首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to understand the mechanism of decarboxylation by 2,3-dihydroxybenzoic acid decarboxylase, chemical modification studies were carried out. Specific modification of the amino acid residues with diethylpyrocarbonate, N-bromosuccinimide and N-ethylmaleiimide revealed that at least one residue each of histidine, tryptophan and cysteine were essential for the activity. Various substrate analogs which were potential inhibitors significantly protected the enzyme against inactivation. The modification of residues at low concentration of the reagents and the protection experiments suggested that these amino acid residues might be present at the active site. Studies also suggested that the carboxyl and ortho-hydroxyl groups of the substrate are essential for interaction with the enzyme.  相似文献   

2.
Introduction of unnatural amino acids into chalcone isomerase.   总被引:1,自引:0,他引:1  
The active site cysteine residue of chalcone isomerase was rapidly and selectively modified under denaturing conditions with a variety of electrophilic reagents. These denatured and modified enzyme were renatured to produce enzyme derivatives containing a series of unnatural amino acids in the active site. Addition of methyl, ethyl, butyl, heptyl, and benzyl groups to the cysteine sulfur does not abolish catalytic activity, although the activity decreases as the steric bulk of the amino acid side-chain increases. Modification of the cysteine to introduce a charged homoglutamate or a neutral homoglutamine analogue results in retention of 22% of the catalytic activity. Addition of a methylthio group (SMe) to the cysteine residue of native chalcone isomerase preserves 85% of the catalytic activity measured with 2',4',4-trihydroxychalcone, 2',4',6',4-tetrahydroxychalcone, or 2'-hydroxy-4-methoxychalcone as substrates. The competitive inhibition constant for 4',4-dihydroxychalcone, the substrate inhibition constant for 2',4',4-trihydroxychalcone, and other steady-state kinetic parameters for the methanethiolated enzyme are very similar to those of the native enzyme. The strong binding of 4',4-dihydroxychalcone to the methanethiolated enzyme shows that there is no steric repulsion between this modified amino acid residue and the substrate analogue. This structure-activity study clearly demonstrates that the active site cysteine residue does not function as an acid-base or nucleophilic group in producing the catalysis or substrate inhibition observed with chalcone isomerase. The method presented in this paper allows for the rapid introduction of a series of unnatural amino acids into the active site as a means of probing the structure-function relationship.  相似文献   

3.
Chemical modification to improve biopharmaceutical properties, especially oral absorption and bioavailability, is a common strategy employed by pharmaceutical chemists. The approach often employs a simple structural modification and utilizes ubiquitous endogenous esterases as activation enzymes, although such enzymes are often unidentified. This report describes the crystal structure and specificity of a novel activating enzyme for valacyclovir and valganciclovir. Our structural insights show that human valacyclovirase has a unique binding mode and specificity for amino acid esters. Biochemical data demonstrate that the enzyme hydrolyzes esters of alpha-amino acids exclusively and displays a broad specificity spectrum for the aminoacyl moiety similar to tricorn-interacting aminopeptidase F1. Crystal structures of the enzyme, two mechanistic mutants, and a complex with a product analogue, when combined with biochemical analysis, reveal the key determinants for substrate recognition; that is, a flexible and mostly hydrophobic acyl pocket, a localized negative electrostatic potential, a large open leaving group-accommodating groove, and a pivotal acidic residue, Asp-123, after the nucleophile Ser-122. This is the first time that a residue immediately after the nucleophile has been found to have its side chain directed into the substrate binding pocket and play an essential role in substrate discrimination in serine hydrolases. These results as well as a phylogenetic analysis establish that the enzyme functions as a specific alpha-amino acid ester hydrolase. Valacyclovirase is a valuable target for amino acid ester prodrug-based oral drug delivery enhancement strategies.  相似文献   

4.
1. Normal carboxylic acids of different hydrophobicities and similar chain lengths were prepared and used for the modification of amino groups of thermolysin (EC 3.4.24.4). They were 4,7,10,13-tetraoxatetradecanoic acid, 4,7,10-trioxatetradecanoic acid, 4,7-dioxatetradecanoic acid and 4-oxatetradecanoic acid. 2. The modified enzymes were isolated by gel filtration. They had 6--7 acyl groups per molecule. Acylation of amino groups with 4-oxatetradecanoic acid and tetradecanoic acid made the enzyme insoluble. 3. The most hydrophilic enzyme derivative had similar enzyme activity and higher heat resistance than the native enzyme. The most hydrophobic derivative showed lower Km (50%) and V (40%) values for proteinase activity and lower heat resistance than the former derivative. The trioxa-derivative had intermediate characteristics. The results are discussed with respect to effects on stability and activity of the enzyme.  相似文献   

5.
Nitrilase from Rhodococcus rhodochrous ATCC 33278 hydrolyses both aliphatic and aromatic nitriles. Replacing Tyr-142 in the wild-type enzyme with the aromatic amino acid phenylalanine did not alter specificity for either substrate. However, the mutants containing non-polar aliphatic amino acids (alanine, valine and leucine) at position 142 were specific only for aromatic substrates such as benzonitrile, m-tolunitrile and 2-cyanopyridine, and not for aliphatic substrates. These results suggest that the hydrolysis of substrates probably involves the conjugated pi-electron system of the aromatic ring of substrate or Tyr-142 as an electron acceptor. Moreover, the mutants containing charged amino acids such as aspartate, glutamate, arginine and asparagine at position 142 displayed no activity towards any nitrile, possibly owing to the disruption of hydrophobic interactions with substrates. Thus aromaticity of substrate or amino acid at position 142 in R. rhodochrous nitrilase is required for enzyme activity.  相似文献   

6.
Thermus sp. strain Rt41A produces an extracellular thermostable alkaline proteinase. The enzyme has a high isoelectric point (10.25-10.5) which can be exploited in purification by using cation-exchange chromatography. The proteinase was purified to homogeneity and has a molecular mass of 32.5 kDa by SDS/PAGE. It is a glycoprotein, containing 0.7% carbohydrate as glucose equivalents, and has four half-cystine residues present as two disulphide bonds. Maximum proteolytic activity was observed at pH 8.0 against azocasein and greater than 75% of this activity was retained in the pH range 7.0-10.0. Substrate inhibition was observed with casein and azocasein. The enzyme was stable in the pH range 5.0-10.0 and maximum activity, in a 10-min assay, was observed at 90 degrees C with 5 mM CaCl2 present. No loss of activity was observed after 24 h at 70 degrees C and the half-lives at 80 degrees C and 90 degrees C were 13.5 h and 20 min, respectively. Removal of Ca2+ reduced the temperature for maximum proteolytic activity against azocasein to 60 degrees C and the half-life at 70 degrees C was 2.85 min. The enzyme was stable at low and high ionic strength and in the presence of denaturing reagents and organic solvents. Rt41A proteinase cleaved a number of synthetic amino acid p-nitrophenol esters, the kinetic data indicating that small aliphatic or aromatic amino acids were the preferred residue at the P1 position. The kinetic data for the hydrolysis of a number of peptide p-nitroanilide substrates are also reported. Primary cleavage of the oxidized insulin B chain occurred at sites where the P1' amino acid was aromatic. Minor cleavage sites (24 h incubation) were for amino acids with aliphatic side chains at the P1' position. The esterase and insulin cleavage data indicate the specificity is similar for both the P1 and P1' sites.  相似文献   

7.
A novel enzyme, arylalkyl acylamidase, which shows a strict specificity for N-acetyl arylalkylamines, but not acetanilide derivatives, was purified from the culture broth of Pseudomonas putida Sc2. The purified enzyme appeared to be homogeneous, as judged by native and SDS/PAGE. The enzyme has a molecular mass of approximately 150 kDa and consists of four identical subunits. The purified enzyme catalyzed the hydrolysis of N-acetyl-2-phenylethylamine to 2-phenylethylamine and acetic acid at the rate of 6.25 mumol.min-1.mg-1 at 30 degrees C. It also catalyzed the hydrolysis of various N-acetyl arylalkylamines containing a benzene or indole ring, and acetic acid arylalkyl esters. The enzyme did not hydrolyze acetanilide, N-acetyl aliphatic amines, N-acetyl amino acids, N-acetyl amino sugars or acylthiocholine. The apparent Km for N-acetylbenzylamine, N-acetyl-2-phenylethylamine and N-acetyl-3-phenylpropylamine are 41 mM, 0.31 mM and 1.6 mM, respectively. The purified enzyme was sensitive to thiol reagents such as Ag2SO4, HgCl2 and p-chloromercuribenzoic acid, and its activity was enhanced by divalent metal ions such as Zn2+, Mg2+ and Mn2+.  相似文献   

8.
Limited trypsinization of rat fatty acid synthase monomers results in cleavage at sites protected in the native dimer. A 47,000-Da polypeptide containing the transferase component was isolated from the digest and its location in the multifunctional polypeptide established. Both acetyl and malonyl moieties are transferred stoichiometrically from CoA ester to this polypeptide and each can replace the other, confirming that a single common site is utilized in the loading of these substrates onto the fatty acid synthase. Transferase activity of the 47,000-Da polypeptide decreases with increasing acyl donor chain length (malonyl = acetyl greater than butyryl greater than hexanoyl greater than octanoyl). Activity is inhibited by certain thiol-directed reagents, and protection is afforded by substrate suggesting the presence of a sensitive cysteine residue near the substrate binding site. The transferase was also able to utilize as acyl acceptor the Escherichia coli acyl carrier protein and the acyl carrier protein domain of the multifunctional fatty acid synthase. When the fatty acid synthase monomer was trypsinized under milder conditions, the 47,000-Da transferase domain could be isolated in association with the 8,000-Da acyl carrier protein domain. The transferase was capable of translocating substrate moieties from CoA ester donors to the associated acyl carrier protein. The results provide the first direct evidence that, in the head-to-tail oriented fatty acid synthase homodimer, functional communication between the transferase domain located near the end of one polypeptide and the acyl carrier protein domain located at the opposite end of the other polypeptide is facilitated by a stable physical interaction between these domains.  相似文献   

9.
Substrate specificity of recombinant chalcone synthase (CHS) from Scutellaria baicalensis (Labiatae) was investigated using chemically synthesized aromatic and aliphatic CoA esters. It was demonstrated for the first time that CHS converted benzoyl-CoA to phlorobenzophenone (2,4,6-trihydroxybenzophenone) along with pyrone by-products. On the other hand, phenylacetyl-CoA was enzymatically converted to an unnatural aromatic polyketide, phlorobenzylketone (2, 4,6-trihydroxyphenylbenzylketone), whose structure was finally confirmed by chemical synthesis. Furthermore, in agreement with earlier reports, S. baicalensis CHS also accepted aliphatic CoA esters, isovaleryl-CoA and isobutyryl-CoA, to produce phloroacylphenones. In contrast, hexanoyl-CoA only afforded pyrone derivatives without formation of a new aromatic ring. It was noteworthy that both aromatic and aliphatic CoA esters were accepted in the active site of the enzyme as a starter substrate for the complex condensation reaction. The low substrate specificity of CHS thus provided further insight into the structure and function of the enzyme.  相似文献   

10.
The kinetic parameters were obtained for enzymatic alpha-amidation of peptides of the form N-dansyl-(Gly)4-X-Gly-OH, in which the amino acid at position X was substituted with each of the 20 natural amino acids. The enzyme used in these studies was a highly enriched preparation of alpha-amidating enzyme secreted by a clonal (CA-77) cell line which actively expresses mature alpha-amidated peptides. A 130-fold and 11-fold variation respectively in apparent Km and Vmax values was observed. The effect of the amino acid side chain at position X in stabilization of the enzyme-substrate complex decreased through the series X = planar aromatic or sulfur containing greater than neutral aliphatic greater than polar and basic greater than cyclic aliphatic or acidic.  相似文献   

11.
The SH groups of glutamine synthetase [EC 6.3.1.2] from Bacillus stearothermophilus were modified with 5, 5'-dithiobis(2-nitrobenzoic acid) in order to determine the number of SH groups in the molecule as well as the effect of the modification on the enzyme activity. Three SH groups per subunit were detected after complete denaturation of the enzyme with 6 M urea, one of which was essential for the enzyme activity in view of its reactivity with 5, 5'-dithiobis(2-nitrobenzoic acid) on addition of MgCl2 with loss of the activity. The CD spectra of the modified enzyme in the near ultraviolet region changed from that of the native enzyme, indicating that aromatic amino acid residues were affected by modification of the SH group. The fluorescence derived from tryptophanyl residue(s) was quenched depending on the extent of modification of the SH group, suggesting that the tryptophanyl residue(s) was located in the proximity of the SH group. The thermostability of the enzyme was remarkably decreased by modification of the SH group.  相似文献   

12.
The neutral protease of Bacillus subtilis var. amylosacchariticus (B. amylosacchariticus) was iodinated with a 25-fold molar excess of iodine at pH 9.4 for 3 min at 0°C, by which treatment the proteolytic activity toward casein was markedly reduced, while the hydrolytic activity toward an N-blocked peptide substrate was rather increased. The modified enzyme was digested with Staphylococcus aureus V8 protease at pH 8.0 and the amino acid sequences of resultant peptides were compared with those obtained from the native enzyme. One of the peptides was found to have an amino acid sequence of Thr-Ala-Asn-Leu-Ile-Tyr-Glu, which corresponds to residue Nos. 153—159 of the enzyme, where Tyr-158 was identified to be mono-iodotyrosine. The other two peptides were those containing Tyr-21 which was mono- and di-iodinated, respectively. Referring to nitration experiments on the neutral protease and the active site structure of thermolysin, it was concluded that the iodination of Tyr-158 is mainly responsible for the activity changes of B. amylosacchariticus neutral protease.  相似文献   

13.
3-Hydroxyphenylacetate 6-hydroxylase was purified 70-fold from a Flavobacterium sp. grown upon phenylacetic acid as its sole carbon and energy source. The presence of FAD and dithiothreitol during purification is essential for high recovery of active enzyme. SDS/PAGE of purified enzyme reveals a single band with a minimum molecular mass of 63 kDa. Analytical gel-filtration, sedimentation-equilibrium and sedimentation-velocity experiments indicate that the purified enzyme exists in solution mainly as a dimer, containing 1 molecule non-covalently bound FAD/subunit. 3-Hydroxyphenylacetate 6-hydroxylase utilizes NADH and NADPH as external electron donors with similar efficiency. The enzyme shows a narrow substrate specificity. Only the primary substrate 3-hydroxyphenylacetate is hydroxylated efficiently, yielding 2,5-dihydroxyphenylacetate as a product. During turnover, the substrate analogues 3,4-dihydroxyphenylacetate and 4-hydroxyphenylacetate are partially hydroxylated, exclusively at the 6' (2') position. The physiological product 2,5-dihydroxyphenylacetate acts as an effector, strongly stimulating NAD(P)H oxidation. The activity of 3-hydroxyphenylacetate 6-hydroxylase is severely inhibited by chloride ions, competitive to the aromatic substrate. In the native state of enzyme, two sulfhydryl groups are accessible to 5,5'-dithiobis(2-nitrobenzoate). Titration with stoichiometric amounts of either 5,5'-dithiobis(2-nitrobenzoate) or mercurial reagents completely blocks enzyme activity. Inactivation by cysteine reagents is inhibited by the substrate 3-hydroxyphenylacetate. The original activity is fully restored by treatment of the modified enzyme with dithiothreitol. The N-terminal amino acid sequence of the enzyme lacks the consensus sequence GXGXXG, found at the N-termini of all flavin-dependent external monooxygenases sequenced so far. The amino acid composition of 3-hydroxyphenylacetate 6-hydroxylase is also presented.  相似文献   

14.
Zhao Y  Wang J  Gebre AK  Chisholm JW  Parks JS 《Biochemistry》2003,42(47):13941-13949
We previously described a point mutation in human LCAT (E to A at residue 149; hE149A) that demonstrated greater activity with phosphatidylcholine (PC) substrate containing 20:4 in the sn-2 position compared with the wild-type enzyme [hLCAT; Wang et al. (1997) J. Biol. Chem. 272, 280-286], resulting in a human enzyme with the substrate specificity similar to that of rat LCAT. The purpose of the present study was to explore the molecular basis for the role of amino acid 149 in determining fatty acyl substrate specificity. In the first experiment, the reverse mutation in rat LCAT (rA149E) converted substrate specificity of rat LCAT toward that of the human enzyme, demonstrating that the mutation was context independent and reversible. In the second experiment, we found that hE149A compared with hLCAT demonstrated higher activity with PC species containing 20-carbon, but not 18-carbon, sn-2 fatty acyl chains. The increased activity of hE149A was due to an increase in apparent V(max) but not to apparent K(m) or LCAT binding to the PC surface. Substitution of different amino acids in the 149 position of hLCAT showed that activation of the enzyme with sn-2 20:4 containing PC substrate was only observed when the negative charge at residue 149 was removed. We conclude that the negative charge at amino acid 149 of LCAT is a critical determinant for the specificity of the enzyme for PC containing 18- vs 20-carbon sn-2 fatty acyl chains.  相似文献   

15.
The concept of substrate mimetic strategy represents a new powerful method in the field of enzymatic peptide synthesis. This strategy takes advantage of the shift in the site-specific amino acid moiety from the acyl residue to the ester-leaving group of the carboxyl component enabling acylation of the enzyme by nonspecific acyl residues. As a result, peptide bond formation occurs independently of the primary specificity of proteases. Moreover, because of the coupling of nonspecific acyl residues, the newly formed peptide bond is not subject to secondary hydrolysis achieving irreversible peptide synthesis. Here, we report the combination of solid-phase peptide synthesis with substrate mimetic-mediated enzymatic peptide fragment condensations. First, the utility of the oxime resin strategy for the synthesis of peptide fragments in the form of substrate mimetics esterified as 4-guanidinophenyl-, phenyl- and mercaptopropionic acid esters was investigated. The study was completed by using the resulting N(alpha)-protected peptide esters as acyl donors in trypsin-, alpha-chymotrypsin- and V8 protease-catalyzed fragment condensations.  相似文献   

16.
The NAD(+)-dependent D-lactate dehydrogenase was purified to apparent homogeneity from Lactobacillus bulgaricus and its complete amino acid sequence determined. Two gaps in the polypeptide chain (10 residues) were filled by the deduced amino acid sequence of the polymerase chain reaction amplified D-lactate dehydrogenase gene sequence. The enzyme is a dimer of identical subunits (specific activity 2800 +/- 100 units/min at 25 degrees C). Each subunit contains 332 amino acid residues; the calculated subunit M(r) being 36,831. Isoelectric focusing showed at least four protein bands between pH 4.0 and 4.7; the subunit M(r) of each subform is 36,000. The pH dependence of the kinetic parameters, Km, Vm, and kcat/Km, suggested an enzymic residue with a pKa value of about 7 to be involved in substrate binding as well as in the catalytic mechanism. Treatment of the enzyme with group-specific reagents 2,3-butanedione, diethylpyrocarbonate, tetranitromethane, or N-bromosuccinimide resulted in complete loss of enzyme activity. In each case, inactivation followed pseudo first-order kinetics. Inclusion of pyruvate and/or NADH reduced the inactivation rates manyfold, indicating the presence of arginine, histidine, tyrosine, and tryptophan residues at or near the active site. Spectral properties of chemically modified enzymes and analysis of kinetics of inactivation showed that the loss of enzyme activity was due to modification of a single arginine, histidine, tryptophan, or tyrosine residue. Peptide mapping in conjunction with peptide purification and amino acid sequence determination showed that Arg-235, His-303, Tyr-101, and Trp-19 were the sites of chemical modification. Arg-235 and His-303 are involved in the binding of 2-oxo acid substrate whereas other residues are involved in binding of the cofactor.  相似文献   

17.
Penicillin V acylase from Streptomyces mobaraensis (Sm-PVA) showed high acyl-transfer activity in reactions using methyl esters of carboxylic acid (acyl donor) and amino compounds (nucleophile), to produce the corresponding amides. Moreover, Sm-PVA had broad substrate specificity, as indicated by the fact that it catalyzed the efficient synthesis of beta-lactam antibiotics, capsaicin derivatives, and N-fatty-acyl-amino acid/N-fatty-acyl-peptide derivatives.  相似文献   

18.
Human recombinant erythropoietin (rHuEPO) was chemically modified with several group-specific reagents in order to study the role of each kind of amino-acid residue in its biological activity. Guanidination of the amino groups of the lysine residues yielded derivatives that showed higher activities in vitro than native rHuEPO, whereas amidination had no effect on the activity. By contrast, modification of the positive charges of the lysine residues to neutral or negative charges, such as in carbamylation, trinitrophenylation, acetylation or succinylation, caused a significant loss of rHuEPO activity. Chemical modification of other amino-acid residues, such as arginine and tyrosine residues or carboxyl groups, also led to loss of activity.  相似文献   

19.
Malate dehydrogenase from Escherichia coli is highly specific for the oxidation of malate to oxaloacetate. The technique of site-specific modulation has been used to alter the substrate binding site of this enzyme. Introduction of a cysteine in place of the active site binding residue arginine 153 results in a mutant enzyme with diminished catalytic activity, but with K(m) values for malate and oxaloacetate that are surprisingly unaffected. Reaction of this introduced cysteine with a series of amino acid analog reagents leads to the incorporation of a range of functional groups at the active site of malate dehydrogenase. The introduction of a positively charged group such as an amine or an amidine at this position results in improved affinity for several inhibitors over that observed with the native enzyme. However, the recovery of catalytic activity is less dramatic, with less than one third of the native activity achieved with the optimal reagents. These modified enzymes do have altered substrate specificity, with alpha-ketoglutarate and hydroxypyruvate no longer functioning as alternative substrates.  相似文献   

20.
Cys-29 and Cys-251 of Streptomyces albus valine dehydrogenase (ValDH) were highly conserved in the corresponding region of NAD(P)(+)-dependent amino acid dehydroganase sequences. To ascertain the functional role of these cysteine residues in S. albus ValDH, site-directed mutagenesis was performed to change each of the two residues to serine. Kinetic analyses of the enzymes mutated at Cys-29 and Cys-251 revealed that these residues are involved in catalysis. We also constructed mutant ValDH by substituting valine for leucine at 305 by site-directed mutagenesis. This residue was chosen, because it has been proposed to be important for substrate discrimination by phenylalanine dehydrogenase (PheDH) and leucine dehydrogenase (LeuDH). Kinetic analysis of the V305L mutant enzyme revealed that it is involved in the substrate binding site. However it displayed less activity than the wild type enzyme toward all aliphatic and aromatic amino acids tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号