首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Enzymatic regulation of pyricline nucleotide formation, under symbiotic and non-symbiotic conditions, was analyzed using soybeans (Glycine max L. cv. 'Akisengoku') and rhizobia (Bradyrhizobia japonicum strain A1017), respectively. It was found that levels of pyridine nucleotides in bacteroids in root nodules were different from those in free-living cells of rhizobia. This difference was associated with differences in activities of enzymes involved in the pathway from L-tryptophan to NAD and NADP. That is, these activities were lower in bacteroids than in free-living bacteria and lower in the nodule cytosol than in root extracts. The optimum pH for NAD synthetase in bacteroids, was 9.0. Additionally, the optimum pH for ATP-nicotinamide mononucleotide (NMN) adenyltransferase, final step enzyme in NAD formation, was estimated to be 7.6. In the bacteroid fraction, the K(m) of NAD synthetase (22 microM) was approximately 1/22 of that of ATP-NMN adenyltransferase (482 microM). Vmax values were estimated to be almost in the same order for both NAD synthetase and ATP-NMN adenyltransferase. This is the first report on the formation of pyridine nucleotides originating from L-tryptophan in bacteroids in soybean nodules and free-living bacteria.  相似文献   

2.
Cultures of Rhizobium japonicum were grown with vigorous aeration to stationary phase and were then incubated under restricted aeration for several days. Under these "microaerobic" conditions, cellular heme content increased 10-fold, and visible amounts of porphyrins were released into the culture medium. The two predominant porphyrins produced were identified, on the basis of their spectrophotometric and chromatographic properties, as protoporphyrin and coproporphyrin. The cytochrome complement of microaerobic cells partially resembled that of the symbiotic bacteria in that cytochromes alpha-alpha3 were absent and a CO-binding cytochrome 552 was present. During the period of restricted aeration, at the time that the heme content was increasing, there was a similar 10-fold increase in the activities of the first two enzymes of heme biosynthesis, delta-aminolevulinic acid synthase and delta-aminolevulinic acid dehydrase. However, during the same period, the activity of succinyl thiokinase (an enzyme that is required in large amounts whether or not heme is being produced) increased only twofold. These results suggest that reduced oxygen tension may play a role in inducing heme synthesis necessary for leghemoglobin formation and bacterial differentiation in soybean root nodules.  相似文献   

3.
Cell-free extracts of various cytochrome-containing, heterotrophic microorganisms were examined for ability to convert coproporphyrinogen to protoporphyrin. Extracts of Escherichia coli and Pseudomonas denitrificans readily accumulated large amounts of protoporphyrin when assayed under aerobic conditions. However, protoporphyrin did not accumulate under either aerobic or anaerobic conditions of assay or in the presence of various supplements in extracts of the aerobe Micrococcus lysodeikticus, the facultative anaerobe Staphylococcus aureus, or the anaerobe Vibrio succinogenes. Protoporphyrin also accumulated when extracts of E. coli and P. denitrificans were incubated aerobically with the early heme precursor, delta-amino levulinic acid (ALA). This protoporphyrin accumulation was markedly stimulated by the iron chelator, o-phenanthroline. Extracts of S. aureus and M. lysodeikticus accumulated coproporphyrin, but not protoporphyrin when incubated with ALA. The enzyme system in extracts of E. coli which converts coproporphyrinogen to protoporphyrin under aerobic conditions of assay was also partially characterized. This conversion was stimulated by the iron chelator, o-phenanthroline, the respiratory inhibitor, cyanide, and the reducing agent, thioglycolate. Dialysis of the extract did not diminish enzyme activity. Certain alternate electron acceptors and nitrite caused a marked inhibition of the conversion. These results indicate that this late step in heme synthesis, the conversion of coproporphyrinogen to protoporphyrin, can be readily demonstrated in extracts of some, but not all, cytochrome-containing bacteria and that the aerobic conversion in E. coli exhibits many characteristics similar to those demonstrated for the aerobic conversion previously studied in liver mitochondria.  相似文献   

4.
The symbiotic interaction between legumes and soil bacteria (e.g., soybean [Glycine max L.] and Bradyrhizobium japonicum]) leads to the development of a new root organ, the nodule, where bacteria differentiate into bacteroids that fix atmospheric nitrogen for assimilation by the plant host. In exchange, the host plant provides a steady carbon supply to the bacteroids. This carbon can be stored within the bacteroids in the form of poly-3-hydroxybutyrate granules. The formation of this symbiosis requires communication between both partners to regulate the balance between nitrogen fixation and carbon utilization. In the present study, we describe the soybean gene GmNMNa that is specifically expressed during the infection of soybean cells by B. japonicum. GmNMNa encodes a protein of unknown function. The GmNMNa protein was localized to the nucleolus and also to the mitochondria. Silencing of GmNMNa expression resulted in reduced nodulation, a reduction in the number of bacteroids per infected cell in the nodule, and a clear reduction in the accumulation of poly-3-hydroxybutyrate in the bacteroids. Our results highlight the role of the soybean GmNMNa gene in regulating symbiotic bacterial infection, potentially through the regulation of the accumulation of carbon reserves.  相似文献   

5.
The effects of iron deficiency on heme biosynthesis in Rhizobium japonicum were examined. Iron-deficient cells had a decreased maximum cell yield and a decreased cytochrome content and excreted protoporphyrin into the growth medium. The activities of the first two enzymes of heme biosynthesis, delta-aminolevulinic acid synthase (EC 2.3.1.37) and delta-aminolevulinic acid dehydrase (EC 4.2.1.24), were diminished in iron-deficient cells, but were returned to normal levels upon addition of iron to the cultures. The addition of iron salts, iron chelators, hemin, or protoporphyrin to cell-free extracts did not affect the activity of these enzymes. The addition of levulinic acid to iron-deficient cultures blocked protoporphyrin excretion and also resulted in high delta-aminolevulinic acid synthase and delta-aminolevulinic acid dehydrase activities. These results suggest the possibility that rhizobial heme biosynthesis in the legume root nodule may be affected by the release of iron from the host plant to the bacteroids.  相似文献   

6.
Extracts of the crude bacteroid fraction of symbiotically grown Bradyrhizobium japonicum were much more active in oxidizing protoporphyrinogen to protoporphyrin than were extracts of cells grown under free-living conditions, especially when assayed in atmospheres containing only traces of oxygen. This correlates with the higher heme content of the microaerophilic nodules. Furthermore, the high level of oxidative activity in the crude bacteroid fraction was associated with an uncharacterized membrane fraction, probably of plant origin, that was separable from the bacteroids by Percoll gradient centrifugation.  相似文献   

7.
8.
9.
The photobleaching herbicide, acifluorfen-methyl (AFM), has been reported to be an inhibitor of the heme and chlorophyll biosynthetic enzyme protoporphyrinogen oxidase (Protox) in several plant species. However, AFM had no effect on the levels of Protox activity measured in a mitochondrial fraction from soybean roots. In contrast, AFM inhibited Protox activity in etioplasts from barley leaves and in mitochondria from barley roots, but the extent of inhibition varied depending upon the assay conditions and was maximal only in the presence of 5 mM dithiothreitol (DTT). AFM inhibition was enhanced by preincubation of barley organelle extract in the presence of DTT. Preincubation of barley extract with DTT and AFM together (but not with AFM alone) caused extensive enzyme inhibition which was not reversible by dialysis. These findings have implications for the mechanism of AFM action and for the differential effect of these herbicides on crop and weed species. AFM had no effect on the Protox activity of membranes from free-living bacterial cell of Bradyrhizobium japonicum or Escherichia coli, or on the high levels of Protox activity associated with the plant-derived membrane surrounding the symbiotic bacteria within the soybean root nodule.  相似文献   

10.
Immunodiffusion tests conducted under aerobic conditions demonstrated that cross-reactive material to antiserum prepared against the MoFe protein component of nitrogenase from soybean nodule bacteroids was detectable in extracts of free-living Rhizobium japonicum cells cultured in a standard medium under: aerobic conditions; aerobic conditions with nitrate; aerobic conditions with ammonia; anaerobic conditions with nitrate; and anaerobic conditions with nitrate and ammonia. The most intense precipitin bands resulted from cross-section of the antiserum with extracts of cells cultured anaerobically with nitrate or anaerobically with ammonia and nitrate. Immunodiffusion experiments with crude bacteroid extract and purified MoFe protein revealed a greater number of precipitin bands in tests conducted under aerobic conditions than those conducted under anaerobic conditions. These results indicate that some of the cross-reactive material observed under aerobic conditions resulted from breakdown of the MoFe protein. Bacteroid extracts of nodules from plants supplied with ammonia exhibited only a trace of nitrogenase activity. The addition of an excess of the Fe protein component of nitrogenase, however, resulted in a 270-fold enhancement of activity indicating the presence of active MoFe protein in these extracts.Our experiments together with results published elsewhere provide evidence that the genetic information for synthesis of a part of the MoFe component of nitrogenase is carried by Rhizobium.  相似文献   

11.
Flavins in different compartments of effective nodules fromGlycine max cv Maple Arrow xBradyrhizobium japonicum strains were studied by spectrophotometry and chromatographic techniques. Flavins in the peribacteroid space were riboflavin (80%) and FMN (20%), as identified by TLC and HPLC. Flavin concentrations in the soybean root nodule cytoplasm, in the symbiosome space (PBS) and in the cytosol of bacteroids were monitored between 20 and 40 days post infection (d.p.i.) Between the 20th and 29th d.p.i. an at least four times higher flavin/protein ratio was found in PBS of effective nodules compared with the nodule cytoplasm. Between nitrogenase activity in the free-living state and bacterial flavin accumulation, no correlation could be observed. Flavin accumulation is not restricted to an effective symbiosis, as indicated by the analysis of ineffective nodules with strainB. japonicum RH-31 Marburg. Flavin accumulation is absent in uninfected soybean root tissue and in free-living rhizobia, thus indicating that flavin accumulation is a result of symbiotic interaction. Flavin accumulation is also missing in nodules with a hypersensitive response against the bacteria.  相似文献   

12.
Symbiosis between legumes and nitrogen-fixing bacteria is thought to bring mutual benefit to each participant. However, it is not known how rhizobia benefit from nodulating legume hosts because they fix nitrogen only after becoming bacteroids, which are terminally differentiated cells that cannot reproduce. Because undifferentiated rhizobia in and around the nodule can reproduce, evolution of symbiotic nitrogen fixation may depend upon kin selection. In some hosts, these kin may persist in the nodule as viable, undifferentiated bacteria. In other hosts, no viable rhizobia survive to reproduce after nodule senescence. Bacteroids in these hosts may benefit their free-living kin by enhancing production of plant root exudates. However, unrelated non-mutualists may also benefit from increased plant exudates. Rhizopines, compounds produced by bacteroids in nodules and catabolized only by related free-living rhizobia, may provide a mechanism by which bacteroids can preferentially benefit kin. Despite this apparent advantage, rhizopine genotypes are relatively rare. We constructed a mathematical model to examine how mixing within rhizobium populations influences the evolution of rhizopine genotypes. Our model predicts that the success of rhizopine genotypes is strongly dependent upon the spatial genetic structure of the bacterial population; rhizopine is more likely to dominate well-mixed populations. Further, for a given level of mixing, we find that rhizopine evolves under a positive frequency-dependent process in which stochastic accumulation of rhizopine alleles is necessary for rhizopine establishment. This process leads to increased spatial structure in rhizobium populations, and suggests that rhizopine may expand the conditions under which nitrogen fixation can evolve via kin selection.  相似文献   

13.
Two oxygen-responsive regulatory systems controlling numerous symbiotic genes in Bradyrhizobium japonicum were assayed in free-living cultures for their capacity to activate target genes under different oxygen conditions. NifA- and FixLJ-controlled target genes showed disparate relative expression patterns. Induction of NifA-dependent genes was observed only at oxygen concentrations below 2% in the gas phase, whereas that of FixLJ-controlled targets progressively increased when the oxygen concentration was lowered from 21 to 5, 2, or 0.5%. We propose that this reflects a response to a gradient of increasing oxygen deprivation as bacteria invade their host during root nodule development.  相似文献   

14.
15.
The effect of various conditions on the accumulation of porphyrins and heme by resting suspensions of anaerobically grown cells of Staphylococcus epidermidis was examined. Anaerobically grown cells contain 10 to 15% of the amount of protoheme found in cells grown aerobically. Resting suspensions of anaerobically grown cells, when incubated aerobically in buffer with delta-aminolevulinic acid and glucose for 60 min, exhibited a fourfold increase in protoheme content. At high levels of delta-aminolevulinic acid, there was also a significant accumulation of porphyrins with the solubility and chromatographic properties of coproporphyrin and uroporphyrin. Protoporphyrin was not accumulated. When oxygen was excluded from the incubation mixture, accumulation of protoheme was prevented, but accumulation of coproporphyrin and total porphyrin was enhanced. Nitrate served as an electon acceptor as indicated by its reduction to nitrite; however, nitrate did not substitute for oxygen in causing the accumulation of protoheme. These results suggested that oxygen is required for one of the late steps of heme synthesis in S. epidermidis, possibly for the conversion of coproporphyrinogen to protoporphyrin. The inability of nitrate to substitute for oxygen suggests a role for molecular oxygen as a substrate rather than as an electron acceptor for heme synthesis.  相似文献   

16.
17.
Pyruvate kinase (PK, EC 2.7.1.40) was partially purified from the plant cytosolic fraction of N2-fixing soybean ( Glycine max [L.] Merr.) root nodules. The partially purified PK preparation was completely free of contamination by phospho enol pyruvate carboxylase (PEPC, EC 4.1.1.31), the other major phospho enol pyruvate (PEP)-utilizing enzyme in legume root nodules. Latency experiments with sonicated nodule extracts showed that Bradyrhizobium japonicum bacteroids do not express either PK or PEPC activity in symbiosis. In contrast, free-living B. japonicum bacteria expressed PK activity, but not PEPC activity. Antibodies specific for the cytosolic isoform of PK from castor bean endosperm cross-reacted with a 52-kDa polypeptide in the partially purified PK preparation. At the optimal assay pH (pH 8.0 for PEPC and pH 6.9 for PK) and in the absence of malate, PEPC activity in crude nodule extracts was 2.6 times the corresponding PK activity. This would tend to favour PEP metabolism by PEPC over PEP metabolism by PK. However, at pH 7.0 in the presence of 5 m M malate, PEPC activity was strongly inhibited, but PK activity was unaffected. Thus, we propose that PK and PEPC activity in legume root nodules may be coordinately regulated by fluctuations in malate concentration in the plant cytosolic fraction of the bacteroid-containing cells. Reduced uptake of malate by the bacteroids, as a result of reduced rates of N2 fixation, may favour PEP metabolism by PK over PEP metabolism by PEPC.  相似文献   

18.
The Bradyrhizobium japonicum hemA gene product delta-aminolevulinic acid (ALA) synthase is not required for symbiosis of that bacterium with soybean. Hence, the essentiality of the subsequent heme synthesis enzyme, ALA dehydratase, was examined. The B. japonicum ALA dehydratase gene, termed hemB, was isolated and identified on the basis of its ability to confer hemin prototrophy and enzyme activity on an Escherichia coli hemB mutant, and it encoded a protein that was highly homologous to ALA dehydratases from diverse organisms. A novel metal-binding domain in the B. japonicum ALA dehydratase was identified that is a structural composite of the Mg(2+)-binding domain found in plant ALA dehydratases and the Zn(2+)-binding region of nonplant ALA dehydratases. Enzyme activity in dialyzed extracts of cells that overexpressed the hemB gene was reconstituted by the addition of Mg2+ but not by addition of Zn2+, indicating that the B. japonicum ALA dehydratase is similar to the plant enzymes with respect to its metal requirement. Unlike the B. japonicum hemA mutant, the hemB mutant strain KP32 elicited undeveloped nodules on soybean, indicated by the lack of nitrogen fixation activity and plant hemoglobin. We conclude that the hemB gene is required for nodule development and propose that B. japonicum ALA dehydratase is the first essential bacterial enzyme for B. japonicum heme synthesis in soybean root nodules. In addition, we postulate that ALA is the only heme intermediate that can be translocated from the plant to the endosymbiont to support bacterial heme synthesis in nodules.  相似文献   

19.
20.
The Rhizobium--legume symbiosis.   总被引:6,自引:0,他引:6  
The rhizobia are soil microorganisms that can interact with leguminous plants to form root nodules within which conditions are favourable for bacterial nitrogen fixation. Legumes allow the development of very large rhizobial populations in the vicinity of their roots. Infections and nodule formation require the specific recognition of host and Rhizobium, probably mediated by plant lectins. Penetration of the host by a compatible Rhizobium species usually provokes host root cell division to form the nodule, and a process of differentiation by both partners then ensues. In most cases the rhizobia alter morphologically to form bacteroids, which are usually larger than the free-living bacteria and have altered cell walls. At all stages during infection, the bacteria are bounded by host cell plasmalemma. The enzyme nitrogenase is synthesized by the bacteria and, if leghaemoglobin is present, nitrogen fixation will occur. Leghaemoglobin is a product of the symbiotic interaction, since the globin is produced by the plant while the haem is synthesized by the bacteria. In the intracellular habitat the bacteria are dependent upon the plant for supplies of energy and the bacteroids, in particular, appear to differentiate so that they are no longer able to utilize the nitrogen that they fix. Regulation of the supply of carbohydrate and the use of the fixed nitrogen thus appear to be largely governed by the host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号