首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For mutation detection, various screening techniques are widely used because DNA sequencing, the gold-standard method, is still considered to be expensive and laborious for high-throughput screening. Single-strand conformation polymorphism (SSCP) analysis, heteroduplex analysis (HA) and their variant techniques are popular and frequently used for this purpose. It is widely accepted that when searching for unknown sequence variations, any revealed distinct pattern should always be sequenced. We give examples here of the BRCA1 and BRCA2 genes where the SSCP/HA techniques can produce ambiguous predictions if used to detect known genetic variants compared to positive controls. Using direct DNA sequencing, we provide evidence that in such cases, mutations or polymorphisms can mask each other's presence. This phenomenon can often influence the results of any DNA testing because genetic variations such as single-nucleotide polymorphisms occur frequently in the human genome. We suggest that even in the case of known electrophoretic patterns of well-characterized genetic alterations, every sequence alteration should be confirmed by direct DNA sequencing, especially if genetic testing is carried out for diagnostic purposes.  相似文献   

2.
The discovery of RFLPs and their utilization as genetic markers has revolutionized research in human molecular genetics. However, only a fraction of the DNA sequence polymorphisms in the human genome affect the length of a restriction fragment and hence result in an RFLP. Polymorphisms that are not detected as RFLPs are typically passed over in the screening process though they represent a potentially important source of informative genetic markers. We have used a rapid method for the detection of naturally occurring DNA sequence variations that is based on enzymatic amplification and direct sequencing of genomic DNA. This approach can detect essentially all useful sequence variations within the region screened. We demonstrate the feasibility of the technique by applying it to the human retinoblastoma susceptibility locus. We screened 3,712 bp of genomic DNA from each of nine individuals and found four DNA sequence polymorphisms. At least one of these DNA sequence polymorphisms was informative in each of three families with hereditary retinoblastoma that were not informative with any of the known RFLPs at this locus. We believe that direct sequencing is a reasonable alternative to other methods of screening for DNA sequence polymorphisms and that it represents a step forward for obtaining informative markers at well-characterized loci that have been minimally informative in the past.  相似文献   

3.
Differential or genetic sequencing requires searching sample DNA for variations with respect to a reference sequence. Conventional detection techniques are too labor and cost expensive for use in diagnostic applications, therefore new technologies will be required. Measurement techniques based on mass spectrometry (MS) possess the potential for high-throughput, high fidelity measurement of sequence variation. Unambiguous detection of polymorphic sequences has been demonstrated, even in heterozygous samples. Automated reproducible measurements of microscopic arrays of samples will enable the high-throughput detection required for large-scale applications. Computational simulation and analysis of experimental parameters prior to experimentation will provide the optimization necessary for development of robust, reproducible measurements.  相似文献   

4.
Detection of novel genetic markers by mismatch analysis.   总被引:11,自引:3,他引:8  
Chemical mismatch detection has been used to identify previously unknown genomic sequence variations that represent a new source of markers for genetic analysis. The approach detects all types of sequence changes, and therefore overcomes the limitation of restriction analysis, which identifies only a small fraction of the available sequence variations. Three new markers identified at the 3' end of the human dystrophin gene result from variable numbers of exact tandem repeats of 4bp (two examples) or 5bp (one example). None of these would have been detected as restriction fragment length polymorphisms by established procedures.  相似文献   

5.
Sensitive and automated methods for the detection of DNA sequence variation are required for a wide variety of genetic studies. Diagnostic testing in human genetic disorders is one application of such methods. Tuberous sclerosis complex (TSC) is an autosomal dominant familial tumor syndrome characterized by the development of benign tumors (hamartomas) in multiple organs (OMIM # 19110, #191092). There is a high frequency of sporadic cases and significant demand from patients and families for genetic testing information. Two TSC genes have been identified (TSC1 and TSC2) and together account for all cases [1,2]. Here we report our methods for DHPLC analysis of the TSC1 gene and demonstrate the high sensitivity of this method in a blinded analysis of 21 TSC patients with known TSC1 mutations. In this series, DHPLC detected 27/28 (96%) known TSC1 sequence variations. The only sequence variation not identified by DHPLC in this study is a mosaic case.  相似文献   

6.
Moore JH  Hahn LW 《Bio Systems》2003,72(1-2):177-186
Understanding how DNA sequence variations impact human health through a hierarchy of biochemical and physiological systems is expected to improve the diagnosis, prevention, and treatment of common, complex human diseases. We have previously developed a hierarchical dynamic systems approach based on Petri nets for generating biochemical network models that are consistent with genetic models of disease susceptibility. This modeling approach uses an evolutionary computation approach called grammatical evolution as a search strategy for optimal Petri net models. We have previously demonstrated that this approach routinely identifies biochemical network models that are consistent with a variety of genetic models in which disease susceptibility is determined by nonlinear interactions between two DNA sequence variations. In the present study, we evaluate whether the Petri net approach is capable of identifying biochemical networks that are consistent with disease susceptibility due to higher order nonlinear interactions between three DNA sequence variations. The results indicate that our model-building approach is capable of routinely identifying good, but not perfect, Petri net models. Ideas for improving the algorithm for this high-dimensional problem are presented.  相似文献   

7.
Mitochondrial fatty acid oxidation deficiencies are due to genetic defects in enzymes of fatty acid beta-oxidation and transport proteins. Genetic defects have been identified in most of the genes where nearly all types of sequence variations (mutation types) have been associated with disease. In this paper, we will discuss the effects of the various types of sequence variations encountered and review current knowledge regarding the genotype-phenotype relationship, especially in patients with acyl-CoA dehydrogenase deficiencies where sufficient material exists for a meaningful discussion. Because mis-sense sequence variations are prevalent in these diseases, we will discuss the implications of these types of sequence variations on the processing and folding of mis-sense variant proteins. As the prevalent mis-sense variant K304E MCAD protein has been studied intensively, the investigations on biogenesis, stability and kinetic properties for this variant enzyme will be discussed in detail and used as a paradigm for the study of other mis-sense variant proteins. We conclude that the total effect of mis-sense sequence variations may comprise an invariable--sequence variation specific--effect on the catalytic parameters and a conditional effect, which is dependent on cellular, physiological and genetic factors other than the sequence variation itself.  相似文献   

8.
9.
Epigenetic information is characterized by its plasticity during development and differentiation as well as its stable transmission during mitotic cell divisions in somatic tissues. This duality contrasts to genetic information, which is essentially static and identical in every cell in an organism with only a few exceptions such as immunoglobulin genes in lymphocytes. Epigenetics is traditionally perceived as a means to regulate gene expression without a change in DNA sequence. This, however, does not exclude a potential role for genetic variations in providing differential backgrounds on which epigenetic modulations and their regulatory consequences are achieved. An effective approach to investigating the interplay between genetic variations and epigenetic variations is through allele-specific analysis of epigenetics and gene expression. Such studies have generated many new insights into functions of genetic variations, mechanisms of gene expression regulation, and the role of mutations and epigenetic alterations in human cancer. This article is part of a Special Issue entitled: Chromatin in time and space.  相似文献   

10.
In vitro cell and tissue-based systems have tremendous potential in fundamental research and for commercial applications such as clonal propagation, genetic engineering and production of valuable metabolites. Since the invention of plant cell and tissue culture techniques more than half a century ago, scientists have been trying to understand the morphological, physiological, biochemical and molecular changes associated with tissue culture responses. Establishment of de novo developmental cell fate in vitro is governed by factors such as genetic make-up, stress and plant growth regulators. In vitro culture is believed to destabilize the genetic and epigenetic program of intact plant tissue and can lead to chromosomal and DNA sequence variations, methylation changes, transposon activation, and generation of somaclonal variants. In this review, we discuss the current status of understanding the genomic and epigenomic changes that take place under in vitro conditions. It is hoped that a precise and comprehensive knowledge of the molecular basis of these variations and acquisition of developmental cell fate would help to devise strategies to improve the totipotency and embryogenic capability in recalcitrant species and genotypes, and to address bottlenecks associated with clonal propagation.  相似文献   

11.
Sequencing the human genome has allowed the discovery of millions of DNA sequence variants. Sequence variations in human DNA are mainly present asSingle Nucleotide Polymorphisms (SNPs); this common form of variation is found about once every 1,000 bases in the human genome and 1.8 million SNPs have now been identified and located. The accessibility of databases of SNPs opens the possibility of studying the influence of these polymorphisms on disease risks as well as on drug responses. Numerous approaches have been set up for the identification of SNPs. In this review we describe the main techniques used for the identification of these polymorphisms. They rely on two major consequences of sequence variations: the apparition or the disappearance of restriction enzyme sites or the alteration of DNA strand hybridization due to the presence of a mismatch. Southern blotting and restriction endonucleases have allowed the development of the technique ofrestriction fragment length polymorphisms (RFLPs), now performed on PCR products. Several other approaches such as denaturing high-performance liquid chromatography or real-time PCR can detect allele differences upon re-hybridization and heteroduplex formation. However, DNA sequencing remains the obligate step for the positive identification of known or unknown SNPs. At last, the development of high-throughput methods allows a large increase in the rate of discovery of SNPs likely.  相似文献   

12.
遗传易感性是指基于个人遗传背景的多基因遗传病发病风险,即来源于父母一方或双方的特定遗传变异在某些情况下会诱发疾病。在特定疾病的发病机制中某些高外显率的遗传变异发挥重要作用,此类疾病通过患病家系分析即可定位疾病相关遗传变异;但另一些低外显率变异的作用则不明显,需要大规模患病人群分析来解析遗传机制。近年来,随着二代测序和多组学分析技术的发展和基因组数据的大量积累,癌症、代谢性疾病、心脑血管疾病和精神疾病等疾病遗传易感性研究中取得了显著进展,为疾病的早期筛查和诊断治疗提供了参考。  相似文献   

13.
PURPOSE OF REVIEW: This review examines the role of copy number variation in the human genome as a newly recognized determinant of lipoprotein and metabolic phenotypes. RECENT FINDINGS: Much of the recent progress defining the molecular basis of lipoprotein disorders has been the result of studying genomic DNA at the single nucleotide level, for instance with nucleotide sequence analysis or genotyping to detect single nucleotide polymorphisms. Focus on single nucleotides, however, fails to capture the complete spectrum of potential genetic variability. Recent genome-wide mapping studies have demonstrated the surprising ubiquity of large-scale copy number variations in apparently healthy people, adding to the complexity of the 'normal' genome, but also emphasizing this form of genetic variation as a potential disease mechanism. The application of this understanding to the genetics of lipoprotein disorders has been rapid. For instance, the use of novel techniques to detect copy number variations, such as multiplex ligation-dependent probe amplification, has revealed many additional causative mutations in the low-density lipoprotein receptor gene in patients with familial hypercholesterolemia. SUMMARY: Copy number variations thus represent a new level of genomic variation that is both an important mechanism of monogenic lipoprotein disorders and a potential contributor to common complex lipoprotein and metabolic phenotypes in the general population.  相似文献   

14.
15.
High throughput genotyping technologies.   总被引:4,自引:0,他引:4  
A comprehensive genetic map containing several hundred microsatellite markers resulted from a large microsatellite mapping project. This was the first real study that introduced high throughput methods to the genetic community. This map and the concurrent technological advances, which will briefly be reviewed, led to further numerous mapping investigations of simple and complex diseases. The annotated draft sequence of approximately three billion base pairs (bp) of the human genome has been completed much sooner than many imagined, due to considerable technological advancements and the international enterprise that resulted. This was a major development for the genetics community, but is only the precursor to the next phase of studying and understanding the variation within the human genome. The awareness of the differences may help us understand the effects on the genetics of the variation between individuals and disease. It is these variations at the nucleotide level that determine the physiological differences, or phenotypes of each individual, including all biological functions at the cellular and body level. Single nucleotide polymorphisms (SNPs) will provide the next high density map, and be the genetic tool to study these genetic variations. There are many sources of SNPs and exhaustive numbers of methods of SNP detection to be considered. The focus in this paper will be on the merits of selected, varied SNP typing methodologies that are emerging to genotype many individuals with the required huge number of SNPs to make the study of complex diseases and pharmacogenomics a practical and economically viable option.  相似文献   

16.
The microsatellite locus TNFa is frequently used as an additional genetic marker in studies of the major histocompatibility complex (MHC). Novel sequence variations at the TNFa locus have been described, and which may have implications for genetic analyses. In this study, we set up a nested polymerase chain reaction-sequence-specific primer (PCR-SSP) approach to type for these TNFa sequence variations. First, sequencing analysis of workshop B lymphoblastoid cell lines (n=13) showed the presence of three sequence variations upstream of the dinucleotide repeat at TNFa. Using nested PCR-SSP, we were able to detect these variations in a larger B lymphoblastoid cell line panel (n=34). Furthermore, we were able to show that TNFa alleles a7 and a10 are present in two distinct conformations leading to "splitting" of TNFa alleles exhibiting identical fragment lengths. To establish the frequency of the TNFa alleles and their variants, we performed microsatellite typing of a large panel of random individuals from the Dutch population (n=272). Subsequent nested PCR-SSP typing showed the presence of three previously described sequence variations in the Dutch population. Furthermore, the presence of a fourth subtype was established. The described variations of allele TNFa7 and TNFa10 are present in the random population with significant frequencies. Haplotyping analysis between HLA-DR, TNFa, and HLA-B showed that allele TNFa7.2 is present in an extended DR7-TNFa7.2-B13 haplotype. In this way, we were able to show that the additional sequence variations behave like distinct TNFa alleles.  相似文献   

17.
We discuss in this review recent studies using the worm Caenorhabditis elegans to decipher endocytic trafficking in a multicellular organism. Recent advances, including in vivo assay systems, new genetic screens, comparative functional analysis of conserved proteins, and RNA-mediated interference (RNAi) in C. elegans, are being used to study the functions of known membrane trafficking factors and to identify new ones. The ability to monitor endocytosis in vivo in worms allows one to test current endocytosis models and to demonstrate the physiological significance of factors identified by genetic and biochemical methods. The available human genome sequence facilitates comparative studies where human homologs of new factors identified in C. elegans can be quickly assayed for similar function using traditional cell biological methods in mammalian cell systems. New studies in C. elegans have used a combination of these techniques to reveal novel metazoan-specific trafficking factors required for endocytosis. Many more metazoan-specific trafficking factors and insights into the mechanisms of endocytosis are likely to be uncovered by analysis in C. elegans .  相似文献   

18.
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infects a broader range of mammalian species than previously predicted, binding a diversity of angiotensin converting enzyme 2 (ACE2) orthologs despite extensive sequence divergence. Within this sequence degeneracy, we identify a rare sequence combination capable of conferring SARS-CoV-2 resistance. We demonstrate that this sequence was likely unattainable during human evolution due to deleterious effects on ACE2 carboxypeptidase activity, which has vasodilatory and cardioprotective functions in vivo. Across the 25 ACE2 sites implicated in viral binding, we identify 6 amino acid substitutions unique to mouse—one of the only known mammalian species resistant to SARS-CoV-2. Substituting human variants at these positions is sufficient to confer binding of the SARS-CoV-2 S protein to mouse ACE2, facilitating cellular infection. Conversely, substituting mouse variants into either human or dog ACE2 abolishes viral binding, diminishing cellular infection. However, these same substitutions decrease human ACE2 activity by 50% and are predicted as pathogenic, consistent with the extreme rarity of human polymorphisms at these sites. This trade-off can be avoided, however, depending on genetic background; if substituted simultaneously, these same mutations have no deleterious effect on dog ACE2 nor that of the rodent ancestor estimated to exist 70 million years ago. This genetic contingency (epistasis) may have therefore opened the road to resistance for some species, while making humans susceptible to viruses that use these ACE2 surfaces for binding, as does SARS-CoV-2.

This study suggests that ancient events in mammalian cardiovascular evolution determined the host range of SARS-CoV-2 millions of years before the current pandemic. These physiological constraints are so inflexible that escape from SARS-CoV-2 susceptibility would likely have required significant alterations to the human cardiovascular system.  相似文献   

19.
20.
SNP analysis to dissect human traits   总被引:5,自引:0,他引:5  
The analysis of complex human diseases has been spurred by the number of published genomic sequence variants - many identified in the course of sequencing the human genome. But, to be useful for genetic analysis, variants have to be mapped accurately, their frequencies in various populations determined, and automated high-throughput assay techniques developed. Recently proposed methods address these issues: the use of 'reduced representation shotgun' methods for more efficient detection of single nucleotide polymorphisms (SNPs), the employment of high-throughput genotyping techniques, the development of SNP maps that incorporate information about linkage disequilibrium, and the use of SNPs in identifying susceptibility genes for common illnesses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号