首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Neurospora crassa kinesin NcKin3 belongs to a unique fungal-specific subgroup of small Kinesin-3-related motor proteins. One of its functions appears to be the transport of mitochondria along microtubules. Here, we present the X-ray structure of a C-terminally truncated monomeric construct of NcKin3 comprising the motor domain and the neck linker, and a 3-D image reconstruction of this motor domain bound to microtubules, by cryoelectron microscopy. The protein contains Mg.ADP bound to the active site, yet the structure resembles an ATP-bound state. By comparison with structures of the Kinesin-3 motor Kif1A in different nucleotide states (Kikkawa, M. et al. (2001) Nature (London, U.K.) 411, 439-445), the NcKin3 structure corresponds to the AMPPCP complex of Kif1A rather than the AMPPNP complex. NcKin3-specific differences in the coordination of the nucleotide and asymmetric interactions between adjacent molecules in the crystal are discussed in the context of the unusual kinetics of the dimeric wild-type motor and the monomeric construct used for crystal structure analysis. The NcKin3 motor decorates microtubules at a stoichiometry of one head per alphabeta-tubulin heterodimer, thereby forming an axial periodicity of 8 nm. In spite of unusual extensions at the N-terminus and within flexible loops L2, L8a, and L12 (corresponding to the K-loop of monomeric kinesins), the microtubule binding geometry is similar to that of other members of the kinesin family.  相似文献   

2.
The amoeba Dictyostelium discoideum possesses genes for 13 different kinesins. Here we characterize DdKif3, a member of the Kinesin-1 family. Kinesin-1 motors form homodimers that can move micrometer-long distances on microtubules using the energy derived from ATP hydrolysis. We expressed recombinant motors in Escherichia coli and tested them in different in vitro assays. Full-length and truncated Kif3 motors were active in gliding and ATPase assays. They showed a strong dependence on ionic strength. Like the full-length motor, the truncated DdKif3-592 motor (aa 1-592; comprising motor domain, neck, and partial stalk) reached its maximum speed of around 2.0micrcom s(-1) at a potassium acetate concentration of 200mM. The shortened DdKif3-342 motor (aa 1-342; comprising motor domain, partial neck) showed a high ATP turnover, comparable to that of the fungal Kinesin-1, Nkin. Results from the duty cycle calculations and gliding assays indicate that DdKif3 is a processive motor. A GFP-fusion protein revealed a mainly cytoplasmic localization of DdKif3. Immunofluorescence staining makes an association with the endoplasmic reticulum or mitochondria unlikely. Despite a similar phylogenetic distance to both metazoa and fungi, in terms of its biochemical properties DdKif3 revealed a closer similarity to fungal than animal kinesins.  相似文献   

3.
The mitotic spindle is a microtubule-based machine that segregates a replicated set of chromosomes during cell division. Many cancer drugs alter or disrupt the microtubules that form the mitotic spindle. Microtubule-dependent molecular motors that function during mitosis are logical alternative mitotic targets for drug development. Eg5 (Kinesin-5) and Kif15 (Kinesin-12), in particular, are an attractive pair of motor proteins, as they work in concert to drive centrosome separation and promote spindle bipolarity. Furthermore, we hypothesize that the clinical failure of Eg5 inhibitors may be (in part) due to compensation by Kif15. In order to test this idea, we screened a small library of kinase inhibitors and identified GW108X, an oxindole that inhibits Kif15 in vitro. We show that GW108X has a distinct mechanism of action compared with a commercially available Kif15 inhibitor, Kif15-IN-1 and may serve as a lead with which to further develop Kif15 inhibitors as clinically relevant agents.  相似文献   

4.
Recent studies suggest that the human Kinesin-8 molecular motor Kif18A has a role in chromosome congression. Specifically, these studies find that Kif18A promotes chromosome congression by attenuating chromosome oscillation magnitudes. Together with recent modeling work, in vitro studies, and the analysis of in vivo yeast data, these reports reveal how Kinesin-8 molecular motors might control chromosome oscillation amplitudes by spatially regulating the dynamic instability of microtubule plus-ends within the mitotic spindle.  相似文献   

5.
Drosophila Kinesin-73 (Khc-73), which plays a role in mitotic spindle polarity in neuroblasts, is a metazoan-specific member of the Kinesin-3 family of motors, which includes mammalian KIF1A and Caenorhabditis elegans Unc-104. The mechanism of Kinesin-3 motors has been controversial because some studies have reported that they transport cargo as monomers whereas other studies have suggested a dimer mechanism. Here, we have performed single-molecule motility and cell biological studies of Khc-73. We find that constructs containing the motor and the conserved short stretches of putative coiled-coil-forming regions are predominantly monomeric in vitro, but that dimerization allows for fast, processive movement and high force production (7 piconewtons). In Drosophila cell lines, we present evidence that Khc-73 can dimerize in vivo. We also show that Khc-73 is recruited specifically to Rab5-containing endosomes through its "tail" domain. Our results suggest that the N-terminal half of Khc-73 can undergo a monomer-dimer transition to produce a fast processive motor and that its C-terminal half possesses a specific Rab5-vesicle binding domain.  相似文献   

6.
Vilfan A 《Biophysical journal》2008,94(9):3405-3412
Myosin V is a two-headed processive motor protein that walks in a hand-over-hand fashion along actin filaments. When it encounters a filament branch, formed by the Arp2/3 complex, it can either stay on the straight mother filament, or switch to the daughter filament. We study both probabilities using the elastic lever arm model for myosin V. We calculate the shapes and bending energies of all relevant configurations in which the trail head is bound to the actin filament before Arp2/3 and the lead head is bound either to the mother or to the daughter filament. Based on the assumption that the probability for a head to bind to a certain actin subunit is proportional to the Boltzmann factor obtained from the elastic energy, we calculate the mother/daughter filament branching ratio. Our model predicts a value of 27% for the daughter and 73% for the mother filament. This result is in good agreement with recent experimental data.  相似文献   

7.
Long-distance transport is crucial for polar-growing cells, such as neurons and fungal hyphae. Kinesins and myosins participate in this process, but their functional interplay is poorly understood. Here, we investigate the role of kinesin motors in hyphal growth of the plant pathogen Ustilago maydis. Although the microtubule plus-ends are directed to the hyphal tip, of all 10 kinesins analyzed, only conventional kinesin (Kinesin-1) and Unc104/Kif1A-like kinesin (Kinesin-3) were up-regulated in hyphae and they are essential for extended hyphal growth. deltakin1 and deltakin3 mutant hyphae grew irregular and remained short, but they were still able to grow polarized. No additional phenotype was detected in deltakin1rkin3 double mutants, but polarity was lost in deltamyo5rkin1 and deltamyo5rkin3 mutant cells, suggesting that kinesins and class V myosin cooperate in hyphal growth. Consistent with such a role in secretion, fusion proteins of green fluorescent protein and Kinesin-1, Myosin-V, and Kinesin-3 accumulate in the apex of hyphae, a region where secretory vesicles cluster to form the fungal Spitzenk?rper. Quantitative assays revealed a role of Kin3 in secretion of acid phosphatase, whereas Kin1 was not involved. Our data demonstrate that just two kinesins and at least one myosin support hyphal growth.  相似文献   

8.
Tetrameric motor proteins of the Kinesin-5 family are essential for eukaryotic cell division. The microscopic mechanism by which Eg5, the vertebrate Kinesin-5, drives bipolar mitotic spindle formation remains unknown. Here we show in optical trapping experiments that full-length Eg5 moves processively and stepwise along microtubule bundles. Interestingly, the force produced by individual Eg5 motors typically reached only approximately 2 pN, one-third of the stall force of Kinesin-1. Eg5 typically detached from microtubules before stalling. This behavior may reflect a regulatory mechanism important for the role of Eg5 in the mitotic spindle.  相似文献   

9.
Recent structural observations of kinesin-1, the founding member of the kinesin group of motor proteins, have led to substantial gains in our understanding of this molecular machine. Kinesin-1, similar to many kinesin family members, assembles to form homodimers that use alternating ATPase cycles of the catalytic motor domains, or “heads”, to proceed unidirectionally along its partner filament (the microtubule) via a hand-over-hand mechanism. Cryo-electron microscopy has now revealed 8-Å resolution, 3D reconstructions of kinesin-1?microtubule complexes for all three of this motor’s principal nucleotide-state intermediates (ADP-bound, no-nucleotide, and ATP analog), the first time filament co-complexes of any cytoskeletal motor have been visualized at this level of detail. These reconstructions comprehensively describe nucleotide-dependent changes in a monomeric head domain at the secondary structure level, and this information has been combined with atomic-resolution crystallography data to synthesize an atomic-level "seesaw" mechanism describing how microtubules activate kinesin’s ATP-sensing machinery. The new structural information revises or replaces key details of earlier models of kinesin’s ATPase cycle that were based principally on crystal structures of free kinesin, and demonstrates that high-resolution characterization of the kinesin–microtubule complex is essential for understanding the structural basis of the cycle. I discuss the broader implications of the seesaw mechanism within the cycle of a fully functional kinesin dimer and show how the seesaw can account for two types of "gating" that keep the ATPase cycles of the two heads out of sync during processive movement.  相似文献   

10.
Kinesin-3 motors drive the transport of synaptic vesicles and other membrane-bound organelles in neuronal cells. In the absence of cargo, kinesin motors are kept inactive to prevent motility and ATP hydrolysis. Current models state that the Kinesin-3 motor KIF1A is monomeric in the inactive state and that activation results from concentration-driven dimerization on the cargo membrane. To test this model, we have examined the activity and dimerization state of KIF1A. Unexpectedly, we found that both native and expressed proteins are dimeric in the inactive state. Thus, KIF1A motors are not activated by cargo-induced dimerization. Rather, we show that KIF1A motors are autoinhibited by two distinct inhibitory mechanisms, suggesting a simple model for activation of dimeric KIF1A motors by cargo binding. Successive truncations result in monomeric and dimeric motors that can undergo one-dimensional diffusion along the microtubule lattice. However, only dimeric motors undergo ATP-dependent processive motility. Thus, KIF1A may be uniquely suited to use both diffuse and processive motility to drive long-distance transport in neuronal cells.  相似文献   

11.
《Biophysical journal》2020,118(7):1537-1551
Processive molecular motors enable cargo transportation by assembling into dimers capable of taking several consecutive steps along a cytoskeletal filament. In the well-accepted hand-over-hand stepping mechanism, the trailing motor detaches from the track and binds the filament again in the leading position. This requires fuel consumption in the form of ATP hydrolysis and coordination of the catalytic cycles between the leading and the trailing heads. Alternate stepping pathways also exist, including inchworm-like movements, backward steps, and foot stomps. Whether all the pathways are coupled to ATP hydrolysis remains to be determined. Here, to establish the principles governing the dynamics of processive movement, we present a theoretical framework that includes all of the alternative stepping mechanisms. Our theory bridges the gap between the elemental rates describing the biochemical and structural transitions in each head and the experimentally measurable quantities such as velocity, processivity, and probability of backward stepping. Our results, obtained under the assumption that the track is periodic and infinite, provide expressions that hold regardless of the topology of the network connecting the intermediate states, and are therefore capable of describing the function of any molecular motor. We apply the theory to myosin VI, a motor that takes frequent backward steps and moves forward with a combination of hand-over-hand and inchworm-like steps. Our model quantitatively reproduces various observables of myosin VI motility reported by four experimental groups. The theory is used to predict the gating mechanism, the pathway for backward stepping, and the energy consumption as a function of ATP concentration.  相似文献   

12.
Kinesin motor proteins release nucleotide upon interaction with microtubules (MTs), then bind and hydrolyze ATP to move along the MT. Although crystal structures of kinesin motors bound to nucleotides have been solved, nucleotide-free structures have not. Here, using cryomicroscopy and three-dimensional (3D) reconstruction, we report the structure of MTs decorated with a Kinesin-14 motor, Kar3, in the nucleotide-free state, as well as with ADP and AMPPNP, with resolution sufficient to show alpha helices. We find large structural changes in the empty motor, including melting of the switch II helix alpha4, closure of the nucleotide binding pocket, and changes in the central beta sheet reminiscent of those reported for nucleotide-free myosin crystal structures. We propose that the switch II region of the motor controls docking of the Kar3 neck by conformational changes in the central beta sheet, similar to myosin, rather than by rotation of the motor domain, as proposed for the Kif1A kinesin motor.  相似文献   

13.
Regulation of microtubule (MT) dynamics is essential for proper spindle assembly and organization. Kinesin-8 family members are plus-end-directed motors that modulate plus-end MT dynamics by acting as MT depolymerases or as MT plus-end capping proteins. In this paper, we show that the human kinesin-8 Kif18B functions during mitosis to control astral MT organization. Kif18B is a MT plus-tip-tracking protein that localizes to the nucleus in interphase and is enriched at astral MT plus ends during early mitosis. Knockdown of Kif18B caused spindle defects, resulting in an increased number and length of MTs. A yeast two-hybrid screen identified an interaction of the C-terminal domain of Kif18B with the plus-end MT-binding protein EB1. EB1 knockdown disrupted Kif18B targeting to MT plus ends, indicating that EB1/Kif18B interaction is physiologically important. This interaction is direct, as the far C-terminal end of Kif18B is sufficient for binding to EB1 in vitro. Overexpression of this domain is sufficient for plus-end MT targeting in cells; however, targeting is enhanced by the motor domain, which cooperates with the tail to achieve proper Kif18B localization at MT plus ends. Our results suggest that Kif18B is a new MT dynamics regulatory protein that interacts with EB1 to control astral MT length.  相似文献   

14.
How intracellular transport controls the probability that cargos switch at intersections between filaments is not well understood. In one hypothesis some motors on the cargo attach to one filament while others attach to the intersecting filament, and the ensuing tug-of-war determines which filament is chosen. We investigate this hypothesis using 3D computer simulations, and discover that switching at intersections increases with the number of motors on the cargo, but is not strongly dependent on motor number when the filaments touch. Thus, simply controlling the number of active motors on the cargo cannot account for in vivo observations that found reduced switching with increasing motor number, suggesting additional mechanisms of regulation. We use simulations to show that one possible way to regulate switching is by simultaneously adjusting the separation between planes containing the crossing filaments and the total number of active motors on the cargo. Heretofore, the effect of filament-filament separation on switching has been unexplored. We find that the switching probability decreases with increasing filament separation. This effect is particularly strong for cargos with only a modest number of motors. As the filament separation increases past the maximum head-to-head distance of the motor, individual motors walking along a filament will be unable to reach the intersecting filament. Thus, any switching requires that other motors on the cargo attach to the intersecting filament and haul the cargo along it, while motor(s) engaged on the original filament detach. Further, if the filament separation is large enough, the cargo can have difficulty proceeding along the initial filament because the engaged motors can walk underneath the intersecting filament, but the cargo itself cannot fit between the filaments. Thus, the cargo either detaches entirely from the original filament, or must dip to the side of the initial filament and then pass below the crossing filament.  相似文献   

15.
Members of the kinesin II family are thought to play essential roles in many types of intracellular transport. One distinguishing feature of kinesin II is that it generally contains two different motor subunits from the Kif3 family. Three Kif3 family members (Kif3A, Kif3B, and Kif3C) have been identified and characterized in mice. Intracellular localization and biochemical studies previously suggested that Kif3C is an anterograde motor involved in anterograde axonal transport. To understand the in vivo function of the Kif3C gene, we used homologous recombination in embryonic stem cells to construct two different knockout mouse strains for the Kif3C gene. Both homozygous Kif3C mutants are viable, reproduce normally, and apparently develop normally. These results suggest that Kif3C is dispensable for normal neural development and behavior in the mouse.  相似文献   

16.

Background

Kinesin-13 proteins have a critical role in animal cell mitosis, during which they regulate spindle microtubule dynamics through their depolymerisation activity. Much of what is known about Kinesin-13 function emanates from a relatively small sub-family of proteins containing MCAK and Kif2A/B. However, recent work on kinesins from the much more widely distributed, ancestral Kinesin-13 family, which includes human Kif24, have identified a second function in flagellum length regulation that may exist either alongside or instead of the mitotic role.

Methodology/Principal Findings

The African trypanosome Trypanosoma brucei encodes 7 distinct Kinesin-13 proteins, allowing scope for extensive specialisation of roles. Here, we show that of all the trypanosomal Kinesin-13 proteins, only one is nuclear. This protein, TbKIN13-1, is present in the nucleoplasm throughout the cell cycle, but associates with the spindle during mitosis, which in trypanosomes is closed. TbKIN13-1 is necessary for the segregation of both large and mini-chromosomes in this organism and reduction in TbKIN13-1 levels mediated by RNA interference causes deflects in spindle disassembly with spindle-like structures persisting in non-mitotic cells. A second Kinesin-13 is localised to the flagellum tip, but the majority of the Kinesin-13 family members are in neither of these cellular locations.

Conclusions/Significance

These data show that the expanded Kinesin-13 repertoire of trypanosomes is not associated with diversification of spindle-associated roles. TbKIN13-1 is required for correct spindle function, but the extra-nuclear localisation of the remaining paralogues suggests that the biological roles of the Kinesin-13 family is wider than previously thought.  相似文献   

17.
The mitotic spindle is a macromolecular structure utilized to properly align and segregate sister chromatids to two daughter cells. During mitosis, the spindle maintains a constant length, even though the spindle microtubules (MTs) are constantly undergoing polymerization and depolymerization [1]. Members of the kinesin-8 family are important for the regulation of spindle length and for chromosome positioning [2-9]. Kinesin-8 proteins are length-specific, plus-end-directed motors that are proposed to be either MT depolymerases [3, 4, 8, 10, 11] or MT capping proteins [12]. How Kif18A uses its destabilization activity to control spindle morphology is not known. We found that Kif18A controls spindle length independently of its role in chromosome positioning. The ability of Kif18A to control spindle length is mediated by an ATP-independent MT binding site at the C-terminal end of the Kif18A tail that has a strong affinity for MTs in?vitro and in cells. We used computational modeling to ask how modulating the motility or binding properties of Kif18A would affect its activity. Our modeling predicts that both fast motility and a low off rate from the MT end are important for Kif18A function. In addition, our studies provide new insight into how depolymerizing and capping enzymes can lead to MT destabilization.  相似文献   

18.
Kinesins are dimeric motor proteins that move processively along microtubules. It has been proposed that the processivity of conventional kinesins is increased by electrostatic interactions between the positively charged neck of the motor and the negatively charged C-terminus of tubulin (E-hook). In this report we challenge this anchoring hypothesis by studying the motility of a fast fungal kinesin from Neurospora crassa (NcKin). NcKin is highly processive despite lacking the positive charges in the neck. We present a detailed analysis of how proteolytic removal of the E-hook affects truncated monomeric and dimeric constructs of NcKin. Upon digestion we observe a strong reduction of the processivity and speed of dimeric motor constructs. Monomeric motors with truncated or no neck display the same reduction of microtubule gliding speed as dimeric constructs, suggesting that the E-hook interacts with the head only. The E-hook has no effect on the strongly bound states of NcKin as microtubule digestion does not alter the stall forces produced by single dimeric motors, suggesting that the E-hook affects the interaction site of the kinesin.ADP-head and the microtubule. In fact, kinetic and binding experiments indicate that removal of the E-hook shifts the binding equilibrium of the weakly attached kinesin.ADP-head toward a more strongly bound state, which may explain reduced processivity and speed on digested microtubules.  相似文献   

19.
Kinesin-14 motors generate microtubule minus-end-directed force used in mitosis and meiosis. These motors are dimeric and operate with a nonprocessive powerstroke mechanism, but the role of the second head in motility has been unclear. In Saccharomyces cerevisiae, the Kinesin-14 Kar3 forms a heterodimer with either Vik1 or Cik1. Vik1 contains a motor homology domain that retains microtubule binding properties but lacks a nucleotide binding site. In this case, both heads are implicated in motility. Here, we show through structural determination of a C-terminal heterodimeric Kar3Vik1, electron microscopy, equilibrium binding, and motility that at the start of the cycle, Kar3Vik1 binds to or occludes two αβ-tubulin subunits on adjacent protofilaments. The cycle begins as Vik1 collides with the microtubule followed by Kar3 microtubule association and ADP release, thereby destabilizing the Vik1-microtubule interaction and positioning the motor for the start of the powerstroke. The results indicate that head-head communication is mediated through the adjoining coiled coil.  相似文献   

20.
Conventional kinesin (Kinesin-1), the founding member of the kinesin family, was discovered in the squid giant axon, where it is thought to move organelles on microtubules. In this study, we identify a second squid kinesin by searching an expressed sequence tag database derived from the ganglia that give rise to the axon. The full-length open reading frame encodes a 1753 amino acid sequence that classifies this protein as a Kinesin-3. Immunoblots demonstrate that this kinesin, unlike Kinesin-1, is highly enriched in chaotropically stripped axoplasmic organelles, and immunogold electron microscopy (EM) demonstrates that Kinesin-3 is tightly bound to the surfaces of these organelles. Video microscopy shows that movements of purified organelles on microtubules are blocked, but organelles remain attached, in the presence Kinesin-3 antibody. Immunogold EM of axoplasmic spreads with antibody to Kinesin-3 decorates discrete sites on many, but not all, free organelles and localizes Kinesin-3 to organelle/microtubule interfaces. In contrast, label for Kinesin-1 decorates microtubules but not organelles. The presence of Kinesin-3 on purified organelles, the ability of an antibody to block their movements along microtubules, the tight association of Kinesin-3 with motile organelles and its distribution at the interface between native organelles and microtubules suggest that Kinesin-3 is a dominant motor in the axon for unidirectional movement of organelles along microtubules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号