首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Kupffer cells are resident macrophages in the liver and play a central role in the hepatic response to injury. Bile acids can impair macrophage function leading to decreased cytokine release. TGR5 is a novel, membrane-bound bile acid receptor, and it has been suggested that the immunosuppressive effect of bile acids can be mediated by TGR5. However, the function of TGR5 in Kupffer cells has not been studied and a direct link between TGR5 and cytokine production in macrophages has not been established. The present study demonstrates that TGR5 is localized in the plasma membrane of isolated Kupffer cells and is responsive to bile acids. Furthermore, bile acids inhibited LPS-induced cytokine expression in Kupffer cells via TGR5-cAMP dependent pathways. TGR5-immunoreactivity in Kupffer cells was increased in rat livers following bile-duct ligation, suggesting that TGR5 may play a protective role in obstructive cholestasis preventing excessive cytokine production thereby reducing liver injury.  相似文献   

3.
Incubation of Swiss mouse 3T3 cells at 37 degrees C with bovine brain-derived growth factor (BDGF) decrease the cell surface 125I-EGF binding activity of these cells by 70-80%. This down-modulation of the EGF receptor by BDGF was time, temperature, and dose dependent. Scatchard plot analysis indicated that BDGF binding led to a selective decrease in the number of high-affinity EGF receptors. The BDGF-induced down-modulation of the EGF receptor was completely blocked by protamine, a potent inhibitor of receptor binding and mitogenic activities of BDGF. BDGF down-modulated the EGF receptor in phorbol myristic acetate (PMA)-pretreated cells, as well as in control cells. Furthermore, PMA-pretreated cells responded mitogenically to BDGF, whereas PMA itself failed to stimulate the mitogenic response of PMA-pretreated cells. This BDGF-induced down-modulation of the EGF receptor in PMA-desensitized cells suggests that BDGF down-regulates the EGF receptor by a mechanism distinct from that of PMA. Incubation of cells with compounds which are known to inhibit pinocytosis blocked the down-modulation induced either by BDGF or by platelet-derived growth factor (PDGF) but had no effect on the PMA-induced down-modulation. Incubation of cells with inhibitors of receptor recycling enhanced the BDGF-induced down-modulation of the EGF receptor. These results suggest that BDGF and PDGF induce down-modulation of the EGF receptor by increasing the internalization of cell surface high-affinity receptors and that the internalization process may not be required for down-modulation induced by PMA.  相似文献   

4.
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), administered to male rats at a single intraperitoneal (IP) injection dose of 25 μg/kg causes down-regulation of epidermal growth factor (EGF) receptor in the plasma membrane of rat liver which starts after two days and continues throughout the experimental period (20 days). Using monoclonal antibody to EGF receptor, it was determined that TCDD-caused EFG receptor down-regulation in the rat liver was accompanied by increased protein kinase activity. Such an increase in the protein kinase activity involves, at least in part, an activation of protein tyrosine kinase. Examination of serum samples from control and treated rats revealed no detectable difference in the level of EGF itself or EGF receptor-reacting substances (eg, hormones and other growth factors). In vivo TCDD caused early eye opening and tooth eruption and poor body weight gain and hair growth in mouse neonates similar to those observed with exogenously administered EGE The results indicate that such EGF receptor–mediated effect of TCDD has some toxocilogical significance in vivo. Although TCDD causes significant reduction in [125I]-EGF binding in the hepatic plasma membrane in susceptible strains of mice, it has only modest effects in tolerant strains. The results are consistent with the idea that the action of TCDD on the EGF receptor is mediated through the cytosoliclnuclear TCDD receptor, which is known to be regulated by the Ah locus.  相似文献   

5.
Epidermal growth factor receptor (EGF-R) is a receptor tyrosine kinase that can be activated by molecules other than its cognate ligands. This form of crosstalk called transactivation is frequently observed in both physiological and pathological cellular responses, yet it involves various mechanisms. Using the RWPE-1 cell line as a model of non-transformed prostate epithelial progenitor cells, we observed that interleukin-6 (IL-6) is able to promote cell proliferation and ERK1/2 activation provided that EGF-R kinase activity is not impaired. Treatment with GM6001, a general matrix metalloprotease inhibitor, indicated that IL-6 activates EGF-R through cleavage and release of membrane-anchored EGF-R ligands. Several inhibitors were used to test implication of “a disintegrin and metalloprotease” ADAM10 and ADAM17. GW280264X that targets both ADAM10 and ADAM17 blocked IL-6-induced proliferation and ERK1/2 phosphorylation with same potency as GM6001. However, ADAM10 inhibitor GI254023X and ADAM17 inhibitor TAPI-2 were less efficient in inhibiting response of RWPE-1 cells to IL-6, indicating possible cooperation of ADAM17 with ADAM10 or other metalloproteases. Accordingly, our findings suggest that IL-6 stimulates shedding of EGF-R ligands and transactivation of EGF-R in normal prostate epithelial cells, which may be an important mechanism to promote cell proliferation in inflammatory prostate.  相似文献   

6.
Multidrug-resistant human neuroblastoma cell lines obtained by selection with vincristine or actinomycin D from two independent clonal lines, SH-SY5Y and MC-IXC, have 3- to 30-fold more cell surface epidermal growth factor (EGF) receptors than the drug-sensitive parental cells as indicated by EGF binding assays and immunoprecipitation, affinity-labeling, and phosphorylation studies. Reversion to drug sensitivity in one line was accompanied by a return to the parental level of EGF receptor. SH-EP cells, a clone derived from the same neuroblastoma cell line as SH-SY5Y but which displays melanocyte rather than neuronal lineage markers, also express significantly more EGF receptor than SH-SY5Y cells. By nucleic acid hybridization analysis with a molecularly cloned probe, increased receptor level in multidrug-resistant cells was shown to be the result of higher levels of EGF receptor mRNA in drug-resistant than in drug-sensitive cells. The increased steady state amount of specific RNA did not result from amplification of receptor-encoding genes. A small difference was observed in the electrophoretic mobility under denaturing conditions of EGF receptor immunoprecipitated from drug-resistant and drug-sensitive cells. Quantitative and qualitative modulation of the EGF receptor might reflect alterations in the transformation and/or differentiation phenotype of the resistant cells or might result from unknown selective pressures associated with the development of multidrug resistance.  相似文献   

7.
8.
Dimerization of epidermal growth factor receptor (EGFR) leads to the activation of its tyrosine kinase. To elucidate whether dimerization is responsible for activation of the intracellular tyrosine kinase domain or just plays a role in the stabilization of the active form, the activated status of wild-type EGFR moiety in the heterodimer with kinase activity-deficient mutant receptors was investigated. The kinase activity of the wild-type EGFR was partially activated by EGF in the heterodimer with intracellular domain deletion (sEGFR) or ATP binding-deficient mutant (K721A) EGFRs, while the wild-type EGFR in the heterodimer of wild-type and phosphate transfer activity-deficient mutant receptor D813N could be fully activated. After treatment with EGF, the ATP binding affinity and the V(max) of the wild-type EGFR increased. In the presence of sEGFR, a similar increase in the affinity for ATP was observed, but V(max) did not change. A two-step activation mechanism for EGFR was proposed: upon binding of EGF, the affinity for ATP increased and then, as a result of interaction between the neighboring tyrosine kinase domain, V(max) increased.  相似文献   

9.
A biotinylated derivative of murine epidermal growth factor (EGF) was prepared by covalent attachment of the terminal amino group of EGF to N-biotinyl-epsilon-aminocaproyl-N-hydroxysuccinimide. The stoichiometry of biotin incorporation was in the range of one biotin moiety per EGF molecule. The biotinylated EGF (biotinyl-epsilon-caproyl-EGF, BioEGF) binds to EGF receptors on intact Ehrlich ascites carcinoma (EAC) cells with an affinity similar to that of native EGF and displays the same mitogenic activity as EGF in a soft agar test system with normal rat kidney (NRK) cells. BioEGF was visualized on cultured cells and tissue sections of a head and neck tumour by commercial streptavidin/avidin detection systems. Cytochemical analyses of certain tumour forms can be easily performed using the BioEGF probe.  相似文献   

10.
The present study aimed to determine the influence of exogenous epidermal growth factor (EGF) on in vitro preimplantation porcine embryo development and its mRNA expression for EGF receptor (EGFR). Oocytes were aspirated from abattoir ovaries, selected and cultured in defined, protein-free media for 44 hr before in vitro fertilization (IVF). Thirty-six hours after IVF, two-cell stage embryos were selected and treated or cultured until embryo treatment. In experiment 1, compact morulae were selected on day 4 after IVF and randomly allocated into 5 groups: NCSU 23 with PVA as group 1; NCSU 23 with PVA and 0.1 ng/ml, 1.0 ng/ml, 10.0 ng/ml EGF as group 2, 3, 4, respectively; NSCU 23 with 0.4% BSA as group 5. In experiment 2, treatment groups were the same as in experiment 1 except that 0.1% crystallized BSA was added to both washing media and all treatment groups instead of PVA. In experiments 3 and 4, two-cell stage embryos were treated and cultured in the same experimental design as experiments 1 and 2, respectively. RT-PCR was used to detect the mRNA expression of EGF receptor in compact morulae and blastocysts. The PCR products were subjected to direct DNA sequencing. There was no significant improvement in the development rate of embryos from compact morulae to blastocysts in the presence of various EGF concentrations (0.1, 1.0, 10.0 ng/ml) versus without EGF addition. They were all significantly lower than those embryos cultured in the continuous presence of 0.4% BSA. However, when a reduced concentration (0.1%) of crystallized BSA was added to all the treatment groups, a significantly lower rate of embryo development was observed in control media (NCSU23 with 0.1% crystallized BSA) compared with those developed in culture media with 0.4% BSA. With the addition of EGF at 10 ng/ml (with 0.1% BSA), embryo development rates were significantly improved over the control group (P < 0.05) and were as good as those rates in 0.4% BSA culture group. When embryos were selected and treated from the 2-cell stage, they did not develop to blastocyst stages after five more days' culture without any protein (BSA) or growth factor addition. When 0.1% BSA was included in the media, blastocyst formation rates were significantly improved by EGF addition at the concentration of both 1.0 or 10 ng/ml (P < 0.05) as compared to 0.0 or 0.1 ng/ml. EGFR mRNA was detected in both compact morulae and blastocyst stages of porcine embryos and confirmed by direct DNA sequencing. Our results indicate that IVM-IVF porcine embryo developmental rates could be improved by the addition of EGF in the culture media with the presence of a reduced amount of defined BSA (>97% albumin). However, EGF alone was not able to elicit any stimulatory effects on embryo development in the absence of protein supplementation. Further studies are needed to investigate the potential synergistic factors in embryo culture media to eventually define the porcine embryo culture media.  相似文献   

11.
Class B scavenger receptor type I (SR-BI) is a multiligand membrane protein expressed in a variety of cell types. This receptor is responsible for the incorporation of lipids from high density lipoprotein (HDL) by steroidogenic cells, as well as for the phosphatidylserine (PS)-mediated phagocytosis of apoptotic cells by some phagocytic cell types, such as testicular Sertoli cells. Although SR-BI directly binds to PS present on the surface of apoptotic cells, as to whether SR-BI transmits signals to induce engulfment has not been clear. In the present study, we examined this issue using a monoclonal antibody that neutralizes SR-BI activity and a chemical known to be an inhibitor of the SR-BI-mediated incorporation of HDL lipids. The chemical compound inhibited the incorporation of HDL lipids and PS-containing liposomes by an SR-BI-expressing culture cell line, with no effect on the binding of these targets. Similarly, the phagocytosis of PS-exposing apoptotic cells by primary cultured rat Sertoli cells was inhibited in the presence of either reagent, not at the recognition but at the engulfment step. The addition of apoptotic cells or PS-containing liposomes caused a temporal increment of the phosphorylation of all three mitogen-activated protein kinases, p38, extracellular-signal-regulated kinase (ERK) and c-Jun amino-terminal kinase (JNK), in Sertoli cells. The increase of phosphorylated p38 and ERK, but not of phosphorylated JNK, was cancelled in the presence of the monoclonal antibody. Furthermore, the level of Sertoli cell phagocytosis of PS-exposing apoptotic cells, as well as that of PS-containing liposomes, was reduced only when the actions of p38 and ERK were simultaneously repressed. In conclusion, these results indicate that SR-BI, when it binds to PS, transmits signals to activate the mitogen-activated protein kinase pathway, which leads to the induction of the engulfment of PS-exposing apoptotic cells by phagocytic cells.  相似文献   

12.
During the development of the chicken proventriculus (glandular stomach), the initially undifferentiated epithelium differentiates into two distinct cell populations: the glandular epithelium, cells of which secrete embryonic chicken pepsinogen (ECPg), and luminal epithelial cells, which express the chicken spasmolytic polypeptide gene (cSP). Based on knowledge of the adult mouse stomach, the ligands of epidermal growth factor (EGF) receptor (EGFR) were expected to affect differentiation of the proventricular epithelium. When EGF was added to the medium in which proventriculi were cultured in vitro, gland formation was suppressed in a dose-dependent manner and the amount of ECPg mRNA decreased, whereas morphological differentiation of luminal epithelium was stimulated. Simultaneous treatment of the proventriculus with EGF and tyrphostin 47 resulted in the attenuation of the effect of EGF, suggesting that EGF, or other ligands of EGFR, may actually be involved in the normal course of development of the proventricular epithelium.  相似文献   

13.
The abilities of insulin and EGF stimulated protein kinases to phosphorylate a series of exogenous substrates were compared using wheat germ lectin purified preparations of solubilized rat liver membranes. Three different kinds of substrates were found: substrates phosphorylated primarily by insulin stimulated kinase, substrates phosphorylated primarily by EGF stimulated kinase and substrates phosphorylated by both kinases to a similar extent. These results indicate that the insulin and the EGF receptor kinase have different, but overlapping, substrate specificities. In vivo, phosphorylation of cellular proteins by various hormone receptor kinases may be part of the signal transmission process for actions of the hormones. Different substrate specificities of kinases of different hormone receptors may therefore represent an important mechanism to preserve the specificity of the hormonal signal at the post receptor level.  相似文献   

14.
15.
Girard M  McPherson PS 《FEBS letters》2008,582(6):961-966
We recently identified receptor-mediated endocytosis 8 (RME-8), a DnaJ domain protein localized to endosomes. We now demonstrate that RME-8 depletion leads to decreased levels of epidermal growth factor receptor (EGFR) without influencing receptors that primarily recycle to the plasma membrane. Decreases in EGFR are detected at both surface and intracellular pools and result from increased rates of EGFR degradation. Interestingly, RME-8 depletion also decreases EGFR levels in breast cancer cell lines in which overexpression of the EGFR family member ErbB2 has been shown to protect EGFR from degradation. These data implicate RME-8 in sorting decisions influencing EGFR at the level of endosomes and point to RME-8 as a potential regulatory target in ErbB2-positive breast cancers.  相似文献   

16.
Cycloheximide is the most common protein synthesis inhibitor, and is believed to specifically inhibit the cytoplasmic protein synthesis. Here we demonstrate that cycloheximide induces internalization and redistribution of EGF receptor to early endosomes in HeLa cells independent of receptor tyrosine phosphorylation, but dependent on p38 MAPK activity. Degradation of EGF receptor or its downstream effectors was not observed. EGF-induced activation of ERK1/2 was inhibited upon pre-treatment with cycloheximide, but did not activate JNK. The observed effects of treatment with cycloheximide alone are significant and therefore results involving the use of cycloheximide for inhibition of protein synthesis must be interpreted with caution.

Structured summary of protein interactions

EEA1 and EGFRcolocalize by fluorescence microscopy (View interaction).  相似文献   

17.
The -adrenergic receptor agonist isoproterenol exerts growth-promoting effects on salivary glands. In this study, activation of ERKs, members of the mitogen-activated protein kinase family, by isoproterenol was examined in a human salivary gland cell line (HSY). Immunoblot analysis indicated that isoproterenol (10–5 M) induced transient activation of ERK1/2 (4.4-fold relative to basal at 10 min) similar to that caused by EGF (6.7 fold). Isoproterenol, like EGF, also induced phosphorylation of the EGF receptor. However, inhibition of EGF receptor phosphorylation by the tyrphostin AG-1478 only partially attenuated isoproterenol-induced ERK phosphorylation, whereas EGF-responsive ERK activation was completely blocked. The Gi inhibitor pertussis toxin also caused partial inhibition of isoproterenol-stimulated ERK activation. The cAMP analog 8-(4-chlorophenylthio)adenosine 3',5'-cyclic monophosphate (CPT-cAMP) and the cAMP-elevating agents IBMX and cholera toxin produced transient ERK1/2 activation, similar to the effect of isoproterenol, in HSY cells. The stimulatory effects of isoproterenol and cAMP on ERK phosphorylation were not reduced by the PKA inhibitor H-89, whereas the Src family inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidase (PP2) and transfection of a dominant-negative Src construct diminished isoproterenol-induced ERK activation. Isoproterenol induced marked overexpression of the cell growth-related adhesion molecule CD44, and this effect of isoproterenol was abolished by the ERK pathway inhibitor PD-98059. In summary, we show a dual mechanism of isoproterenol-induced ERK phosphorylation in HSY cells—one pathway mediated by EGF receptor transactivation and the other by an EGF receptor-independent pathway possibly mediated by cAMP. Our results also suggest that isoproterenol-induced growth of salivary tissue may involve ERK-mediated CD44 expression. mitogen-activated protein kinase; CD44  相似文献   

18.
19.
Many hepatocellular activities may be proximally regulated by intracellular signalling proteins including mitogen-activated protein kinases (MAPK). In this study, signalling events from epidermal growth factor (EGF) and insulin were examined in primary cultured human and rat hepatocytes. Using Western immunoblots, rat and human hepatocytes were found to produce a rapid tyrosine phosphorylation of the EGF receptor and MAPK following 0·5–1 min exposure to EGF. Phosphorylation of p42 and p44 MAPK was observed following 2·5 min exposure to EGF. Insulin treatment produced phosphorylation of the insulin receptor β subunit; shc phosphorylation was not observed. MAPK phosphorylation corresponded with a shift in molecular weight and an increase in kinase activity. Insulin-dependent activation of MAPK was unequivocally observed only in human hepatocytes, though a slight activation was detected in rat. Co-treatment with insulin and EGF produced phosphorylation and complete electrophoretic shift in molecular weight of MAPK, with an additive or synergistic increase in enzyme activity in rat but not human hepatocytes; human hepatocyte MAPK was maximally stimulated by EGF alone. Glucagon pretreatment blocked phosphorylation, gel mobility shift and kinase activity of MAPK induced by insulin but only partially blocked EGF-induced MAPK activation in human hepatocytes. Glucagon also reduced the activation of MAPK by EGF in rat hepatocytes. Pre-treatments with forskolin or cyclic AMP analogues diminished in the insulin-, EGF- and insulin plus EGF-dependent activation of MAPK in rat hepatocytes without effecting phosphorylation of receptors or MAPK. These results indicate that although EGF and insulin may both signal through the MAPK/ras/raf/MAPK pathway, the response for MAPK differs between these ligands and between species. Further, in both rat and human, glucagon exerts its effects through a cyclic AMP-dependent mechanism at a level in the insulin and EGF signal transduction pathways downstream of MAPK but promixal to MAPK. The partial inhibition of EGF-induced MAPK phosphorylation by glucagon in human hepatocytes provides further evidence for a raf-1-independent pathway for activation of MAPK. © 1998 John Wiley & Sons, Ltd.  相似文献   

20.
Epidermal growth factor receptor (EGFR) plays a key role in regulating cell survival, proliferation and migration, and its overexpression and activation has been correlated with cancer progression. Cancer therapies targeting EGFR have been applied in the clinic with some success. We show, by confocal microscopy analysis, that illumination of adenocarcinomic human alveolar basal epithelial cells (Human A549—EGFR biosensor cell line) with 280 nm at irradiance levels up to 20 times weaker than the Ultraviolet B (UVB) solar output for short periods of time (15‐45 minutes) prevents epidermal growth factor‐mediated activation of EGFR located on the cell membrane, preventing or reducing cellular disaggregation, formation of filopodia and cell migration. This effect of Ultraviolet (UV) light illumination was confirmed further in a functional scratch assay, and shown to be more effective than that of a specific EGFR‐signaling inhibitor. This new photonic approach may be applicable to the treatment of various types of cancer, alone or in combination with other therapies.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号