首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although deregulation of Hedgehog signalling is considered to play a crucial oncogenic role and commonly occurrs in medulloblastoma, genetic lesions in components of this pathway are observed in a minority of cases. The recent identification of a novel putative tumor suppressor (RENKCTD11) on chromosome 17p13.2, a region most frequently lost in human medulloblastoma, highlights the role of allelic deletion of the gene in this brain malignancy, leading to the loss of growth inhibitory activity via suppression of Gli-dependent activation of Hedgehog target genes. The presence on 17p13 of another tumor suppressor gene (p53) whose inactivation cooperates with Hedgehog pathway for medulloblastoma formation, suggests that 17p deletion unveils haploinsufficiency conditions leading to abrogation of either direct and indirect checkpoints of Hedgehog signalling in cancer.  相似文献   

2.
Deletion mapping of the medulloblastoma locus on chromosome 17p   总被引:3,自引:0,他引:3  
Isochromosome 17q has previously been observed consistently in cytogenetic studies of medulloblastoma, the most common posterior fossa neoplasm in children. We performed a restriction fragment length polymorphism (RFLP) investigation of medulloblastoma which showed a loss of chromosome 17p sequences in 45% of these tumors. This finding was predictive of a poor clinical response to treatment. A contiguous panel of markers permitted mapping of the deletion to 17p12-p13.1, the same chromosomal region for which loss of alleles has been shown in tumor specimens from patients with colon cancer, and the same region to which the p53 gene has been mapped. This suggests that medulloblastoma is associated with a recessive oncogene on chromosome 17p that may be involved in the genesis of several embryologically unrelated neoplasms and that the absence of this gene in tumor tissue has prognostic significance.  相似文献   

3.
The mechanisms leading to brain tumor formation are poorly understood. Using Ptch1+/? mice as a medulloblastoma model, sequential mutations were found to shape tumor evolution. Initially, medulloblastoma preneoplastic lesions display loss of heterozygosity of the Ptch1 wild-type allele, an event associated with cell senescence in preneoplasia. Subsequently, p53 mutations lead to senescence evasion and progression from preneoplasia to medulloblastoma. These findings are consistent with a model where high levels of Hedgehog signaling caused by the loss of the tumor suppressor Ptch1 lead to oncogene-induced senescence and drive p53 mutations. Thus, cell senescence is an important characteristic of a subset of SHH medulloblastoma and might explain the acquisition of somatic TP53 mutations in human medulloblastoma. This mode of medulloblastoma formation contrasts with the one characterizing Li-Fraumeni patients with medulloblastoma, where TP53 germ-line mutations cause chromothriptic genomic instability and lead to mutations in Hedgehog signaling genes, which drive medulloblastoma growth. Here we discuss in detail these 2 alternative mechanisms leading to medulloblastoma tumorigenesis.  相似文献   

4.
5.
Wang G  Huang CH  Zhao Y  Cai L  Wang Y  Xiu SJ  Jiang ZW  Yang S  Zhao T  Huang W  Gu JR 《Cell research》2000,10(4):311-323
To elucidate the molecular pathology underlying the development of hepatocellular carcinoma (HCC),we used 41 highly polymorphic microsatellite markers to examine 55 HCC and corresponding non-tumor liver tissues on chromosome 9,16 and 17.Loss-of-heterozygosity(LOH) is observed with high frequency on chromosomal region 17p13(36k/55,65%),9q21-p23(28/55,51%),16q21-23(27/55,49%) in tumors.Meanwhile,microsatellite instability is rarely found in these microsatellite loci.Direct sequencing was performed to detect the tentative mutation of tumor wuppressor genes in these regions:p53,MTS1/p16,and CDH1/E-cadherin.Wihin exon 5-9 of p53 gene,14 out of 55 HCC specimens(24%) have somatic mutations,and nucleotide deletion of this gene is reported in HCC for the first time.Mutation in MTS1/p16 is found only in one tumor case.We do not find mutations in CDH1/E-cadherin.Furthermore,a statistically significant correlation is present between p53 gene mutation and loss of chromosome region 16q21-q23 and 9p21-p23,which indicates that synergism between p53 inactivation and deletion of 16q21-q23 and 9p21-p23 may play a role in the pathogenesis of HCC.  相似文献   

6.
Central nervous system (CNS) tumours are the most common solid tumours in children. Cytogenetic and molecular genetic studies of these neoplasms have previously shown abnormalities of chromosome 17, implicating genes on this autosome in tumorigenesis. To identify mutations in the TP53 tumour suppressor gene (17p13.1), we have sequenced the five highly conserved regions of this gene in 29 mixed paediatric CNS tumors. No mutations were detected by this analysis. In order to identify other candidate disease loci on chromosome 17, we have carried out a detailed deletion mapping analysis using 16 polymorphic DNA markers on 19 of the above tumours and an additional four cases. Abnormalities of chromosome 17 occurred in nine cases (39%), six of which were primitive neuroectodermal tumour (PNET)-medulloblastomas. These findings suggest that it is unlikely that the TP53 gene is directly involved in the development of common paediatric brain tumours. This is in contrast to findings from adult brain and other tumour types. Moreover, the frequency of chromosome 17 aberrations, especially in PNET-medulloblastomas, suggests that other genes on this chromosome contribute to tumourigenesis.  相似文献   

7.
Allelic loss and translocation are critical mutational events in human tumorigenesis. Allelic loss, which is usually identified as loss of heterozygosity (LOH), is frequently observed at tumor suppressor loci in various kinds of human tumors. It is generally thought to result from deletion or mitotic recombination between homologous chromosomes. In this report, we demonstrate that illegitimate (nonhomologous) recombination strongly contributes to the generation of allelic loss in p53-mutated cells. Spontaneous and X-ray-induced LOH mutations at the heterozygous thymidine kinase (tk) gene, which is located on the long arm of chromosome 17, from normal (TK6) and p53-mutated (WTK-1) human lymphoblastoid cells were cytogenetically analyzed by chromosome 17 painting. We observed unbalanced translocations in 53% of LOH mutants spontaneously arising from WTK-1 cells but none spontaneously arising from TK6 cells. We postulate that illegitimate recombination was occurring between nonhomologous chromosomes after DNA replication, leading to allelic loss and unbalanced translocations in p53-mutated WTK-1 cells. X-ray irradiation, which induces DNA double-strand breaks (DSBs), enhanced the generation of unbalanced translocation more efficiently in WTK-1 than in TK6 cells. This observation implicates the wild-type p53 protein in the regulation of homologous recombination and recombinational DNA repair of DSBs and suggests a possible mechanism by which loss of p53 function may cause genomic instability.  相似文献   

8.
Summary Cytogenetic and molecular studies of various solid tumors have indicated that a series of different chromosomal regions may be deleted in the tumor genome. Usually, losses of heterozygosity are observed and, from this finding, the presence of specific genes acting as tumor suppressors has been deduced. In particular tumors, however, only a single chromosome site appears to be affected. Therefore, we have carried out a study of human meningioma, investigating 7 such putative suppressor regions by applying twelve site-specific DNA markers. In 6 out of 19 tumors, we exclusively found loss of heterozygosity for markers of the long arm of chromosome 22; none of the tumors showed statistically significant additional allelic losses for the regions 1p, 3p, 5p, 5q, 11p, 13q, 17p. Our data support the long-standing observation that only losses of or within chromosome 22 are associated with the development of meningiomas. Other suppressor regions are apparently not involved.  相似文献   

9.
人类恶性肿瘤中染色体17p13.3区带的杂合性丢失   总被引:9,自引:0,他引:9  
覃文新  顾健人 《生命科学》1999,11(2):74-77,60
人类恶性肿瘤中经常发生染色体染合性丢失,从而丢失抑癌基因的某一个等基因。人类17号染色本特别是该色体的17p13.3区带,在多种肿瘤中都存在着染色的体杂支失。  相似文献   

10.
Two classes of genes are the targets of mutations involved in human tumorigenesis: oncogenes, the activation of which leads to growth stimulation, and tumor suppressor genes, which become tumorigenic through loss of function, often through allelic deletion. To obtain evidence for a role for tumor suppressor genes in thyroid tumorigenesis, we examined DNA from 80 thyroid neoplasms for loss of heterozygosity in multiple chromosomal loci using 19 polymorphic genomic probes. None of the informative thyroid tumors studied had allelic loss detected with probes for chromosome 2q (D2S44), 3p (D3F15S2, D3S32), 3q (D3S46), 4p (D4S125), 6p (D6S40), 8q (D8S39), 9q (D9S7), 12p (D12S14), 13q (D13S52), 17p (D17S30), or 18q (D18S10). One of eight of the follicular adenomas had a 10q deletion detected with marker D10S15, and one of 26 had a 10q deletion detected with D10S25. One of two of the follicular carcinomas had an 11p deletion in the H-ras locus. The most significant findings were on chromosome 11q13, the site containing the putative gene predisposing to multiple endocrine neoplasia type I. Four of 27 follicular adenomas had loss of heterozygosity for probes in this region. Allelic deletions were detected with the following probes: D11S149, PYGM, D11S146, and INT2. None of 13 informative papillary carcinomas and none of two follicular carcinomas had loss of heterozygosity detectable with these 11q13 markers. Allelic loss is a relatively infrequent event in human thyroid tumors. Deletions of chromosome 11q13 are present in about 14% of follicular, but not papillary, neoplasms.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Mutations in the tumor suppressor gene p53 often lead to disarrangement of the cell cycle and of genetic integrity control of cells that may contribute to tumor development. We studied p53 gene mutations in 26 primary tumors of colorectal cancer patients. Mutations in p53 were found in 17 tumors (65.4%). All point mutations affected the DNA binding domain of p53 and were localized in exons 4-8 of the gene. Mutant p53 isoforms with altered domain structure and/or with alternative C-terminus arising from frameshift mutations or abnormal splicing were found in six tumors. Mutations Leu111Gln and Ser127Phe were shown in colorectal cancer for the first time. Isoforms p53-305 with C(4) insertion in codons 300/301 and p53i9* including an additional 44 nucleotides of the 3 -end of intron 9 were discovered for the first time. Mutations of p53 were associated with lymph node metastases and III/IV stage of tumors that are signs of unfavorable prognosis in colorectal cancer.  相似文献   

12.
Although the occurrence of bladder cancer is common, the molecular events underlying the pathogenesis of this cancer remain ill-defined. A loss of heterozygosity (LOH) at specific chromosomal loci may predispose individuals to the development of bladder cancer but this has not been examined in detail. Furthermore, the role that deletion or inactivation of putative tumour suppressor genes might play in the genesis of bladder cancer has not been established. In this study, allelic deletion analysis on the short arm of chromosome 17 of patients with primary bladder tumours failed to show deletion at 17p13 (0/7), a region known to contain the p53 tumour suppressor gene. Chromosome 11p15 showed allelic deletion at the IGF2 locus (2/7: 29%) and the PTH locus (1/11: 9%). However, no deletion was observed at the CALCA locus (0/6). LOH at 11p13, a region containing the Wilm's tumour suppressor gene (WT1), was also studied. Analysis of LOH at 11p13 showed deletion at the CAT locus (13/18: 72%), the J/D11S414 locus (5/15: 33%), the WT1 locus (7/14: 50%) and the FSHB locus (6/16: 38%). The significance of these findings is discussed.  相似文献   

13.
Allelic loss (LOH) mapping and sequence analysis were conducted for gamma-ray induced mouse thymic lymphomas and a novel tumor suppressor gene, Rit1/Bcl11b, on chromosome 12 was isolated. Bi-allelic changes were found in 17 of the 66 p53-proficient lymphomas with Rit1 LOH but in only 2 of the 54 p53-deficient lymphomas. This suggests an association between the presence of functional p53 and inactivation of the Rit1 gene in the lymphoma development. Introduction of Rit1 into HeLa cells lacking Rit1 expression suppressed cell growth. These results indicate that loss-of-function mutations of Rit1 contribute to mouse lymphomagenesis and possibly to human cancer development.  相似文献   

14.
15.
Several lines of evidence suggest that the presence of the wild-type tumor suppressor gene p53 in human cancers correlates well with successful anti-cancer therapy. Restoration of wild-type p53 function to cancer cells that have lost it might therefore improve treatment outcomes. Using a systematic yeast genetic approach, we selected second-site suppressor mutations that can overcome the deleterious effects of common p53 cancer mutations in human cells. We identified several suppressor mutations for the V143A, G245S and R249S cancer mutations. The beneficial effects of these suppressor mutations were demonstrated using mammalian reporter gene and apoptosis assays. Further experiments showed that these suppressor mutations could override additional p53 cancer mutations. The mechanisms of such suppressor mutations can be elucidated by structural studies, ultimately leading to a framework for the discovery of small molecules able to stabilize p53 mutants.  相似文献   

16.
Carcinogenesis is a multistage process that has been characterized both by the activation of cellular oncogenes and by the loss of function of tumor suppressor genes. Colorectal cancer has been associated with the activation of ras oncogenes and with the deletion of multiple chromosomal regions including chromosomes 5q, 17p, and 18q. Such chromosome loss is often suggestive of the deletion or loss of function of tumor suppressor genes. The candidate tumor suppressor genes from these regions are, respectively, MCC and/or APC, p53, and DCC. In order to further our understanding of the molecular and genetic mechanisms involved in tumor progression and, thereby, of normal cell growth, it is important to determine whether defects in one or more of these loci contribute functionally in the progression to malignancy in colorectal cancer and whether correction of any of these defects restores normal growth control in vitro and in vivo. To address this question, we have utilized the technique of microcell-mediated chromosome transfer to introduce normal human chromosomes 5, 17, and 18 individually into recipient colorectal cancer cells. Additionally, chromosome 15 was introduced into SW480 cells as an irrelevant control chromosome. While the introduction of chromosome 17 into the tumorigenic colorectal cell line SW480 yielded no viable clones, cell lines were established after the introduction of chromosomes 15, 5, and 18. Hybrids containing chromosome 18 are morphologically similar to the parental line, whereas those containing chromosome 5 are morphologically distinct from the parental cell line, being small, polygonal, and tightly packed. SW480-chromosome 5 hybrids are strongly suppressed for tumorigenicity, while SW480-chromosome 18 hybrids produce slowly growing tumors in some of the animals injected. Hybrids containing the introduced chromosome 18 but was significantly reduced in several of the tumor reconstitute cell lines. Introduction of chromosome 5 had little to no effect on responsiveness, whereas transfer ot chromosome 18 restored responsiveness to some degree. Our findings indicate that while multiple defects in tumor suppressor genes seem to be required for progression to the malignant state in colorectal cancer, correction of only a single defect can have significant effects in vivo and/or in vitro.  相似文献   

17.
Mutations at the p53 tumor suppressor gene locus are a frequent genetic alteration associated with human ovarian carcinoma. Little information exists regarding whether mutational events occur other than point mutations and large deletions, causing loss of heterozygosity. Small intragenic deletions and insertions in the p53 gene have been observed in various human neoplasias. We developed a multiplex polymerase chain reaction (MPCR) screening assay to amplify the complete p53 coding region from genomic DNA in a single step. Deletions and/or insertions were found in six out of 11 newly established ovarian carcinoma cell lines. MPCR detected deletions as small as 2bp, as confirmed by nucleotide sequence analysis. Most of the observed alterations (6/7) were homozygous or hemizygous. Structural aberrations of the p53 gene possibly leading to loss of p53 cell cycle control may be a consequence of a slipped-mispairing mechanism in rapid DNA replication during repetitious ovulation and wound repair of ovarian epithelial cells. MPCR may be a valuable tool for screening for possible p53 deletion and insertion mutations not only in ovarian cancer but also in other malignancies.  相似文献   

18.
Loss of heterozygosity (LOH) is the predominant mechanism of spontaneous mutagenesis at the heterozygous thymindine kinase locus (tk) in TK6 cells. LOH events detected in spontaneous TK mutants (110 clones from p53 wild-type cells TK6-20C and 117 clones from p53-abrogated cells TK6-E6) were analyzed using 13 microsatellite markers spanning the whole of chromosome 17. Our analysis indicated an approximately 60-fold higher frequency of terminal deletions in p53-abrogated cells TK6-E6 compared to p53 wild-type cells TK6-20C whereas frequencies of point mutations (non-LOH events), interstitial deletions, and crossing over events were found to increase only less than twofold by such p53 abrogation. We then made use of an additional 17 microsatellite markers which provided an average map-interval of 1.6 Mb to map various LOH endpoints on the 45 Mb portion of chromosome 17q corresponding to the maximum length of LOH tracts (i.e. from the distal marker D17S932 to the terminal end). There appeared to be four prominent peaks (I–IV) in the distribution of LOH endpoints/Mb of Tk6-20C cells that were not evident in p53-abrogated cells TK6-E6, where they appeared to be rather broadly distributed along the 15–20 Mb length (D17S1807 to D17S1607) surrounding two of the peaks that we detected in TK6-20C cells (peaks II and III). We suggest that the chromosomal instability that is so evident in TK6-E6 cells may be due to DNA double-strand break repair occurring through non homologous end-joining rather than allelic recombination.  相似文献   

19.
Chromosome 11p15 deletions occur frequently in several types of human cancer, both sporadic and familial, suggesting that a tumor suppressor gene is present within the deleted chromosome region. We carried out a restriction fragment length polymorphism analysis of chromosome 11p in two types of human brain tumors: malignant astrocytoma, the most common glial tumor in adults; and primitive neuroectodermal tumor (PNET), a malignant embryonic tumor that afflicts children. Loss of heterozygosity was found in 11/43 malignant astrocytomas (26%) and in 3/11 PNETs (27%). Deletion mapping revealed a region of loss on chromosome 11p (p15.4-pter) that was common to both tumor types. To determine whether the c-H-ras gene, located on chromosome 11p in the common region of deletion, was a candidate gene, we analyzed polymerase chain reaction products corresponding to all four c-H-ras coding exons for single-strand conformation polymorphisms. The absence of electrophoretic mobility shifts in tumor DNA compared to leukocyte DNA indicated that c-H-ras gene mutations were most likely not present. These results suggested that loss of a gene on chromosome 11p15 distinct from c-H-ras is an important step in tumorigenesis within the central nervous system in both children and adults.  相似文献   

20.
Loss of heterozygosity (LOH) is the predominant mechanism of spontaneous mutagenesis at the heterozygous thymindine kinase locus (tk) in TK6 cells. LOH events detected in spontaneous TK(-) mutants (110 clones from p53 wild-type cells TK6-20C and 117 clones from p53-abrogated cells TK6-E6) were analyzed using 13 microsatellite markers spanning the whole of chromosome 17. Our analysis indicated an approximately 60-fold higher frequency of terminal deletions in p53-abrogated cells TK6-E6 compared to p53 wild-type cells TK6-20C whereas frequencies of point mutations (non-LOH events), interstitial deletions, and crossing over events were found to increase only less than twofold by such p53 abrogation. We then made use of an additional 17 microsatellite markers which provided an average map-interval of 1.6Mb to map various LOH endpoints on the 45Mb portion of chromosome 17q corresponding to the maximum length of LOH tracts (i.e. from the distal marker D17S932 to the terminal end). There appeared to be four prominent peaks (I-IV) in the distribution of LOH endpoints/Mb of Tk6-20C cells that were not evident in p53-abrogated cells TK6-E6, where they appeared to be rather broadly distributed along the 15-20Mb length (D17S1807 to D17S1607) surrounding two of the peaks that we detected in TK6-20C cells (peaks II and III). We suggest that the chromosomal instability that is so evident in TK6-E6 cells may be due to DNA double-strand break repair occurring through non homologous end-joining rather than allelic recombination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号