.
Continent-scale biogeography has been extensively studied in soils and marine systems, but little is known about biogeographical patterns in non-marine sediments. We used barcode pyrosequencing to quantify the effects of local geochemical properties and geographic distance for bacterial community structure and membership, using sediment samples from 15 lakes on the Tibetan Plateau (4-1670?km apart). Bacterial communities were surprisingly diverse, and distinct from soil communities. Four of 26 phyla detected were dominant: Proteobacteria, Bacteroidetes, Firmicutes and Actinobacteria, albeit 20.2% of sequences were unclassified at the phylum level. As previously observed in acidic soil, pH was the dominant factor influencing alkaline sediment community structure, phylotype richness and phylogenetic diversity. In contrast, archaeal communities were less affected by pH. More geographically distant sites had more dissimilar communities (r?=?0.443, P?=?0.030). Variance partitioning analysis showed that geographic distance (historical contingencies) contributed more to bacterial community variation (12.2%) than any other factor, although the environmental factors explained more variance when combined (28.9%). Together, our results show that pH is the best predictor of bacterial community structure in alkaline sediments, and confirm that both geographic distance and chemical factors govern bacterial biogeography in lake sediments.  相似文献   

16.
Drosophila melanogaster is one of the most widely used model systems in biology. However, little is known about its associated bacterial community. As a first step towards understanding these communities, we compared bacterial 16S rRNA gene sequence libraries recovered from 11 natural populations of adult D. melanogaster. Bacteria from these sequence libraries were grouped into 74 distinct taxa, spanning the phyla Proteobacteria, Bacteroidetes, and Firmicutes, which were unevenly spread across host populations. Summed across populations, the distribution of abundance of genera was closely fit by a power law. We observed differences among host population locations both in bacterial community richness and in composition. Despite this significant spatial variation, no relationship was observed between species richness and a variety of abiotic factors, such as temperature and latitude. Overall, bacterial communities associated with adult D. melanogaster hosts are diverse and differ across host populations.  相似文献   

17.
One of the fascinating functions of mammalian intestinal microbiota is fermentation of plant cell wall components. Eight-week continuous culture enrichments of pig feces with cellulose and xylan/pectin were used to isolate bacteria from this community. A total of 575 bacterial isolates were classified phylogenetically using 16S rRNA gene sequencing. Six phyla were represented in the bacterial isolates: Firmicutes (242), Bacteroidetes (185), Proteobacteria (65), Fusobacteria (55), Actinobacteria (23), and Synergistetes (5). The majority of the bacterial isolates had ≥97 % similarity to cultured bacteria with sequences in the RDP, but 179 isolates represent new species and/or genera. Within the Firmicutes isolates, most were classified in the families of Lachnospiraceae, Enterococcaceae, Staphylococcaceae, and Clostridiaceae I. The majority of the Bacteroidetes were most closely related to Bacteroides thetaiotaomicron, Bacteroides ovatus, and B. xylanisolvens. Many of the Firmicutes and Bacteroidetes isolates were identified as species that possess enzymes that ferment plant cell wall components, and the rest likely support these bacteria. The microbial communities that arose in these enrichment cultures had broad bacterial diversity. With over 30 % of the isolates not represented in culture, there are new opportunities to study genomic and metabolic capacities of these members of the complex intestinal microbiota.  相似文献   

18.
乌梁素海富营养化湖区浮游细菌多样性及系统发育分析   总被引:6,自引:0,他引:6  
水生生态系统富营养化与细菌群落之间的关系尚不明确。本文通过构建和分析16S rRNA基因片段克隆文库, 以期揭示乌梁素海富营养化水体细菌的多样性及其系统发育关系, 并探讨富营养化与细菌多样性之间的关系。利用Hae III对文库中的87个克隆子进行单酶切, 产生了23种带型, 文库覆盖度达到了73.6%, 反映出文库有较好的代表性。选择每种OTU的一个代表克隆进行测序分析, 基因序列系统发育分析结果表明, 乌梁素海中多数细菌与淡水生态系统中常见的细菌门类相同, 即α-, β-, γ-Proteobacteria, Bacteroidetes, Actinobacteria, 它们分别占总菌数的10.3%、41.4%、4.6%和6.9%, 其中β-Proteobacteria和Bacteroidetes是优势细菌类群。与典型淡水生态系统细菌群落组成不同的是, 乌梁素海中存在约10.3%的轻度嗜盐碱细菌。水体中83.9%的细菌与已培养的细菌的同源性低于97%, 其中58.9%的细菌未能鉴定到属; 其余总菌数16.1%的克隆与具有降解污染物生物活性的已知菌相近。Bacteroidetes、Firmicutes和β-Proteobacteria中的某些类群成为优势菌群可能是对乌梁素海水体富营养化的响应。  相似文献   

19.
转基因鲤鱼与对照鲤肠道微生物群落差异研究   总被引:1,自引:0,他引:1  
以转“全鱼”生长激素基因鲤(Cyprinus carpio L.)和野生对照鲤为对象, 采用454高通量测序技术对其肠道微生物16S rRNA基因进行测序并分析了3个不同发育阶段微生物群落结构的变化, 进而探讨了转基因鲤与对照鲤肠道微生物群落的差异。基于转基因鲤和对照鲤不同发育时期(6日龄、2月龄、5月龄)肠道微生物群落组成的DCA排序分析显示, 2月龄转基因鲤与对照鲤肠道微生物组成不同。Alpha多样性及均匀度都显示转基因鲤肠道微生物多样性高于对照鲤。从门水平的比较分析发现, 转基因鲤肠道中存在较多的厚壁菌门(Firmicutes)细菌, 而对照鲤中拟杆菌门(Bacteroidetes)细菌较多, 其中2月龄转基因鲤肠道内Bacteroidetes/Firmicutes比值低于对照鲤。研究结果表明, 在所分析的3个发育时期, 转基因鲤的肠道微生物组成与对照鲤相比发生了改变, 且在2月龄时存在差异。该研究为进一步揭示转基因鱼肠道微生物与宿主的相互影响和作用机制提供了很好的参考。  相似文献   

20.
This study investigated bacterial community structures in the midguts of Apis mellifera and Apis cerana in Thailand to understand how bacterial communities develop in Apis species. The bacterial species present in replicate colonies from different locations and life stages were analysed. PCR amplification of bacterial 16S rRNA gene fragments and terminal restriction fragment length polymorphism analyses revealed a total of 16 distinct terminal restriction fragments (T-RFs), 12 of which were shared between A. mellifera and A. cerana populations. The T-RFs were affiliated to Beta- and Gammaproteobacteria, Firmicutes and Actinomycetes. The Gammaproteobacteria were found to be common in all stages of honey bee, but in addition, the Firmicutes group was found to be present in the worker bees. Bacterial community structure showed no difference amongst the replicate colonies, but was affected to some degree by geographical location, life stage and species of honey bees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号