首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Memapsin 2 (BACE, beta-secretase) is a membrane-associated aspartic protease that initiates the hydrolysis of beta-amyloid precursor protein (APP) leading to the production of amyloid-beta (A beta) and the progression of Alzheimer disease. Both memapsin 2 and APP are transported from the cell surface to endosomes where APP is cleaved by memapsin 2. We described previously that the cytosolic domain of memapsin 2 contains an acid cluster-dileucine motif (ACDL) that binds the VHS (Vps-27, Hrs, and STAM) domain of Golgi-localized gamma-ear-containing ARF-binding (GGA) proteins (He, X., Zhu, G., Koelsch, G., Rodgers, K. K., Zhang, X. C., and Tang, J. (2003) Biochemistry 42, 12174-12180). Here we report that GGA proteins colocalize in the trans-Golgi network and endosomes with memapsin 2 and a memapsin 2 chimera containing a cytosolic domain of a mannose-6-phosphate receptor. Depleting cellular GGA proteins with RNA interference or mutation of serine 498 to stop the phosphorylation of ACDL resulted in the accumulation of memapsin 2 in early endosomes. A similar change of memapsin 2 localization also was observed when a retromer subunit, VPS26, was depleted. These observations suggest that GGA proteins function with the phosphorylated ACDL in the memapsin 2-recycling pathway from endosomes to trans-Golgi on the way back to the cell surface.  相似文献   

2.
He X  Chang WP  Koelsch G  Tang J 《FEBS letters》2002,524(1-3):183-187
Memapsin 2, or beta-secretase, is a membrane-anchored aspartic protease that initiates the cleavage of beta-amyloid precursor protein (APP) leading to the production of beta-amyloid peptide in the brain and the onset of Alzheimer's disease. Memapsin 2 and APP are both endocytosed into endosomes for cleavage. Here we show that the cytosolic domain of memapsin 2, but not that of memapsin 1, binds the VHS domains of GGA1 and GGA2. Gel-immobilized VHS domains of GGA1 and GGA2 also bound to full-length memapsin 2 from cell mammalian lysates. Mutagenesis studies established that Asp(496), Leu(499) and Leu(500) were essential for the binding. The spacing of these three residues in memapsin 2 is identical to those in the cytosolic domains of mannose-6-phosphate receptors, sortilin and low density lipoprotein receptor-related protein 3. These observations suggest that the endocytosis and intracellular transport of memapsin 2, mediated by its cytosolic domain, may involve the binding of GGA1 and GGA2.  相似文献   

3.
Phosphorylation of the cytosolic tails of transmembrane receptors can regulate their intracellular trafficking. The structural basis for such regulation, however, has not been explained in most cases. The cytosolic tail of the cation-independent mannose 6-phosphate receptor contains a serine residue within an acidic-cluster dileucine signal that is important for the function of the receptor in the biosynthetic sorting of lysosomal hydrolases. We show here that phosphorylation of this Ser enhances interactions of the signal with its recognition module, the VHS domain of the GGA proteins. Crystallographic analyses demonstrate that the phosphoserine residue interacts electrostatically with two basic residues on the VHS domain of GGA3, thus providing an additional point of attachment of the acidic-cluster dileucine signal to its recognition module.  相似文献   

4.
Memapsin 2 (beta-secretase) is the protease that initiates cleavage of amyloid precursor protein (APP) leading to the production of amyloid-beta (Abeta) peptide and the onset of Alzheimer's disease. Both APP and memapsin 2 are Type I transmembrane proteins and are endocytosed into endosomes where APP is cleaved by memapsin 2. Separate endocytic signals are located in the cytosolic domains of these proteins. We demonstrate here that the addition of the ectodomain of memapsin 2 (M2(ED)) to cells transfected with native APP or APP Swedish mutant (APPsw) resulted in the internalization of M2(ED) into endosomes with increased Abeta production. These effects were reduced by treatment with glycosylphosphatidylinositol-specific phospholipase C. The nontransfected parental cells had little internalization of M2(ED). The internalization of M2(ED) was dependent on the endocytosis signal in APP, because the expression of a mutant APP that lacks its endocytosis signal failed to support M2(ED) internalization. These results suggest that exogenously added M2(ED) interacts with the ectodomain of APP on the cell surface leading to the internalization of M2(ED), supported by fluorescence resonance energy transfer experiments. The interactions between the two proteins is not due to the binding of substrate APPsw to the active site of memapsin 2, because neither a potent active site binding inhibitor of memapsin 2 nor an antibody directed to the beta-secretase site of APPsw had an effect on the uptake of M2(ED). In addition, full-length memapsin 2 and APP, immunoprecipitated together from cell lysates, suggested that the interaction of these two proteins is part of the native cellular processes.  相似文献   

5.
BACE (β-site amyloid precursor protein cleaving enzyme, β-secretase) is a type-I membrane protein which functions as an aspartic protease in the production of β-amyloid peptide, a causative agent of Alzheimer's disease. Its cytoplasmic tail has a characteristic acidic-cluster dileucine motif recognized by the VHS domain of adaptor proteins, GGAs (Golgi-localizing, γ-adaptin ear homology domain, ARF-interacting). Here we show that BACE is colocalized with GGAs in the trans -Golgi network and peripheral structures, and phosphorylation of a serine residue in the cytoplasmic tail enhances interaction with the VHS domain of GGA1 by about threefold. The X-ray crystal structure of the complex between the GGA1-VHS domain and the BACE C-terminal peptide illustrates a similar recognition mechanism as mannose 6-phosphate receptors except that a glutamine residue closes in to fill the gap created by the shorter BACE peptide. The serine and lysine of the BACE peptide point their side chains towards the solvent. However, phosphorylation of the serine affects the lysine side chain and the peptide backbone, resulting in one additional hydrogen bond and a stronger electrostatic interaction with the VHS domain, hence the reversible increase in affinity.  相似文献   

6.
The GGAs (Golgi-localizing, gamma-adaptin ear homology domain, ARF-binding) are a multidomain family of proteins implicated in protein trafficking between the Golgi and endosomes. Recent evidence has established that the cation-independent (CI) and cation-dependent (CD) mannose 6-phosphate receptors (MPRs) bind specifically to the VHS domains of the GGAs through acidic cluster-dileucine motifs at the carboxyl ends of their cytoplasmic tails. However, the CD-MPR binds the VHS domains more weakly than the CI-MPR. Alignment of the C-terminal residues of the two receptors revealed a number of non-conservative differences in the acidic cluster-dileucine motifs and the flanking residues. Mutation of these residues in the CD-MPR cytoplasmic tail to the corresponding residues in the CI-MPR conferred either full binding (H63D mutant), intermediate binding (R60S), or unchanged binding (E56F/S57H) to the GGAs as determined by in vitro glutathione S-transferase pull-down assays. Furthermore, the C-terminal methionine of the CD-MPR, but not the C-terminal valine of the CI-MPR, inhibited GGA binding. Addition of four alanines to the C-terminal valine of the CI-MPR also severely reduced GGA binding, demonstrating the importance of the spacing of the acidic cluster-dileucine motif relative to the C terminus for optimal GGA interaction. Mouse L cells stably expressing CD-MPRs with mutations that enhance GGA binding sorted cathepsin D more efficiently than wild-type CD-MPR. These studies provide an explanation for the observed differences in the relative affinities of the two MPRs for the GGA proteins. Furthermore, they indicate that the GGAs participate in lysosomal enzyme sorting mediated by the CD-MPR.  相似文献   

7.
Interactions of GGA3 with the ubiquitin sorting machinery   总被引:1,自引:0,他引:1  
The Golgi-localized, gamma-ear-containing, Arf-binding (GGA) proteins constitute a family of clathrin adaptors that are mainly associated with the trans-Golgi network (TGN) and mediate the sorting of mannose 6-phosphate receptors. This sorting is dependent on the interaction of the VHS domain of the GGAs with acidic-cluster-dileucine signals in the cytosolic tails of the receptors. Here we demonstrate the existence of another population of GGAs that are associated with early endosomes. RNA interference (RNAi) of GGA3 expression results in accumulation of the cation-independent mannose 6-phosphate receptor and internalized epidermal growth factor (EGF) within enlarged early endosomes. This perturbation impairs the degradation of internalized EGF, a process that is normally dependent on the sorting of ubiquitinated EGF receptors (EGFRs) to late endosomes. Protein interaction analyses show that the GGAs bind ubiquitin. The VHS and GAT domains of GGA3 are responsible for this binding, as well as for interactions with TSG101, a component of the ubiquitin-dependent sorting machinery. Thus, GGAs may have additional roles in sorting of ubiquitinated cargo.  相似文献   

8.
Zhai P  He X  Liu J  Wakeham N  Zhu G  Li G  Tang J  Zhang XC 《Biochemistry》2003,42(47):13901-13908
GGA proteins regulate clathrin-coated vesicle trafficking by interacting with multiple proteins during vesicle assembly. As part of this process, the GAT domain of GGA is known to interact with both ARF and Rabaptin-5. Particularly, the GAT domains of GGA1 and -2, but not of GGA3, specifically bind with a coiled-coil region of Rabaptin-5. Rabaptin-5 interacts with Rab5 and is an essential component of the fusion machinery for targeting endocytic vesicles to early endosomes. The recently determined crystal structure of the GGA1 GAT domain has provided insights into its interactions with partner proteins. Here, we describe mutagenesis studies on the GAT-Rabaptin-5 interaction. The results demonstrate that a hydrophobic surface patch on the C-terminal three-helix bundle motif of the GAT domain is directly involved in Rabaptin-5 binding. A GGA3-like mutation, N284S, in this Rabaptin-5 binding patch of GGA1 led to a reduced level of Rabaptin-5 binding. Furthermore, a reversed mutation, S293N, in GGA3 partially establishes Rabaptin-5 binding ability in its GAT domain. These results provide a structural explanation for the binding affinity difference among GGA proteins. The current results also suggest that the binding of GAT to Rabaptin-5 is independent of its interaction with ARF.  相似文献   

9.
Proteolytic processing of amyloid-β precursor protein (APP) by beta-site APP cleaving enzyme 1 (BACE1) is the initial step in the production of amyloid beta (Aβ), which accumulates in senile plaques in Alzheimer’s disease (AD). Essential for this cleavage is the transport and sorting of both proteins through endosomal/Golgi compartments. Golgi-localized γ-ear-containing ARF-binding (GGA) proteins have striking cargo-sorting functions in these pathways. Recently, GGA1 and GGA3 were shown to interact with BACE1, to be expressed in neurons, and to be decreased in AD brain, whereas little is known about GGA2. Since GGA1 impacts Aβ generation by confining APP to the Golgi and perinuclear compartments, we tested whether all GGAs modulate BACE1 and APP transport and processing. We observed decreased levels of secreted APP alpha (sAPPα), sAPPβ, and Aβ upon GGA overexpression, which could be reverted by knockdown. GGA-BACE1 co-immunoprecipitation was impaired upon GGA-GAE but not VHS domain deletion. Autoinhibition of the GGA1-VHS domain was irrelevant for BACE1 interaction. Our data suggest that all three GGAs affect APP processing via the GGA-GAE domain.  相似文献   

10.
We have previously identified a novel family of proteins called the GGAs (Golgi-localized, gamma-ear-containing, ADP-ribosylation factor-binding proteins). These proteins consist of an NH(2)-terminal VHS domain, followed by a GAT domain, a variable domain, and a gamma-adaptin ear homology domain. Studies from our own laboratory and others, making use of both yeast and mammals cells, indicate that the GGAs facilitate trafficking from the trans-Golgi network to endosomes. Here we have further investigated the function of the GGAs. We find that GGA-deficient yeast are not only defective in vacuolar protein sorting but they are also impaired in their ability to process alpha-factor. Using deletion mutants and chimeras, we show that the VHS domain is required for GGA function and that the VHS domain from Vps27p will not substitute for the GGA VHS domain. In contrast, the gamma-adaptin ear homology domain contributes to GGA function but is not absolutely required, and full function can be restored by replacing the GGA ear domain with the gamma-adaptin ear domain. Deleting the gamma-adaptin gene together with the two GGA genes exacerbates the phenotype in yeast, suggesting that they function on parallel pathways. In mammalian cells, the association of GGAs with the membrane is extremely unstable, which may account for their absence from purified clathrin-coated vesicles. Double- and triple-labeling immunofluorescence experiments indicate that the GGAs and AP-1 are associated with distinct populations of clathrin-coated vesicles budding from the trans-Golgi network. Together with results from other studies, our findings suggest that the GGAs act as monomeric adaptors, with the four domains involved in cargo selection, membrane localization, clathrin binding, and accessory protein recruitment.  相似文献   

11.
Zhu G  He X  Zhai P  Terzyan S  Tang J  Zhang XC 《FEBS letters》2003,537(1-3):171-176
Golgi-localized, gamma-ear-containing, ARF binding (GGA) proteins regulate intracellular vesicle transport by recognizing sorting signals on the cargo surface in the initial step of the budding process. The VHS (VPS27, Hrs, and STAM) domain of GGA binds with the signal peptides. Here, a crystal structure of the VHS domain of GGA2 is reported at 2.2 A resolution, which permits a direct comparison with that of homologous proteins, GGA1 and GGA3. Significant structural difference is present in the loop between helices 6 and 7, which forms part of the ligand binding pocket. Intrinsic fluorescence spectroscopic study indicates that this loop undergoes a conformational change upon ligand binding. Thus, the current structure suggests that a conformational change induced by ligand binding occurs in this part of the ligand pocket.  相似文献   

12.
Tom1L1 (Tom1-like1) and related proteins Tom1 (Target of Myb1) and Tom1L2 (Tom1-like2) constitute a new protein family characterized by the presence of a VHS (Vps27p/Hrs/Stam) domain in the N-terminal portion followed by a GAT (GGA and Tom) domain. Recently it was demonstrated that the GAT domain of both Tom1 and Tom1L1 binds ubiquitin, suggesting that these proteins might participate in the sorting of ubiquitinated proteins into multivesicular bodies (MVBs). Here we report a novel interaction between Tom1L1 and members of the MVB sorting machinery. Specifically, we found that the VHS domain of Tom1L1 interacts with Hrs (Hepatocyte growth factor-regulated tyrosine kinase substrate), whereas a PTAP motif, located between the VHS and GAT domain of Tom1L1, is responsible for binding to TSG101 (tumor susceptibility gene 101). Myc epitope-tagged Tom1L1 showed a cytosolic distribution but was recruited to endosomes following Hrs expression. In addition, Tom1L1 possesses several tyrosine motifs at the C-terminal region that mediate interactions with members of the Src family kinases and other signaling proteins such as Grb2 and p85. We showed that a fraction of Fyn kinase localizes at endosomes and that this distribution becomes more evident after epidermal growth factor internalization. Moreover, expression of a constitutive active form of Fyn also promoted the recruitment of Tom1L1 to enlarged endosomes. Taken together, we propose that Tom1L1 could act as an intermediary between signaling and degradative pathways.  相似文献   

13.
Proteolytic processing of the amyloid-β precursor protein (APP) and generation of amyloid-β peptide (Aβ) are key events in Alzheimer's disease (AD) pathogenesis. Cell biological and genetic evidence has implicated the low-density lipoprotein and sorting receptor LR11/SorLA in AD through mechanisms related to APP and Aβ production. Defining the cellular pathway(s) by which LR11 modulates Aβ production is critical to understanding how changes in LR11 expression affect the development of Aβ pathology in AD progression. We report that the LR11 ectodomain is required for LR11-mediated reduction of Aβ and that mutagenesis of the LR11 Golgi-localizing, γ-adaptin ear homology domain, ADP-ribosylation factor (GGA)-binding motif affects the endosomal distribution of LR11, as well as LR11's effects on APP traffic and Aβ production. Targeted small interfering RNA (siRNA) knockdown studies of GGA1, GGA2, and GGA3 indicate a surprising degree of specificity toward GGA1, suggesting that GGA1 is a candidate regulator of LR11 traffic. Additional siRNA knockdown experiments reveal that GGA1 is necessary for both LR11 and β-site APP-cleaving enzyme-1 (BACE1) modulation of APP processing to Aβ. Mutagenesis of BACE1 serine 498 to alanine enhances BACE1 targeting to LR11-positive compartments and nullifies LR11-mediated reduction of Aβ. On basis of these results, we propose that GGA1 facilitates LR11 endocytic traffic and that LR11 modulates Aβ levels by promoting APP traffic to the endocytic recycling compartment.  相似文献   

14.
GGA (Golgi-localizing, gamma-adaptin ear homology domain, ARF-binding) proteins are potential effectors of ADP-ribosylation factors, are associated with the trans-Golgi network (TGN), and are involved in protein transport from this compartment. By yeast two-hybrid screening and subsequent two-hybrid and pull-down analyses, we have shown that GGA proteins, through their VHS (Vps27p/Hrs/STAM) domains, interact with acidic dileucine sequences found in the cytoplasmic domains of TGN-localized sorting receptors such as sortilin and mannose 6-phosphate receptor. A mutational analysis has revealed that a leucine pair and a cluster of acidic residues adjacent to the pair are mainly responsible for the interaction. A chimeric receptor with the sortilin cytoplasmic domain localizes to the TGN, whereas the chimeric receptor with a mutation at the leucine pair or the acidic cluster is mislocalized to punctate structures reminiscent of early endosomes. These results indicate that GGA proteins regulate the localization to or exit from the TGN of the sorting receptors.  相似文献   

15.
The Golgi-localized, gamma-adaptin ear-containing, ARF-binding (GGA) proteins are monomeric clathrin adaptors that mediate the sorting of cargo at the trans-Golgi network and endosomes. The GGAs contain four different domains named Vps27, Hrs, Stam (VHS); GGAs and TOM1 (GAT); hinge; and gamma-adaptin ear (GAE). The VHS domain recognizes transmembrane cargo, whereas the hinge and GAE regions bind clathrin and accessory proteins, respectively. The GAT domain is a polyfunctional module that interacts with various partners including the small GTPase ARF, the endosomal fusion regulator Rabaptin-5, ubiquitin, and the product of the tumor susceptibility gene 101 (TSG101). Previous x-ray crystallographic analyses showed that the GAT region is composed of two subdomains, an N-terminal helix-loop-helix containing the ARF binding site, and a C-terminal triple alpha-helical (trihelical) bundle. In this study, we define the Rabaptin-5 binding site on the GGA1-GAT domain and its relationship to the binding sites for ubiquitin and TSG101. Our observations show that Rabaptin-5, ubiquitin, and TSG101 bind to overlapping but distinct binding sites on the trihelical bundle. The different GAT binding partners engage in both competitive and cooperative interactions that may be important for the function of the GGAs in protein sorting.  相似文献   

16.
Tom1 (target of Myb 1) and its related proteins (Tom1L1/Srcasm and Tom1L2) constitute a protein family and share an N-terminal VHS (Vps27p/Hrs/Stam) domain and a following GAT (GGA and Tom1) domain, both of which are also conserved in the GGA family proteins. However, the C-terminal half is not significantly conserved between the Tom1 and GGA families or even between Tom1 and Tom1L1. We have previously shown that the GAT domain of Tom1 interacts with Tollip (Toll-interacting protein), which is associated with endosomes, to which it recruits Tom1. We here extend the previous data and show that the GAT domains of Tom1L1 and Tom1L2 also interact with Tollip, and the C-terminal regions of all the Tom1 family proteins interact with clathrin. Furthermore, when coexpressed with Tollip, all the Tom1 family proteins recruite clathrin onto endosomes. These results indicate that, in conjunction with Tollip, Tom1 family proteins play an important role in recruiting clathrin onto endosomes and suggest that they modulate endosomal functions.  相似文献   

17.
Signal transducing adapter molecule (STAM) forms the endosomal sorting complex required for transport-0 (ESCRT-0) complex with hepatocyte growth factor-regulated substrate (Hrs) to sort the ubiquitinated cargo proteins from the early endosomes to the ESCRT-1 complex. ESCRT-0 complex, STAM and Hrs, contains multiple ubiquitin binding domains, in which STAM has two ubiquitin binding domains, Vps27/Hrs/Stam (VHS) and ubiquitin interacting motif (UIM) at its N-terminus. By the cooperation of the multiple ubiquitin binding domains, the ESCRT-0 complex recognizes poly-ubiquitin, especially Lys63-linked ubiquitin. Here, we report the backbone resonance assignments and the secondary structure of the N-terminal 191 amino acids of the human STAM1 which includes the VHS domain and UIM. The {1H}-15N heteronuclear NOE experiments revealed that an unstructured and flexible loop region connects the VHS domain and UIM. Our work provides the basic information for the further NMR investigation of the interaction between STAM1 and poly-ubiquitin.  相似文献   

18.
Misra S  Beach BM  Hurley JH 《Biochemistry》2000,39(37):11282-11290
VHS domains are found at the N-termini of select proteins involved in intracellular membrane trafficking. We have determined the crystal structure of the VHS domain of the human Tom1 (target of myb 1) protein to 1.5 A resolution. The domain consists of eight helices arranged in a superhelix. The surface of the domain has two main features: (1) a basic patch on one side due to several conserved positively charged residues on helix 3 and (2) a negatively charged ridge on the opposite side, formed by residues on helix 2. We compare our structure to the recently obtained structure of tandem VHS-FYVE domains from Hrs [Mao, Y., Nickitenko, A., Duan, X., Lloyd, T. E., Wu, M. N., Bellen, H., and Quiocho, F. A. (2000) Cell 100, 447-456]. Key features of the interaction surface between the FYVE and VHS domains of Hrs, involving helices 2 and 4 of the VHS domain, are conserved in the VHS domain of Tom1, even though Tom1 does not have a FYVE domain. We also compare the structures of the VHS domains of Tom1 and Hrs to the recently obtained structure of the ENTH domain of epsin-1 [Hyman, J., Chen, H., Di Fiore, P. P., De Camilli, P., and Brünger, A. T. (2000) J. Cell Biol. 149, 537-546]. Comparison of the two VHS domains and the ENTH domain reveals a conserved surface, composed of helices 2 and 4, that is utilized for protein-protein interactions. In addition, VHS domain-containing proteins are often localized to membranes. We suggest that the conserved positively charged surface of helix 3 in VHS and ENTH domains plays a role in membrane binding.  相似文献   

19.
The GGAs (Golgi-localizing, gamma-adaptin ear homology domain, ARF-binding) are a family of multidomain proteins implicated in protein trafficking between the Golgi and the endosomes. All three GGAs (1, 2, and 3) bind to the mannose 6-phosphate receptor tail via their VHS domains, as well as to the adaptor protein complex-1 via their hinge domains. The latter interaction has been proposed to be important for cooperative packaging of cargo into forming clathrin-coated carriers at the trans-Golgi network. Here we present evidence that GGA1 function is highly regulated by cycles of phosphorylation and dephosphorylation. Cell fractionation showed that the phosphorylated pool of GGA1 resided predominantly in the cytosol and that recruitment onto membranes was associated with dephosphorylation. Okadaic acid inhibition studies and in vitro dephosphorylation assays indicated that dephosphorylation is mediated by a protein phosphatase 2A-like phosphatase. Dephosphorylation of GGA1 induced a change in the conformation to an "open" form as measured by gel filtration and sucrose gradient analyses. This was associated with enhanced binding to ligands because of release of autoinhibition and increased binding to the adaptor protein complex-1 gamma-appendage. A model is proposed for the regulation of GGA1 function at the trans-Golgi network.  相似文献   

20.
Zhu G  Zhai P  He X  Wakeham N  Rodgers K  Li G  Tang J  Zhang XC 《The EMBO journal》2004,23(20):3909-3917
GGA proteins coordinate the intracellular trafficking of clathrin-coated vesicles through their interaction with several other proteins. The GAT domain of GGA proteins interacts with ARF, ubiquitin, and Rabaptin5. The GGA-Rabaptin5 interaction is believed to function in the fusion of trans-Golgi-derived vesicles to endosomes. We determined the crystal structure of a human GGA1 GAT domain fragment in complex with the Rabaptin5 GAT-binding domain. In this structure, the Rabaptin5 domain is a 90-residue-long helix. At the N-terminal end, it forms a parallel coiled-coil homodimer, which binds one GAT domain of GGA1. In the C-terminal region, it further assembles into a four-helix bundle tetramer. The Rabaptin5-binding motif of the GGA1 GAT domain consists of a three-helix bundle. Thus, the binding between Rabaptin5 and GGA1 GAT domain is based on a helix bundle-helix bundle interaction. The current structural observation is consistent with previously reported mutagenesis data, and its biological relevance is further confirmed by new mutagenesis studies and affinity analysis. The four-helix bundle structure of Rabaptin5 suggests a functional role in tethering organelles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号