首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An open reading frame with the characteristics of a glycoprotein-coding sequence was identified by nucleotide sequencing of human cytomegalovirus (HCMV) genomic DNA. The predicted amino acid sequence was homologous with glycoprotein H of herpes simplex virus type 1 and the homologous protein of Epstein-Barr virus (BXLF2 gene product) and varicella-zoster virus (gpIII). Recombinant vaccinia viruses that expressed this gene were constructed. A glycoprotein of approximately 86 kilodaltons was immunoprecipitated from cells infected with the recombinant viruses and from HCMV-infected cells with a monoclonal antibody that efficiently neutralized HCMV infectivity. In HCMV-infected MRC5 cells, this glycoprotein was present on nuclear and cytoplasmic membranes, but in recombinant vaccinia virus-infected cells it accumulated predominantly on the nuclear membrane.  相似文献   

2.
3.
The Epstein-Barr virus (EBV) homolog of the conserved herpesvirus glycoprotein gN is predicted to be encoded by the BLRF1 open reading frame (ORF). Antipeptide antibody to a sequence corresponding to residues in the predicted BLRF1 ORF immunoprecipitated a doublet of approximately 8 kDa from cells expressing the BLRF1 ORF as a recombinant protein. In addition, four glycosylated proteins of 113, 84, 48, and 15 kDa could be immunoprecipitated from virus-producing cells by the same antibody. The 15-kDa species was the mature form of gN, which carried α2,6-sialic acid residues. The remaining glycoproteins which associated with gN were products of the BBRF3 ORF of EBV, which encodes the EBV gM homolog. The 8-kDa doublet seen in cells expressing recombinant gN comprised precursors of the mature 15-kDa gN. Coexpression of EBV gM with EBV gN was required for authentic processing of the 8-kDa forms to the 15-kDa form.  相似文献   

4.
5.
A Marchini  J I Cohen  F Wang    E Kieff 《Journal of virology》1992,66(5):3214-3219
The derivation of specifically mutated Epstein-Barr virus (EBV) recombinants is dependent on strategies to identify, enumerate, and clone infected B lymphocytes. In recent experiments, EBV recombinants containing a positive selection marker were identified and cloned in B-lymphoma (BL) cells infected and then plated under selective conditions (F. Wang, A. Marchini, and E. Kieff, J. Virol. 65:1701-1709, 1991). We now use BL cells, for the first time, as hosts for assaying and cloning otherwise isogenic EBV recombinants carrying a hygromycin phosphotransferase (HYG) gene linked to either a nontransforming deletion mutant or a transforming wild-type EBV nuclear antigen 2 (EBNA-2) gene. Both types of recombinants converted BL cells to hygromycin resistance with similar efficiency, formed episomes, and usually expressed only EBNA-1. Only the wild-type EBNA-2 HYG gene EBV recombinant transformed primary B lymphocytes. This strategy of assaying virus on BL and primary B lymphocytes makes possible the direct assessment of the transforming efficiency of an EBV recombinant. The resultant infected BL cells are also useful for the characterization of the nontransforming recombinant EBV genomes. The HYG gene insertion in the BHLF1 open reading frame eliminated BHLF1 protein expression. The insertion and resulting BHLF1 mutation did not interfere with primary B-lymphocyte infection, growth transformation, induction of lytic infection, or virus production. Thus, these experiments also indicate that neither the BHLF1 open reading frame nor the HYG gene insertion critically affects B-lymphocyte infection in vitro.  相似文献   

6.
Using a reverse genetic approach, we have demonstrated that the product of the B5R open reading frame (ORF), which has homology with members of the family of complement control proteins, is a membrane glycoprotein present in the extracellular enveloped (EEV) form of vaccinia virus but absent from the intracellular naked (INV) form. An antibody (C'-B5R) raised to a 15-amino-acid peptide from the translated B5R ORF reacted with a 42-kDa protein (gp42) found in vaccinia virus-infected cells and cesium chloride-banded EEV but not INV. Under nonreducing conditions, an 85-kDa component, possibly representing a hetero- or homodimeric form of gp42, was detected by both immunoprecipitation and Western immunoblot analysis. Metabolic labeling with [3H]glucosamine and [3H]palmitate revealed that the B5R product is glycosylated and acylated. The C-terminal transmembrane domain of the protein was identified by constructing a recombinant vaccinia virus that overexpressed a truncated, secreted form of the B5R ORF product. By N-terminal sequence analysis of this secreted protein, the site of signal peptide cleavage of gp42 was determined. A previously described monoclonal antibody (MAb 20) raised to EEV, which immunoprecipitated a protein with biochemical characteristics similar to those of wild-type gp42, reacted with the recombinant, secreted product of the B5R ORF. Immunofluorescence of wild-type vaccinia virus-infected cells by using either MAb 20 or C'-B5R revealed that the protein is expressed on the cell surface and within the cytoplasm. Immunogold labeling of EEV and INV with MAb 20 demonstrated that the protein was found exclusively on the EEV membrane.  相似文献   

7.
The two glycoproteins of Hantaan virus (HTV), G1 and G2, are encoded as a continuous single open reading frame in the M segment of the virion RNA. They are believed to be synthesized contemporaneously via a polypeptide precursor which is then processed to yield two glycoproteins, both of which appear in the Golgi complex of the cell. To study the properties of G1 and G2 as separate entities, we have constructed vaccinia virus recombinants which contain the sequences for each glycoprotein individually. Both glycoproteins made from these recombinants appear normal on sodium dodecyl sulfate-polyacrylamide gels compared with HTV products made in virus-infected cells. Interestingly, in the independently expressed G2 recombinant, a stretch of hydrophobic amino acids preceding the mature G2 N terminus appears to contain the signals necessary for translocation across membranes and proper glycosylation; partial deletion of this hydrophobic sequence results in production of an nonglycosylated form of G2. Thus, both G1 and G2 appear able to be expressed in an authentic fashion quite independently of each other, using their own signal sequences. In addition, it appears that the G1 from vaccinia virus recombinants contains the motif(s) necessary for cellular targeting of the HTV glycoproteins, while G2 from vaccinia virus recombinants remains strongly associated with the endoplasmic reticulum. In contrast, cells doubly infected with G1-vaccinia virus and G2-vaccinia virus recombinants show the G2 in a predominantly perinuclear (Golgi-like) distribution, presumably targeted there through association with G1. A carboxy-terminal deletion of G1 (2-43-Vac), which lacks 82 amino acids proximal to the start of the mature G2, retains a Golgi-like distribution.  相似文献   

8.
Earlier reports have localized mutations which affect the processing and transport of herpes simplex virus 1 glycoproteins to a region located between the genes specifying glycoprotein B and the major viral DNA-binding protein (beta 8). The nucleotide sequence of this region contains a single long open reading frame encoding a 780-amino-acid protein with a predicted molecular weight of 83,845. To confirm the existence of this protein, rabbit polyclonal antibody was made against a synthetic peptide made according to the predicted sequence of a hydrophilic domain near the carboxy terminal of the protein. This antibody reacted with an infected cell protein of an apparent molecular weight of 95,500. We designated this protein infected cell protein 18.5 (ICP18.5). S1 nuclease analysis suggested that the 5.6-kilobase mRNA encoding ICP18.5 is initiated predominantly from one site, but three weaker initiation sites also seemed to occur within a 74-base-pair stretch of DNA. This gene appears to be conserved in the Epstein-Barr virus (EBV) genome, inasmuch as 174 of the 780 amino acids of ICP18.5 align with corresponding amino acids predicted by the EBV open reading frame BALF3. The EBV gene is located adjacent to the gene specifying a homolog of the herpes simplex virus 1 glycoprotein B.  相似文献   

9.
Epstein-Barr virus (EBV) recombinants with specifically mutated BCRF1 genes were constructed and compared with wild-type BCRF1 recombinants derived in parallel for the ability to initiate and maintain latent infection and growth transformation in primary human B lymphocytes. A stop codon insertion after codon 116 of the 170-codon BCRF1 open reading frame or deletion of the entire gene had no effect on latent infection, B-lymphocyte proliferation into long-term lymphoblastoid cell lines (LCLs), or virus replication. LCLs infected with the stop codon recombinant were indistinguishable from wild-type recombinant-infected LCLs in tumorigenicity in SCID mice. However, mutant BCRF1 recombinant-infected cells differed from wild-type recombinant-infected cells in their inability to block gamma interferon release in cultures of permissively infected LCLs incubated with autologous human peripheral blood mononuclear cells. This is the first functional assay for BCRF1 expression from the EBV genome. BCRF1 probably plays a key role in modulating the specific and nonspecific host responses to EBV infection.  相似文献   

10.
R L Roper  L G Payne    B Moss 《Journal of virology》1996,70(6):3753-3762
With the aid of three monoclonal antibodies (MAbs), a glycoprotein specifically localized to the outer envelope of vaccinia virus was shown to be encoded by the A33R gene. These MAbs reacted with a glycosylated protein that migrated as 23- to 28-kDa and 55-kDa species under reducing and nonreducing conditions, respectively. The protein recognized by the three MAbs was synthesized by all 11 orthopoxviruses tested: eight strains of vaccinia virus (including modified vaccinia virus Ankara) and one strain each of cowpox, rabbitpox, and ectromelia viruses. The observation that the protein synthesized by ectromelia virus-infected cells reacted with only one of the three MAbs provided a means of mapping the gene encoding the glycoprotein. By transfecting vaccinia virus DNA into cells infected with ectromelia virus and assaying for MAb reactivity, we mapped the glycoprotein to the A33R open reading frame. The amino acid sequence and hydrophilicity plot predicted that the A33R gene product is a type II membrane protein with two asparagine-linked glycosylation sites. Triton X-114 partitioning experiments indicated that the A33R gene product is an integral membrane protein. The ectromelia virus homolog of the vaccinia virus A33R gene was sequenced, revealing 90% predicted amino acid identity. The vaccinia and variola virus homolog sequences predict 94% identical amino acids, the latter having one fewer internal amino acid. Electron microscopy revealed that the A33R gene product is expressed on the surface of extracellular enveloped virions but not on the intracellular mature form of virus. The conservation of this protein and its specific incorporation into viral envelopes suggest that it is important for virus dissemination.  相似文献   

11.
The Epstein-Barr virus membrane antigen gene gp340 was isolated, inserted into several strains of vaccinia virus and expressed under the control of a vaccinia virus promoter. The EBV-derived protein which was produced by the recombinant vaccinia viruses was heavily glycosylated, readily labelled with threonine, could be detected at the surface of infected cells and had a mol. wt. of approximately 340 kd, all of which are properties of the authentic gp340. Polyclonal rabbit antisera against gp340 and an EBV-neutralising anti-gp340 monoclonal antibody both recognised cells infected with the recombinant vaccinia viruses. Moreover, rabbits vaccinated with one of the recombinants produced antibodies that recognised EBV-containing lymphoblastoid cells and neutralised EBV.  相似文献   

12.
Both beta- and gammaherpesviruses encode G protein-coupled receptors (GPCRs) with unique pharmacological phenotypes and important biological functions. An example is ORF74, the gamma2-herpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV)-encoded GPCR, which is highly constitutively active and considered the key oncogene in Kaposi's sarcoma pathogenesis. In contrast, the current annotation of the Epstein-Barr virus (EBV) genome does not reveal any GPCR homolog encoded by this human oncogenic gamma1-herpesvirus. However, by employing bioinformatics, we recognized that the previously established EBV open reading frame BILF1 indeed encodes a GPCR. Additionally, BILF1 is a member of a new family of related GPCRs exclusively encoded by gamma1-herpesviruses. Expression of hemagglutinin-tagged BILF1 in the HEK293 epithelial cell line revealed that BILF1 is expressed as an approximately 50-kDa glycosylated protein. Immunocytochemistry and confocal microscopy revealed that BILF1 localizes predominantly to the plasma membrane, similar to the localization of KSHV ORF74. Using chimeric G proteins, we found that human and rhesus EBV-encoded BILF1 are highly potent constitutively active receptors, activating Galphai. Furthermore, BILF1 is able to inhibit forskolin-triggered CREB activation via stimulation of endogenous G proteins in a pertussis toxin-sensitive manner, verifying that BILF1 signals constitutively through Galphai. We suggest that EBV may use BILF1 to regulate Galphai-activated pathways during viral lytic replication, thereby affecting disease progression.  相似文献   

13.
The DNA sequence of a vaccinia virus late gene contains an open reading frame that corresponds to the 28,000-dalton (28K) polypeptide made by in vitro translation of hybrid-selected mRNA. To further characterize the protein product of this late gene, we cloned a segment of DNA containing part of the open reading frame into a bacterial expression vector. The fusion protein produced from this vector, containing 151 amino acids of the predicted vaccinia virus protein, was used to immunize rabbits. The resulting antiserum specifically bound to a major 25K structural protein that is localized in the core of vaccinia virions, as well as to a 28K protein found in infected cells. Pulse-chase experiments indicated that the 25K core protein is originally made as a 28K precursor.  相似文献   

14.
An antibody made against the herpes simplex virus 1 US5 gene predicted to encode glycoprotein J was found to react strongly with two proteins, one with an apparent Mr of 23,000 and mapping in the S component and one with a herpes simplex virus protein with an apparent Mr of 43,000. The antibody also reacted with herpes simplex virus type 2 proteins forming several bands with apparent Mrs ranging from 43,000 to 50,000. Mapping studies based on intertypic recombinants, analyses of deletion mutants, and ultimately, reaction of the antibody with a chimeric protein expressed by in-frame fusion of the glutathione S-transferase gene to an open reading frame antisense to the gene encoding glycoprotein B led to the definitive identification of the new open reading frame, designated UL27.5. Sequence analyses indicate the conservation of a short amino acid sequence common to US5 and UL27.5. The coding sequence of the herpes simplex virus UL27.5 open reading frame is strongly homologous to the sequence encoding the carboxyl terminus of the herpes simplex virus 2 UL27.5 sequence. However, both open reading frames could encode proteins predicted to be significantly larger than the mature UL27.5 proteins accumulating in the infected cells, indicating that these are either processed posttranslationally or synthesized from alternate, nonmethionine-initiating codons. The UL27.5 gene expression is blocked by phosphonoacetate, indicating that it is a γ2 gene. The product accumulated predominantly in the cytoplasm. UL27.5 is the third open reading frame found to map totally antisense to another gene and suggests that additional genes mapping antisense to known genes may exist.  相似文献   

15.
Epstein-Barr virus codes for at least three envelope glycoproteins, one of which, gp85, has not yet been mapped to the viral genome. The publication and analysis of the entire Epstein-Barr virus DNA sequence has allowed identification of open reading frames with potential for encoding membrane glycoproteins. To determine whether one of these candidate open reading frames, BXLF2, codes for gp85, an antibody was made to a 17-residue peptide derived from positions 518 to 533 of the predicted BXLF2 protein. The reactivity of the antipeptide antibody was then compared with that of the monoclonal antibody F-2-1, which was originally used to define and characterize gp85. Antipeptide antibody and F-2-1 immunoprecipitated glycosylated molecules with identical electrophoretic mobilities; digestion of the two immunoprecipitated proteins with V8 protease generated comparable peptides; and the antipeptide antibody reacted in Western immunoblots with the gp85 glycoprotein that had been immunoprecipitated by F-2-1 before transfer to nitrocellulose. In addition, a monospecific rabbit antibody, made against native gp85, reacted with the peptide used for immunization. These results are compatible with the hypothesis that the BXLF2 open reading frame codes for gp85.  相似文献   

16.
The gene product of open reading frame 5 (p25) of porcine reproductive and respiratory syndrome (PRRS) virus has been expressed by coinfection of culture cells with vaccinia virus expressing the T7 RNA polymerase and a recombinant vaccinia virus encoding the open reading frame 5 gene under the T7 promoter and the encephalomyocarditis virus internal ribosome entry site. In spite of the reported efficiency of the expression system, very poor accumulation of p25 protein was observed and a strong cytotoxicity was produced in the doubly infected cells. This cell toxicity was shown to occur by induction of apoptosis, as indicated by nucleosome ladder formation, chromatin condensation, and rRNA degradation. Apoptosis induction was also observed after infection of cultured cells with an adapted PRRS virus strain and after infection of swine macrophage cells with a PRRS virus field strain. Contrary to the observations made for other cases of virus-induced apoptosis, we could not prevent p25 protein-induced apoptosis by using a cell line permanently expressing Bcl-2 protein.  相似文献   

17.
We analyzed whether the phosphotransferase encoded by the UL97 open reading frame of human cytomegalovirus (HCMV) alone is sufficient to confer ganciclovir (GCV) susceptibility to a foreign virus. Two vaccinia virus recombinants (T1 and A5) containing the UL97 open reading frames from a GCV-sensitive HCMV and from a GCV-resistant strain were constructed. T1 exhibited a GCV-sensitive phenotype in plaque reduction assays, whereas A5 did not. Moreover, T1-infected cell cultures showed a strongly increased incorporation of [14C]GCV triphosphate into macromolecular DNA, compared with recombinant A5 or vaccinia virus controls, which could be inhibited by the addition of guanosine. This shows that UL97 kinase is the only additional gene product required to make vaccinia virus susceptible to GCV, and guanosine seems to be one natural substrate for the enzyme. The system described here should be very helpful for fast and detailed functional analyses of UL97 mutations found in GCV-resistant HCMV isolates.  相似文献   

18.
The human cytomegalovirus (HCMV) envelope glycoprotein complex gp55-116 was expressed in both Escherichia coli and cells infected with a recombinant vaccinia virus. E. coli produced a single protein of Mr 100,000 which approximated the size of the nonglycosylated gp55-116 precursor found in HCMV-infected cells. Cells infected with the recombinant vaccinia virus contained three intracellular forms of Mr 160,000, 150,000, and 55,000 which were detected by a monoclonal antibody reactive with gp55. Comparison of the immunological properties of these recombinant proteins indicated that several of the HCMV gp55-116 monoclonal antibodies and sera from patients infected with HCMV reacted with the vaccinia virus-derived proteins whereas a more restricted group of monoclonal antibodies recognized the E. coli-produced protein. Immunization of mice with either E. coli or vaccinia virus recombinant HCMV gp55-116 resulted in production of virus-neutralizing antibodies. In contrast to the almost exclusive production of complement-dependent neutralizing antibodies following immunization with recombinant vaccinia virus, the E. coli-derived protein induced complement-independent neutralizing antibodies.  相似文献   

19.
The EBV-producing B lymphoblastoid cell line B95-8 was found to efficiently activate the alternative C pathway whether assessed with Mg-EGTA-treated human serum or with mixtures of the purified proteins of the pathway (PAP). The ability of the cells to activate was markedly increased after stimulation of EBV replication by treatment of the cells with a phorbol ester, and decreased by treatment of the cells with a viral polymerase inhibitor. Alternative pathway activation was dependent on the presence of either properdin or EBV-immune IgG; the addition of either alone to the PAP led to the deposition of 200,000 C3 molecules/cell. The addition of both properdin and immune IgG to the PAP markedly increased C3 binding to a level of 800,000 molecules/cell. Several lines of evidence indicate that the major external glycoprotein of EBV, gp350, mediates alternative pathway activation by B95-8 cells. First, the ability to activate C positively correlated with gp350 expression on the surface of the EBV-producing cells and gp350- cells failed to activate; second, the anti-EBV antibody in immune human sera which enhanced activation specifically immunoprecipitated gp350 from membranes of B95-8 cells; third, a significant proportion of the C3 which became bound to the cells during activation was attached either to gp350 or to the anti-gp350 antibody found in immune human sera; and fourth, purified gp350, as well as EBV, efficiently activated the alternative pathway. These results indicate that gp350, an EBV envelope glycoprotein, is an efficient alternative pathway activator and its expression on cell membranes is associated with the ability to activate C.  相似文献   

20.
The Epstein-Barr virus (EBV) genome contains an open reading frame, BHRF1, that encodes a presumptive membrane protein with sequence similarity to the proto-oncogene bcl2, which is linked to human B-cell follicular lymphoma. Potential roles for BHRF1 in EBV's ability to growth transform human B cells and to replicate in B cells in culture were investigated by generating EBV mutants that lack most of the open reading frame. This was accomplished by recombination of plasmids carrying mutations in BHRF1 with the transformation-defective EBV strain P3HR1. Because BHRF1 resides close to the deletion in P3HR1 that renders this strain transformation defective, B-cell transformation could be used to select for recombination events in the region. B-cell clones were established by recombinants which lacked most of the BHRF1 open reading frame, although most of these initial B-cell transformants also carried nonrecombinant (BHRF1+) P3HR1 genomes, at levels ranging from a fraction of a copy to four copies per cell. Secondary B-cell transformants that lacked BHRF1+ EBV at detectable levels were found to release transforming, BHRF1-deficient EBV at levels that were within the normal range for EBV-immortalized B-cell clones. These studies demonstrate that BHRF1 is nonessential for growth transformation of B cells and for virus replication and release from these cells in culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号