共查询到20条相似文献,搜索用时 0 毫秒
1.
Oxidation--reduction potentials of molybdenum and iron--sulphur centres in nitrate reductase from Escherichia coli. 总被引:3,自引:0,他引:3
下载免费PDF全文

S P Vincent 《The Biochemical journal》1979,177(2):757-759
The potentials of the couples Mo(IV)--(Mo(V) and Mo(V)--Mo(VI) in nitrate reductase from Escherichia coli K12 were measured as + 180 mV and + 220 mV respectively at pH 7.14. The potentials associated with two other e.p.r. signals, believed to be due to iron--sulphur centres, were measured as + 50 mV and + 80 mV. 相似文献
2.
3.
4.
M K Johnson D E Bennett J E Morningstar M W Adams L E Mortenson 《The Journal of biological chemistry》1985,260(9):5456-5463
Nitrate reductase from Escherichia coli has been investigated by low-temperature magnetic circular dichroism and electron paramagnetic resonance (EPR) spectroscopies, as well as by Fe-S core extrusion, to determine the Fe-S cluster composition. The results indicate approximately one 3Fe and three or four [4Fe-4S]2+,1+ centers/molecule of isolated enzyme. The magnetic circular dichroism spectra and magnetization characteristics show the oxidized and reduced 3Fe and [4Fe-4S] centers to be electronically analogous to those in bacterial ferredoxins. The form and spin quantitation of the EPR spectra from [4Fe-4S]1+ centers in the reduced enzyme were found to vary with the conditions of reduction. For the fully reduced enzyme, the EPR spectrum accounted for between 2.9 and 3.5 spins/molecule, and comparison with partially reduced spectra indicates weak intercluster magnetic interactions between reduced paramagnetic centers. In common with other Fe-S proteins, the 3Fe center was not extruded intact under standard conditions. The results suggest that nitrate reductase is the first example of a metalloenzyme where enzymatic activity is associated with a form that contains an oxidized 3Fe center. However, experiments to determine whether or not the 3Fe center is present in vivo were inconclusive. 相似文献
5.
Complexes with halide and other anions of the molybdenum centre of nitrate reductase from Escherichia coli. 总被引:3,自引:2,他引:3
下载免费PDF全文

The interconversion of nitrate reductase from Escherichia coli between low-pH and high-pH Mo(V) e.p.r. signal-giving species was re-investigated [cf. Vincent & Bray (1978) Biochem. J. 171, 639-647]. The process cannot be described by a single pK value, since the apparent pK for interconversion is raised by the presence of various anions. The low-pH form of the enzyme exists as a series of complexes with different anion ligands of molybdenum. Each complex has specific and slightly different e.p.r. parameters, but all show strong coupling of Mo(V) to a single proton, exchangeable with the solvent, having A(1H)av. 1.0 to 1.3 mT. Complexes with Cl-, F- [A(19F)av. 0.7 mT], NO3- and NO2- give particularly well-defined spectra. The high-pH form of the enzyme is now shown to bear a coupled proton. Like that in the low-pH species, this proton is exchangeable with the solvent, but the coupling is much weaker, with A(1H)av. 0.3 mT. Thus, contrary to earlier assumptions, the proton detectable by e.p.r. is probably not identical with the proton whose dissociation controls interconversion between the two species; the latter proton could be located in the protein rather than on a ligand of molybdenum. Treatment of the enzyme with trypsin [Morpeth & Boxer (1985) Biochemistry 24, 40-46] did not affect its Mo(V) e.p.r. signals. 相似文献
6.
Francis Blasco Jean-Philippe Dos Santos Axel Magalon Chantal Frixon Bruno Guigliarelli Claire-Lise Santini & Gérard Giordano 《Molecular microbiology》1998,28(3):435-447
The formation of active membrane-bound nitrate reductase A in Escherichia coli requires the presence of three subunits, NarG, NarH and NarI, as well as a fourth protein, NarJ, that is not part of the active nitrate reductase. In narJ strains, both NarG and NarH subunits are associated in an unstable and inactive NarGH complex. A significant activation of this complex was observed in vitro after adding purified NarJ-6His polypeptide to the cell supernatant of a narJ strain. Once the apo-enzyme NarGHI of a narJ mutant has become anchored to the membrane via the NarI subunit, it cannot be reactivated by NarJ in vitro . NarJ protein specifically recognizes the catalytic NarG subunit. Fluorescence, electron paramagnetic resonance (EPR) spectroscopy and molybdenum quantification based on inductively coupled plasma emission spectroscopy (ICPES) clearly indicate that, in the absence of NarJ, no molybdenum cofactor is present in the NarGH complex. We propose that NarJ is a specific chaperone that binds to NarG and may thus keep it in an appropriate competent-open conformation for the molybdenum cofactor insertion to occur, resulting in a catalytically active enzyme. Upon insertion of the molybdenum cofactor into the apo-nitrate reductase, NarJ is then dissociated from the activated enzyme. 相似文献
7.
Magnetic interaction between molybdenum and one of the iron-sulphur centres in milk xanthine oxidase [Lowe, Lynden-Bell & Bray (1972) Biochem. J. 130, 239-249] was studied further, with particular reference to the newly discovered Mo(V) e.p.r.(electron-paramagnetic-resonance) signal, Resting II [Lowe, Barber, Pawlik & Bray (1976) Biochem. J. 155, 81-85]. E.p.r. measurements at 35GHz near to 4.2K showed that the interaction has the same sign at all molybdenum orientations and is ferromagnetic. The predicted splitting of the e.p.r. signal from the reduced iron-sulphur centre, Fe/S I, was observed, Providing positive identification of this as the other interacting species. Chemical modification of the molybdenum environment in xanthine oxidase can change the size of the interaction severalfold, but interaction always remains approximately isotropic. The interaction in turkey liver xanthine dehydrogenase is indistinguishable from that in the oxidase. However, a bacterial xanthine dehydrogenase with different iron-sulphur centres shows rather larger interaction. Guanidinium chloride disturbs the iron-sulphur centres of the oxidase, and when this occurs there is a parallel and relatively small change in the interaction. Removal of flavin from the molecule, or raising the pH to 12.0, changes the interaction slightly without affecting the chromophores themselves. It is concluded that the Fe/S I centre and the Mo are at least 1.0nm and probably nearer 2.5nm apart, and that the conformation of the protein between them is relatively stable up to pH 12. 相似文献
8.
9.
X-ray-absorption and electron-paramagnetic-resonance spectroscopic studies of the environment of molybdenum in high-pH and low-pH forms of Escherichia coli nitrate reductase. 总被引:1,自引:0,他引:1
下载免费PDF全文

G N George N A Turner R C Bray F F Morpeth D H Boxer S P Cramer 《The Biochemical journal》1989,259(3):693-700
Previous e.p.r. work [George, Bray, Morpeth & Boxer (1985) Biochem. J. 227, 925-931] has provided evidence for a pH- and anion-dependent transition in the structure of the Mo(V) centre of Escherichia coli nitrate reductase, with the low-pH form bearing both an anion and probably a hydroxy-group ligand. Initial e.x.a.f.s. measurements [Cramer, Solomonson, Adams & Mortenson (1984) J. Am. Chem. Soc. 106, 1467-1471] demonstrated the presence of sulphur (or chloride) ligands in the Mo(IV) and Mo(VI) oxidation states, as well as a variable number of terminal oxo (Mo = O) groups. To synthesize the e.p.r. and e.x.a.f.s. results better, we have conducted new e.p.r. experiments and complementary e.x.a.f.s. measurements under redox and buffer conditions designed to give homogeneous molybdenum species. In contrast with results on other molybdoenzymes, attempts to substitute the enzyme with 17O by dissolving in isotopically enriched water revealed only very weak hyperfine coupling to 17O. The significance of this finding is discussed. Experiments with different buffers indicated that buffer ions (e.g. Hepes) could replace the Cl- ligand in the low-pH Mo(V) enzyme form, with only a small change in e.p.r. parameters. E.x.a.f.s. studies of the oxidized and the fully reduced enzyme were consistent with the e.p.r. work in indicating a pH- and anion-dependent change in structure. However, in certain cases non-stoichiometric numbers of Mo = O interactions were determined, complicating the interpretation of the e.x.a.f.s. Uniquely for a molybdenum cofactor enzyme, a substantial proportion of the molecules in a number of enzyme samples appeared to contain no oxo groups. No evidence was found in our samples for the distant 'heavy' ligand atom reported in the previous e.x.a.f.s. study. The nature of the high-pH-low-pH transition is briefly discussed. 相似文献
10.
Violaine Bonnefoy Marie-Claire Pascal Jeanine Ratouchniak Marc Chippaux 《Molecular & general genetics : MGG》1986,204(1):180-184
Summary Nitrate reductase is demonstrated to exert an autogenous control on its own synthesis. This effect requires the participation of the molybdenum cofactor. Use of strains in which the control region of the nar operon is mutated reveals two loci in this region: one, affected in strain LCB94, is common to both autoregulation and induction by nitrate while the other, mutated in strain LCB188, is specific for the induction by nitrate. It is proposed that the autogenous control prevents the unnecessary accumulation of the nitrate reductase subunits in the cytoplasm. 相似文献
11.
12.
Molybdenum effector of fumarate reductase repression and nitrate reductase induction in Escherichia coli. 总被引:3,自引:19,他引:3
下载免费PDF全文

In Escherichia coli the presence of nitrate prevents the utilization of fumarate as an anaerobic electron acceptor. The induction of the narC operon encoding the nitrate reductase is coupled to the repression of the frd operon encoding the fumarate reductase. This coupling is mediated by nitrate as an effector and the narL product as the regulatory protein (S. Iuchi and E. C. C. Lin, Proc. Natl. Acad. Sci. USA 84:3901-3905, 1987). The protein-ligand complex appears to control narC positively but frd negatively. In the present study we found that a molybdenum coeffector acted synergistically with nitrate in the regulation of frd and narC. In chlD mutants believed to be impaired in molybdate transport (or processing), full repression of phi(frd-lac) and full induction of phi(narC-lac) by nitrate did not occur unless the growth medium was directly supplemented with molybdate (1 microM). This requirement was not clearly manifested in wild-type cells, apparently because it was met by the trace quantities of molybdate present as a contaminant in the mineral medium. In chlB mutants, which are known to accumulate the Mo cofactor because of its failure to be inserted as a prosthetic group into proteins such as nitrate reductase, nitrate repression of frd and induction of narC were also intensified by molybdate supplementation. In this case a deficiency of the molybdenum coeffector might have resulted from enhanced feedback inhibition of molybdate transport (or processing) by the elevated level of the unutilized Mo cofactor. In addition, mutations in chlE, which are known to block the synthesis of the organic moiety of the Mo cofactor, lowered the threshold concentration of nitrate (< 1 micromole) necessary for frd repression and narC induction. These changes could be explained simply by the higher intracellular nitrate attainable in cells lacking the ability to destroy the effector. 相似文献
13.
14.
15.
Jepson BJ Mohan S Clarke TA Gates AJ Cole JA Butler CS Butt JN Hemmings AM Richardson DJ 《The Journal of biological chemistry》2007,282(9):6425-6437
The Escherichia coli NapA (periplasmic nitrate reductase) contains a [4Fe-4S] cluster and a Mo-bis-molybdopterin guanine dinucleotide cofactor. The NapA holoenzyme associates with a di-heme c-type cytochrome redox partner (NapB). These proteins have been purified and studied by spectropotentiometry, and the structure of NapA has been determined. In contrast to the well characterized heterodimeric NapAB systems ofalpha-proteobacteria, such as Rhodobacter sphaeroides and Paracoccus pantotrophus, the gamma-proteobacterial E. coli NapA and NapB proteins purify independently and not as a tight heterodimeric complex. This relatively weak interaction is reflected in dissociation constants of 15 and 32 mum determined for oxidized and reduced NapAB complexes, respectively. The surface electrostatic potential of E. coli NapA in the apparent NapB binding region is markedly less polar and anionic than that of the alpha-proteobacterial NapA, which may underlie the weaker binding of NapB. The molybdenum ion coordination sphere of E. coli NapA includes two molybdopterin guanine dinucleotide dithiolenes, a protein-derived cysteinyl ligand and an oxygen atom. The Mo-O bond length is 2.6 A, which is indicative of a water ligand. The potential range over which the Mo(6+) state is reduced to the Mo(5+) state in either NapA (between +100 and -100 mV) or the NapAB complex (-150 to -350 mV) is much lower than that reported for R. sphaeroides NapA (midpoint potential Mo(6+/5+) > +350 mV), and the form of the Mo(5+) EPR signal is quite distinct. In E. coli NapA or NapAB, the Mo(5+) state could not be further reduced to Mo(4+). We then propose a catalytic cycle for E. coli NapA in which nitrate binds to the Mo(5+) ion and where a stable des-oxo Mo(6+) species may participate. 相似文献
16.
We have used site-directed mutagenesis to study the interactions between the molybdo-bis(molybdopterin guanine dinucleotide) cofactor (Mo-bisMGD) and the other prosthetic groups of Escherichia coli Me2SO reductase (DmsABC). In redox-poised preparations, there is a significant spin-spin interaction between the reduced Em,7 = -120 mV [4Fe-4S] cluster of DmsB and the Mo(V) of the Mo-bisMGD of DmsA. This interaction is significantly modified in a DmsA-C38S mutant that contains a [3Fe-4S] cluster in DmsA, suggesting that the [3Fe-4S] cluster is in close juxtaposition to the vector connecting the Mo(V) and the Em,7 = -120 mV cluster of DmsB. In a DmsA-R77S mutant, the interaction is eliminated, indicating the importance of this residue in defining the interaction pathway. In ferricyanide-oxidized glycerol-inhibited DmsAC38SBC, there is no detectable interaction between the oxidized [3Fe-4S] cluster and the Mo-bisMGD, except for a minor broadening of the Mo(V) spectrum. In a double mutant, DmsAS176ABC102SC, which contains an engineered [3Fe-4S] cluster in DmsB, no significant paramagnetic interaction is detected between the oxidized [3Fe-4S] cluster and the Mo(V). These results have important implications for (i) understanding the magnetic interactions between the Mo(V) and other paramagnetic centers and (ii) delineating the electron transfer pathway from the [4Fe-4S] clusters of DmsB to the Mo-bisMGD of DmsA. 相似文献
17.
The trimethylamine N-oxide (TMAO) reductase of Escherichia coli is a molybdoenzyme that catalyses the reduction of the TMAO to trimethylamine (TMA) with a redox potential of +130 mV. We have successfully substituted the molybdenum with tungsten and obtained an active tungsto-TMAO reductase. Kinetic studies revealed that the catalytic efficiency of the tungsto-substituted TMAO reductase (W-TorA) was increased significantly (twofold), although a decrease of about 50% in its kcat was found compared with the molybdo-TMAO reductase (Mo-TorA). W-TorA is more sensitive to high pH, is less sensitive to high NaCl concentration and is more heat resistant than Mo-TorA. Most importantly, the W-TorA becomes capable of reducing sulphoxides and supports the anaerobic growth of a bacterial host on these substrates. The evolutionary implication and mechanistic significance of the tungsten substitution are discussed. 相似文献
18.
19.
Substrate binding site for nitrate reductase of Escherichia coli is on the inner aspect of the membrane.
下载免费PDF全文

Escherichia coli grown anaerobically on nitrate exhibited the same transport barrier to reduction of chlorate, relative to nitrate, as that exhibited by Paracoccus denitrificans. This establishes that the nitrate binding site of nitrate reductase (EC 1.7.99.4) in E. coli must also lie on the cell side of the nitrate transporter which is associated with the plasma membrane. Because nitrate reductase is membrane bound, the nitrate binding site is thus located on the inner aspect of the membrane. Nitrate pulse studies on E. coli in the absence of valinomycin showed a small transient alkalinization (leads to H+/NO3- congruent to --0.07) which did not occur with oxygen pulses. By analogy with P. denitrificans, the alkaline transient is interpreted to arise from proton-linked nitrate uptake which is closely followed by nitrite efflux. The result is consistent with internal reduction of nitrate, whereas external reduction would be expected to give leads to H+/NO3-ratios approaching --2. 相似文献
20.
Queuosine modification in tRNA and expression of the nitrate reductase in Escherichia coli. 总被引:2,自引:0,他引:2
下载免费PDF全文

In eubacteria the modified nucleoside queuosine is present in tRNAAsn, tRNAAsp, tRNAHis and tRNATyr. A precursor of queuine, pre-queuine, is synthesized from GTP, inserted into the first position of the anticodon of the corresponding tRNAs by a specific tRNA-guanine transglycosylase and further modified to queuosine. Isogenic pairs of Escherichia coli, containing or lacking the tRNA-transglycosylase (JE 7335, tgt+ lacZ+ and JE 7337, tgt- lacZ+; JE 7334, tgt+ lacZ- and JE 7336, tgt- lacZ-), have been employed to study the function of queuosine in tRNA. Compared with the tgt+ strain (JE 7335), the tgt- mutant (JE 7337) grown under anaerobic conditions, is defective with respect to the nitrate respiration system, in which electrons are transported from D(-)-lactate via quinone and cytochrome bNO3-(556) to nitrate. Low temperature cytochrome spectra of the anaerobically grown tgt- mutant show a lowered amount of type b cytochromes involving the spectrum of cytochrome bNO3-(556). In the case of the anaerobically grown tgt- mutant three proteins are missing in the protein pattern of cytoplasmic membranes. Their mol. wts. correspond to those of the subunits of the nitrate reductase complex. In contrast to the tgt+ strains (JE 7334, JE 7335) both tgt- mutants (JE 7336, JE 7337) cannot grow on lactate under anaerobic conditions with nitrate offered as electron acceptor and NO3- is not reduced to NO2-. A possible link between Q-modification of tRNAs, the synthesis of proteins of the nitrate reductase complex and the synthesis of menaquinone or ubiquinone is discussed. 相似文献