首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To infect an animal host, Salmonella enterica serovar Typhimurium must penetrate the intestinal epithelial barrier. This process of invasion requires a type III secretion system encoded within Salmonella pathogenicity island I (SPI1). We found that a mutant with deletions of the acetate kinase and phosphotransacetylase genes (ackA-pta) was deficient in invasion and SPI1 expression but that invasion gene expression was completely restored by supplying medium conditioned by growth of the wild-type strain, suggesting that a signal produced by the wild type, but not by the ackA-pta mutant, was required for invasion. This mutant also excreted 68-fold-less formate into the culture medium, and the addition of sodium formate to cultures restored both the expression of SPI1 and the invasion of cultured epithelial cells by the mutant. The effect of formate was pH dependent, requiring a pH below neutrality, and studies in mice showed that the distal ileum, the preferred site of Salmonella invasion in this species, had the appropriate formate concentration and pH to elicit invasion, while the cecum contained no detectable formate. Furthermore, we found that formate affected the major regulators of SPI1, hilA and hilD, but that the primary routes of formate metabolism played no role in its activity as a signal.  相似文献   

2.
The ability of Salmonella enterica serovar Typhimurium to cause disease depends upon the co-ordinated expression of many genes located around the Salmonella chromosome. Specific pathogenicity loci, termed Salmonella pathogenicity islands, have been shown to be crucial for the invasion and survival of Salmonella within host cells. Salmonella pathogenicity island 1 (SPI-1) harbours the genes required for the stimulation of Salmonella uptake across the intestinal epithelia of the infected host. Regulation of SPI-1 genes is complex, as invasion gene expression responds to a number of different signals, presumably signals similar to those found within the environment of the intestinal tract. As a result of our continued studies of SPI-1 gene regulation, we have discovered that the nucleoid-binding protein Fis plays a pivotal role in the expression of HilA and InvF, two activators of SPI-1 genes. A S. typhimurium fis mutant demonstrates a two- to threefold reduction in hilA:Tn5lacZY and a 10-fold reduction in invF:Tn5lacZY expression, as well as a 50-fold decreased ability to invade HEp-2 tissue culture cells. This decreased expression of hilA and invF resulted in an altered secreted invasion protein profile in the fis mutant. Furthermore, the virulence of a S. typhimurium fis mutant is attenuated 100-fold when administered orally, but has wild-type virulence when administered intraperitoneally. Expression of hilA:Tn5lacZY and invF:Tn5lacZY in the fis mutant could be restored by introducing a plasmid containing the S. typhimurium fis gene or a plasmid containing hilD, a gene encoding an AraC-like regulator of Salmonella invasion genes.  相似文献   

3.
The barA and sirA genes of Salmonella enterica serovar Typhimurium encode a two-component sensor kinase and a response regulator, respectively. This system increases the expression of virulence genes and decreases the expression of motility genes. In this study, we examined the pathways by which SirA affects these genes. We found that the master regulator of flagellar genes, flhDC, had a positive regulatory effect on the primary regulator of intestinal virulence determinants, hilA, but that hilA had no effect on flhDC. SirA was able to repress flhDC in a hilA mutant and activate hilA in an flhDC mutant. Therefore, although the flhDC and hilA regulatory cascades interact, sirA affects each of them independently. A form of BarA lacking the two N-terminal membrane-spanning domains, BarA198, autophosphorylates in the presence of ATP and transfers the phosphate to purified SirA. Phosphorylated SirA was found to directly bind the hilA and hilC promoters in gel mobility shift assays but not the flhD, fliA, hilD, and invF promoters. Given that the CsrA/csrB system is known to directly affect flagellar gene expression, we tested the hypothesis that SirA affects flagellar gene expression indirectly by regulating csrA or csrB. The sirA gene did not regulate csrA but did activate csrB expression. Consistent with these results, phosphorylated SirA was found to directly bind the csrB promoter but not the csrA promoter. We propose a model in which SirA directly activates virulence expression via hilA and hilC while repressing the flagellar regulon indirectly via csrB.  相似文献   

4.
5.
6.
7.
8.
Gong H  Vu GP  Bai Y  Chan E  Wu R  Yang E  Liu F  Lu S 《PLoS pathogens》2011,7(9):e1002120
Small non-coding RNAs (sRNAs) that act as regulators of gene expression have been identified in all kingdoms of life, including microRNA (miRNA) and small interfering RNA (siRNA) in eukaryotic cells. Numerous sRNAs identified in Salmonella are encoded by genes located at Salmonella pathogenicity islands (SPIs) that are commonly found in pathogenic strains. Whether these sRNAs are important for Salmonella pathogenesis and virulence in animals has not been reported. In this study, we provide the first direct evidence that a pathogenicity island-encoded sRNA, IsrM, is important for Salmonella invasion of epithelial cells, intracellular replication inside macrophages, and virulence and colonization in mice. IsrM RNA is expressed in vitro under conditions resembling those during infection in the gastrointestinal tract. Furthermore, IsrM is found to be differentially expressed in vivo, with higher expression in the ileum than in the spleen. IsrM targets the mRNAs coding for SopA, a SPI-1 effector, and HilE, a global regulator of the expression of SPI-1 proteins, which are major virulence factors essential for bacterial invasion. Mutations in IsrM result in disregulation of expression of HilE and SopA, as well as other SPI-1 genes whose expression is regulated by HilE. Salmonella with deletion of isrM is defective in bacteria invasion of epithelial cells and intracellular replication/survival in macrophages. Moreover, Salmonella with mutations in isrM is attenuated in killing animals and defective in growth in the ileum and spleen in mice. Our study has shown that IsrM sRNA functions as a pathogenicity island-encoded sRNA directly involved in Salmonella pathogenesis in animals. Our results also suggest that sRNAs may represent a distinct class of virulence factors that are important for bacterial infection in vivo.  相似文献   

9.
10.
11.
【目的】研究鼠伤寒沙门菌致病岛1(SPI-1)内部的假定调控蛋白STM14_3514的功能及其作用机制。【方法】以鼠伤寒沙门菌模式菌株ATCC 14028为亲本株,构建了STM14_3514基因的缺失突变体及互补菌株,通过小鼠实验、细胞侵袭实验、Western blot及实时荧光定量PCR(q RT-PCR)等实验技术,深入研究了STM14_3514基因对鼠伤寒沙门菌致病过程的影响。【结果】STM14_3514突变提高了细菌对小鼠的致病能力,突变体在小鼠肠道、肝和脾中的定殖能力均增强;细胞实验揭示,突变体致病力提升主要由于STM14_3514突变能显著增强细菌对上皮细胞的侵袭力(2倍,P0.05)。q RT-PCR及Western blot分析表明,STM14_3514显著抑制SPI-1内部主要调控因子hil A及侵袭相关基因的表达。此外,STM14_3514对hil A的抑制由Hil C介导。【结论】STM14_3514是鼠伤寒沙门菌SPI-1内部的负调控因子,能通过Hil C抑制hil A及SPI-1其他入侵基因的表达,该基因的生物学意义可能与细菌进入细胞后对SPI-1的负调控相关。  相似文献   

12.
Salmonella Pathogenicity Island 1 (SPI-1) genes are indispensable for virulence of Salmonella Typhimurium in several animal species. The role of SPI-1 in the pathogenesis of Salmonella Typhimurium infections of pigs, however, is not well described. The interactions of a porcine Salmonella Typhimurium field strain and its isogenic mutants with disruptions in the SPI-1 genes hilA, sipA and sipB with porcine intestinal epithelial cells were characterized in vitro and in a ligated intestinal loop model in pigs. HilA and SipB were essential in the invasion of porcine intestinal epithelial cells in vitro. A sipA mutant was impaired for invasion using a polarized cell line, but fully invasive in a non-polarized cell line. All SPI-1 mutants induced a significant decrease in influx of neutrophils in the porcine intestinal loop model compared with the wild type strain. Pigs were orally inoculated with 10(8) colony forming units of both the wild type Salmonella Typhimurium strain and its isogenic sipB::kan mutant strain. The sipB mutant strain was significantly impaired to invade the intestinal, but not the tonsillar tissue, one day after inoculation and was unable to efficiently colonize the intestines and the GALT, but not the tonsils, 3 days after inoculation. This study shows that SPI-1 plays a crucial role in the invasion and colonization of the porcine gut and in the induction of influx of neutrophils towards the intestinal lumen, but not in the colonization of the tonsils.  相似文献   

13.
CsrA is a regulator of invasion genes in Salmonella enterica serovar Typhimurium. To investigate the wider role of CsrA in gene regulation, we compared the expression of Salmonella genes in a csrA mutant with those in the wild type using a DNA microarray. As expected, we found that expression of Salmonella pathogenicity island 1 (SPI-1) invasion genes was greatly reduced in the csrA mutant, as were genes outside the island that encode proteins translocated into eukaryotic cells by the SPI-1 type III secretion apparatus. The flagellar synthesis operons, flg and fli, were also poorly expressed, and the csrA mutant was aflagellate and non-motile. The genes of two metabolic pathways likely to be used by Salmonella in the intestinal milieu also showed reduced expression: the pdu operon for utilization of 1,2-propanediol and the eut operon for ethanolamine catabolism. Reduced expression of reporter fusions in these two operons confirmed the microarray data. Moreover, csrA was found to regulate co-ordinately the cob operon for synthesis of vitamin B12, required for the metabolism of either 1,2-propanediol or ethanolamine. Additionally, the csrA mutant poorly expressed the genes of the mal operon, required for transport and use of maltose and maltodextrins, and had reduced amounts of maltoporin, normally a dominant protein of the outer membrane. These results show that csrA controls a number of gene classes in addition to those required for invasion, some of them unique to Salmonella, and suggests a co-ordinated bacterial response to conditions that exist at the site of bacterial invasion, the intestinal tract of a host animal.  相似文献   

14.
15.
The BarA-UvrY two-component system family is strongly associated with virulence but is poorly understood at the molecular level. During our attempts to complement a barA deletion mutant, we consistently generated various mutated BarA proteins. We reasoned that characterization of the mutants would help us to better understand the signal transduction mechanism in tripartite sensors. This was aided by the demonstrated ability to activate the UvrY regulator with acetyl phosphate independently of the BarA sensor. Many of the mutated BarA proteins had poor complementation activity but could counteract the activity of the wild-type sensor in a dominant-negative fashion. These proteins carried point mutations in or near the recently identified HAMP linker, previously implicated in signal transduction between the periplasm and cytoplasm. This created sensor proteins with an impaired kinase activity and a net dephosphorylating activity. Using further site-directed mutagenesis of a HAMP linker-mutated protein, we could demonstrate that the phosphoaccepting aspartate 718 and histidine 861 are crucial for the dephosphorylating activity. Additional analysis of the HAMP linker-mutated BarA sensors demonstrated that a dephosphorylating activity can operate via phosphotransfer within a tripartite sensor dimer in vivo. This also means that a tripartite sensor can be arranged as a dimer even in the dephosphorylating mode.  相似文献   

16.
A method based on the Competitive Index was used to identify Salmonella typhimurium virulence gene interactions during systemic infections of mice. Analysis of mixed infections involving single and double mutant strains showed that OmpR, the type III secretion system of Salmonella pathogenicity island 2 (SPI-2) and SifA [required for the formation in epithelial cells of lysosomal glycoprotein (lgp)-containing structures, termed Sifs] are all involved in the same virulence function. sifA gene expression was induced after Salmonella entry into host cells and was dependent on the SPI-2 regulator ssrA. A sifA(-) mutant strain had a replication defect in macrophages, similar to that of SPI-2 and ompR(-) mutant strains. Whereas wild-type and SPI-2 mutant strains reside in vacuoles that progressively acquire lgps and the vacuolar ATPase, the majority of sifA(-) bacteria lost their vacuolar membrane and were released into the host cell cytosol. We propose that the wild-type strain, through the action of SPI-2 effectors (including SpiC), diverts the Salmonella-containing vacuole from the endocytic pathway, and subsequent recruitment and maintenance of vacuolar ATPase/lgp-containing membranes that enclose replicating bacteria is mediated by translocation of SifA.  相似文献   

17.
Sensing and responding to environmental cues is a fundamental characteristic of bacterial physiology and virulence. Here we identify polyamines as novel environmental signals essential for virulence of Salmonella enterica serovar Typhimurium, a major intracellular pathogen and a model organism for studying typhoid fever. Central to its virulence are two major virulence loci Salmonella Pathogenicity Island 1 and 2 (SPI1 and SPI2). SPI1 promotes invasion of epithelial cells, whereas SPI2 enables S. Typhimurium to survive and proliferate within specialized compartments inside host cells. In this study, we show that an S. Typhimurium polyamine mutant is defective for invasion, intracellular survival, killing of the nematode Caenorhabditis elegans and systemic infection of the mouse model of typhoid fever. Virulence of the mutant could be restored by genetic complementation, and invasion and intracellular survival could, as well, be complemented by the addition of exogenous putrescine and spermidine to the bacterial cultures prior to infection. Interestingly, intracellular survival of the polyamine mutant was significantly enhanced above the wild type level by the addition of exogenous putrescine and spermidine to the bacterial cultures prior to infection, indicating that these polyamines function as an environmental signal that primes S. Typhimurium for intracellular survival. Accordingly, experiments addressed at elucidating the roles of these polyamines in infection revealed that expression of genes from both of the major virulence loci SPI1 and SPI2 responded to exogenous polyamines and was reduced in the polyamine mutant. Together our data demonstrate that putrescine and spermidine play a critical role in controlling virulence in S. Typhimurium most likely through stimulation of expression of essential virulence loci. Moreover, our data implicate these polyamines as key signals in S. Typhimurium virulence.  相似文献   

18.
The barA and uvrY genes of Escherichia coli encode a two-component sensor kinase and a response regulator, respectively. Although this system plays a major role in the regulation of central carbon metabolism, motility, and biofilm formation by controlling the expression of the CsrB and CsrC noncoding RNAs, the environmental conditions and the physiological signal(s) to which it responds remain obscure. In this study, we explored the effect of external pH on the activity of BarA/UvrY. Our results indicate that a pH lower than 5.5 provides an environment that does not allow activation of the BarA/UvrY signaling pathway.  相似文献   

19.
Iron is an essential element for the survival of living cells. However, excess iron is toxic, and its uptake is exquisitely regulated by the ferric uptake regulator, Fur. In Salmonella, the Salmonella pathogenicity island 1 (SPI-1) encodes a type three secretion system, which is required for invasion of host epithelial cells in the small intestine. A major activator of SPI-1 is HilA, which is encoded within SPI-1. One known regulator of hilA is Fur. The mechanism of hilA regulation by Fur is unknown. We report here that Fur is required for virulence in Salmonella enterica serovar Typhimurium and that Fur is required for the activation of hilA, as well as of other HilA-dependent genes, invF and sipC. The Fur-dependent regulation of hilA was independent of PhoP, a known repressor of hilA. Instead, the expression of the gene coding for the histone-like protein, hns, was significantly derepressed in the fur mutant. Indeed, the activation of hilA by Fur was dependent on 28 nucleotides located upstream of hns. Moreover, we used chromatin immunoprecipitation to show that Fur bound, in vivo, to the upstream region of hns in a metal-dependent fashion. Finally, deletion of fur in an hns mutant resulted in Fur-independent activation of hilA. In conclusion, Fur activates hilA by repressing the expression of hns.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号