首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The production of extracellular pullulanase by Bacillus licheniformis NRC22 was investigated using different fermentation modes. In batch culture maximal enzyme activity of 18 U/ml was obtained after 24 h of growth. In continuous fermentation by the free cells, maximal reactor productivity (4.15 KU/l/h) with enzyme concentration of 14.8 U/ml and specific productivity of 334.9 U/g wet cells/h was attained at a dilution rate of 0.28/h, over a period of 25 days. B. licheniformis NRC22 cells were immobilized on Ca-alginate. The immobilization conditions with respect to matrix concentration and cell load was optimized for maximal enzyme production. In repeated batch operation, the activity of the immobilized cells was stable during the 10 cycles and the activity remained between 9.8 and 7.7 U/ml. Continuous production of pullulanase by the immobilized cells was investigated in a packed–bed reactor. Maximal reactor productivity (7.0 KU/h) with enzyme concentration of 16.8 U/ml and specific productivity of 131.64 U/g wet cells/h was attained at dilution rate of 0.42/h. The enzyme activity in the effluent started to decline gradually to the level of 8.7 U/ml after 25 days of the operation.  相似文献   

2.
The thermoalkalophilic Bacillus halodurans JB 99 cells known for production of novel thermostable alkaline keratinolytic protease were immobilized in calcium alginate matrix. Batch and repeated batch cultivation using calcium alginate immobilized cells were studied for alkaline protease production in submerged fermentation. Immobilized cells with 2.5% alginate and 350 beads/flask of initial cell loading showed enhanced production of alkaline protease by 23.2% (5,275 ± 39.4 U/ml) as compared to free cells (4,280 ± 35.4 U/ml) after 24 h. In the semicontinuous mode of cultivation, immobilized cells under optimized conditions produced an appreciable level of alkaline protease in up to nine cycles and reached a maximal value of 5,975 U/ml after the seventh cycle. The enzyme produced from immobilized cells efficiently degraded chicken feathers in the presence of a reducing agent which can help the poultry industry in the management of keratin-rich waste and obtaining value-added products.  相似文献   

3.
The dynamics of β-xylosidase biosynthesis from Aspergillus niger B 03 was investigated in laboratory bioreactor. Maximum xylosidase activity 5.5 U/ml was achieved after 80 h fermentation at medium pH 4.0. The isolated β-xylosidase was immobilized on polyamide membrane support and the basic characteristics of the immobilized enzyme were determined. Maximum immobilization and activity yield obtained was 30.0 and 6.8%, respectively. A shift in temperature optimum and pH optimum was observed for immobilized β-xylosidase compared to the free enzyme. Immobilized enzyme exhibited maximum activity at 45 °C and pH 4.5 while its free counterpart at 70 °C and pH 3.5, respectively. Thermal stability at 40 and 50 °C and storage stability of immobilized β-xylosidase were investigated at pH 5.0. Kinetic parameters Km, Vmax and Ki were determined for both enzyme forms. Free and immobilized β-xylosidase were tested for xylose production from birchwood xylan. The substrate was preliminarily depolymerized with xylanase to xylooligosaccharides and the amount of xylose obtained after their hydrolysis with free and immobilized β-xylosidase was determined by HPLC analysis. Continuous enzyme hydrolysis of birchwood xylan was performed with xylanase and free or immobilized β-xylosidase. The maximum extent of hydrolysis was 25 and 30% with free and immobilized enzyme, respectively. Immobilized preparation was also examined for reusability in 20 consecutive cycles at 40 °C.  相似文献   

4.
Production of biosurfactant by free and alginate-entrapped cells of Pseudomonas fluorescens Migula 1895-DSMZ was investigated using olive oil as the sole carbon and energy source. Biosurfactant synthesis was followed by measuring surface tension and emulsifying index E24 over 5 days at ambient temperature and at neutral pH. Diffusional limitations in alginate beads affected the kinetics of biosurfactant production when compared to that obtained with free cells culture. Nevertheless, the emulsion stability was improved and fewer by-products interfered with the biosurfactant activity. A decrease in pH down to 5 in the case of immobilized cells was observed during the first 3 days, after which it returned to its initial value. The minimum values of surface tension were 30 and 35 dynes cm−1 achieved after 40 and 72 h with free and immobilized cells, respectively, while the corresponding maximum E24 values were 67 and 62%, respectively. After separation by acetone precipitation, the biosurfactant showed a rhamnolipid-type in nature, and had a good foaming and emulsifying activities. The critical micellar concentration was found to be 290 mg l−1. The biosurfactant also showed good stability during exposure to high temperatures (up to 120 °C for 15 min), to high salinity (10% NaCl) and to a wide range of pH (4–9).  相似文献   

5.
This is the first report of isolation of fungi present in fatty and defatted castor bean meal as well as the first of crop’s selection to test the cellulolytic potential, in order to verify the diversity and potential of cellulolytic fungi in castor bean waste (Ricinus communis L.). For the screening on solid medium, it was used carboxymethylcellulose (CMC) as the sole carbon source. The microcrystalline cellulose (Avicel) was used as a substrate for submerged fermentation for production of cellobiohydrolase (FPase) and the CMC to produce endoglucanases (CMCase) and β-glycosidases (BG). 189 cultures of fungi were isolated, including 40 species of filamentous fungi and three yeasts. The Aspergillus was the most frequent found genus. Regarding the distribution of isolated species from defatted castor bean meal, the A. niger was the most frequent one; and within the fatty castor bean meal, the Emericela variecolor prevailed among other species. Among the 67 fungal cultures tested in the initial screening on solid media to assess the cellulolytic potential, 54 disclosed Cellulolytic Index (CI) ranging from 1.04 to 6.00 mm. The isolates were selected for enzyme production in liquid medium with values above 2.0 CI. They were obtained with A. japonicus URM5620 FPase activity (4.99 U/ml) and BG (0.05 U/ml), and Rhodotorula glutinis URM5724 activity of CMCase 3.58 U/ml. These cases occurred after 168 h of submersion for both species of fungi. In our study, we could conclude that the castor bean is a promising source of fungi capable of producing cellulolytic enzymes.  相似文献   

6.
The autolysis of chlamydospore-like cells in Phanerochaete chrysosporium immobilized in polyurethane foam correlated with the production of manganese peroxidase (MnP). The maximum specific activity of MnP was 1055 U g dry mycelium–1 in the immobilized culture, compared with 260 U g dry mycelium–1 in the submerged culture. Scattered mycelial pellets were formed in the immobilized culture in which almost all of the chlamydospore-like cells were subject to autolysis. However, highly crowded pellets were formed in the free culture, in which only the chlamydospore-like cells in the exterior were subject to autolysis. We propose that the enhanced production of MnP in immobilized cultures of P. chrysosporium is due to increased autolysis of the chlamydospore-like cells.  相似文献   

7.
The ability of immobilized cell cultures of Aspergillus niger FETL FT3 to produce extracellular tannase was investigated. The production of enzyme was increased by entrapping the fungus in scouring mesh cubes compared to free cells. Using optimized parameters of six scouring mesh cubes and inoculum size of 1 × 106 spores/mL, the tannase production of 3.98 U/mL was obtained from the immobilized cells compared to free cells (2.81 U/mL). It was about 41.64% increment. The immobilized cultures exhibited significant tannase production stability of two repeated runs.  相似文献   

8.
The cells of L. mesenteroides KIBGE HA1 were immobilized for the production of dextran on acrylamide gel and gel concentration was optimized for maximum entrapment. Sucrose at substrate concentration of 10% produced high yield of dextran at 25°C with a percent conversion of 5.82 while at 35°C it was 3.5. However, increasing levels of sucrose diminished dextran yields. The free cells stopped producing dextran after 144 h, while immobilized cells continued to produce dextran even after 480 h. Molecular mass distribution of dextran from free cells indicate that it is identical to that of blue dextran while the molecular mass of dextran from immobilized cells is lower than that of free cells.  相似文献   

9.
The present study was performed to produce the protease using free and immobilized cells of locally isolated cold-adapted psychrotolerant yeast Cryptococcus victoriae CA-8. Cell immobilization was performed using sodium alginate as entrapping agent. The best conditions for enzyme production by both free and immobilized cells of the yeast were temperature of 15°C and initial pH of 8.0. The optimal incubation times were 72 and 96 h for immobilized and free cells, respectively. Immobilized cells were reused in 3 successive reaction cycles without any loss in the maximum protease activity. Little decreases in the protease activity were observed in 4 and 5 cycles. Under the optimized conditions, the maximum enzyme activities were determined as 12.1 and 13.5 U/mL for free and immobilized cells, respectively. This is a first attempt on cold-active alkaline protease production by free and/or immobilized cells of yeasts. Besides, the protease activity of the yeast C. victoriae CA-8 was investigated for the first time in the present study.  相似文献   

10.
Myrothecium verrucaria is a nondermatophytic filamentous fungus able to grow and to produce keratinase in submerged (93.0 ± 19 U/ml) and solid state (98.8 ± 7.9 U/ml) cultures in which poultry feather powder (PFP) is the only substrate. The purpose of the present work was to verify how different carbon and nitrogen sources can influence the production of keratinase by this fungus. Addition of carbohydrates, such as glucose and sucrose, caused only slight improvements in keratinase production, but the addition of starch caused a significant improvement (135.0 ± 25 U/ml). The highest levels of keratinase activity, however, were obtained by supplementing the PFP cultures with cassava bagasse, 168.0 ± 28 U/ml and 189.0 ± 26 U/ml in submerged and solid state cultures, respectively. Contrarily, the supplementation of PFP medium with organic or inorganic nitrogen sources, such as casein, soy bean protein, gelatin, ammonium nitrate and alanine, decreased the production of keratinase in both types of cultures (around 20 U/ml), showing that the production of keratinase by M. verrucaria is repressed by nitrogen sources. The results obtained in this work suggest that the association of the two residues PFP plus cassava bagasse could be an excellent option as a cheap culture medium for the production of keratinase in submerged and solid state cultures.  相似文献   

11.
Summary Some physical factors including initial pH of medium, cultivation temperature and shaking speed as well as reuse affecting the production of cholesterol oxidase (CholOx) in reactors containing calcium alginate-immobilized cells of Rhodococcus equi No. 23 were investigated. Results revealed that the free cells showed the maximum CholOx in the culture with an initial pH of 5.0, while culture inoculated with immobilized cells exhibited a broad pH range, 6.0–9.0, for maximum CholOx production. The immobilized and free cells produced the maximum CholOx in the culture incubated at 30 and 25°C, respectively. The CholOx production decreased upon increasing the cultivation temperature. Increasing CholOx activity was also noted for both immobilized and free cells of R. equi No. 23 in the culture with increasing shaking speed. Under the optimal culture conditions, that were established, a higher maximum CholOx production of 0.94 unit/ml was found for immobilized R. equi No. 23 compared to that of 0.84 unit/ml for free cells after 48 h of cultivation. Furthermore, no gel leakage was noted after re-use of the calcium alginate-immobilized R. equi No. 23 for seven consecutive 48 h batch culture. The CholOx production in the seventh cycle was about 60.4% of that obtained in the first cycle.  相似文献   

12.
Solid-state fermentation conditions for cellulases production by a newly isolated Penicillium chrysogenum QML-2 were investigated using statistical methods. At first, significant variables for cellulases production including (NH4)2SO4, initial pH and inoculum size were screened by using Plackett-Burman Design. Then the optimal regions of the significant variables were investigated by using the method of steepest ascent. Finally, central composite design and response surface analysis were adopted to determine the optimal values of the significant variables and investigate the combined effects of each variable’s pair on cellulases production. The results showed that the optimal ranges of (NH4)2SO4 concentration, initial pH and inoculum size for three types of cellulases activities were 1.97–2.15 g, pH 4.32–4.41 and 13.3–13.7% (v/w), respectively. Using the mixture of corn stover powder and wheat bran (CSP/WB, 1/1) as carbon source, the optimization resulted in 370.15, 101.76 and 321.56 U/g for maximal endoglucanase activity, filter paper activity and β-glucosidase activity, respectively. Compared with maximum values of cellulases activities (endoglucanase activity 85.21 U/g, filter paper activity 16.62 U/g and β-glucosidase activity 67.68 U/g) obtained under unoptimized conditions, the optimization resulted in 3.34, 5.12 and 3.75 folds improvement for endoglucanase activity, filter paper activity and β-glucosidase activity, respectively. For chitosan hydrolysis, the crude cellulases had the optimal temperature of 55°C, pH of 4.4 and exhibited Michaelis constant (K m) value of 8.34 mg/ml and maximum velocity (V max) of 2.21 μmol glucosamine/min by 1 ml of the crude cellulases.  相似文献   

13.
Catharanthus roseus cells and protoplasts were used for production of peroxidase and -galactosidase which are accumulated in the cell wall. Only 4% (0.026 U ml–1) of the total peroxidase was secreted into the broth by cultured cells while in cultured protoplasts, 45% (0.12 U ml–1) was secreted. Protoplasts were protected against the physical and osmotic stresses by immobilizing them in 3% agarose gel (high mass transfer, non-electric charge, low gelation temperature). In order to increase peroxidase production, the immobilized protoplasts were cultivated in shake cultures at low osmotic pressure (12.3 to 16.4 atm) without disruption. During batch peroxidase production, the total activities obtained with free cells at 4.9 atm, free protoplasts at 19.3 atm, and immobilized protoplasts at 12.3 atm were 0.17, 2.54, and 5.16 U, respectively. When four repeated-batch cultures of the immobilized protoplasts were performed at 16.4 atm, 11.8 U of peroxidase was obtained. This system was also useful for the production of -galactosidase.  相似文献   

14.
In this study, Streptomyces sp. Al-Dhabi-49 was isolated from the soil sample of Saudi Arabian environment for the simultaneous production of lipase and protease in submerged fermentation. The process parameters were optimized to enhance enzymes production. The production of protease and lipase was found to be maximum after 5 days of incubation (139.2 ± 2.1 U/ml, 253 ± 4.4 U/ml). Proteolytic enzyme increases with the increase in pH up to 9.0 (147.2 ± 3.6 U/ml) and enzyme production depleted significantly at higher pH values. In the case of lipase, production was maximum in the culture medium containing pH 8.0 (166 ± 1.3 U/ml). The maximum production of protease was observed at 40 °C (174 ± 12.1 U/ml) by Streptomyces sp. Lipase activity was found to be optimum at the range of temperatures (30–50 °C) and maximum production was achieved at 35 °C (168 ± 7.8 U/ml). Among the evaluated carbon sources, maltose significantly influenced on protease production (218 ± 12.8 U/ml). Lipase production was maximum when Streptomyces sp. was cultured in the presence of glucose (162 ± 10.8U/ml). Among various concentrations of peptone, 1.0% (w/v) significantly enhanced protease production. The lipase production was very high in the culture medium containing malt extract as nitrogen source (86 ± 10.2 U/ml). Protease production was maximum in the presence of Ca2+ as ionic source (212 ± 3.8 U/ml) and lipase production was enhanced by the addition of Mg2+ with the fermentation medium (163.7 ± 6.2 U/ml).  相似文献   

15.
Streptomyces griseoloalbus was immobilized in calcium alginate gel and the optimal immobilization parameters (concentrations of sodium alginate and calcium chloride, initial biomass and curing time) for the enhanced production of alpha-galactosidase were determined. The immobilization was most effective with 3% sodium alginate and 0.1M calcium chloride. The optimal initial biomass for immobilization was approximately 2.2g (wet wt.). The alginate-entrapped cells were advantageous because there was a twofold increase in the enzyme yield (55 U/ml) compared to the highest yield obtained with free cells (23.6 U/ml). Moreover, with immobilized cells the maximum yield was reached after 72 h of incubation in batch fermentation under optimal conditions, whereas in the case of free cells the maximum enzyme yield was obtained only after 96 h of incubation. The alginate beads had good stability and also retained 75% ability of enzyme production even after eight cycles of repeated batch fermentation. It is significant that this is the first report on whole-cell immobilization for alpha-galactosidase production.  相似文献   

16.

Parthenium hysterophorus biomass can be used as a non-conventional renewable feedstock for the production of bioethanol. Therefore, the present work was designed to hydrolyze P. hysterophorus biomass using cellulase enzyme produced from an actinomycete, i.e., Streptomyces sp. NAA2 using P. hysterophorus biomass as a substrate. The isolate NAA2 was identified by molecular characterization of 16SrDNA. The enzyme production by strain NAA2 was enhanced by optimization studies conducted under submerged fermentation conditions using P. hysterophorus as a substrate. The crude enzyme produced under optimized conditions was used to hydrolyze alkali-acid pretreated P. hysterophorus biomass. The highest CMCase production was achieved in 4–5 days when steam-pretreated P. hysterophorus biomass was used at 1% (w/v) concentration, using 2 discs (1 disc = 5 × 107 spores/ml) of inoculum, an initial pH 6.5, temperature at 40 °C, an agitation speed of 120–150 rpm, and by supplementing fermentation medium with 1.5% (w/v) carboxymethyl cellulose (CMC) as additional carbon source. Under optimized conditions, the actinomycete strain NAA2 showed production of 0.967 ± 0.016 U/ml CMCase, 0.116 ± 0.08 FPU/ml FPase, and 0.22 ± 0.012 U/ml β-glucosidase enzymes. On utilizing the cellulase enzyme for biomass hydrolysis, maximum 18.2% saccharification yield (of cellulose 0.202 g/g) was achieved in 96 h when enzyme and substrate levels were 30 FPU/100 ml and 2% (w/v) respectively. Parthenium hysterophorus biomass can be hydrolyzed enzymatically yielding considerable amounts of total reducing sugars. It can, therefore, be used as a feedstock for the production of bioethanol. Also, it has the potential to act as a substrate for the production of cellulases. Furthermore, the improved cellulolytic potential of Streptomyces sp. NAA2 can be exploited in various industrial applications.

  相似文献   

17.
The aim of the present study was to examine ethanol production from concentrated food waste hydrolysates using whole cells of S. cerevisiae immobilized on corn stalks. In order to improve cell immobilization efficiency, biological modification of the carrier was carried out by cellulase hydrolysis. The results show that proper modification of the carrier with cellulase hydrolysis was suitable for cell immobilization. The mechanism proposed, cellulase hydrolysis, not only increased the immobilized cell concentration, but also disrupted the sleek surface to become rough and porous, which enhanced ethanol production. In batch fermentation with an initial reducing sugar concentration of 202.64 ± 1.86 g/l, an optimal ethanol concentration of 87.91 ± 1.98 g/l was obtained using a modified corn stalk-immobilized cell system. The ethanol concentration produced by the immobilized cells was 6.9% higher than that produced by the free cells. Ethanol production in the 14th cycle repeated batch fermentation demonstrated the enhanced stability of the immobilized yeast cells. Under continuous fermentation in an immobilized cell reactor, the maximum ethanol concentration of 84.85 g/l, and the highest ethanol yield of 0.43 g/g (of reducing sugar) were achieved at hydraulic retention time (HRT) of 3.10 h, whereas the maximum volumetric ethanol productivity of 43.54 g/l/h was observed at a HRT of 1.55 h.  相似文献   

18.
Rhizopus oryzae was immobilized on a cotton matrix in a static bed bioreactor. Compared with free cells in a stirred tank bioreactor, immobilized R. oryzae in this bioreactor gave higher lactic acid production but lower ethanol production. The highest lactic acid production rate (2.09 g/L h) with the final concentration of 37.83 g/L from 70 g/L glucose was achieved when operating the bioreactor at 700 rpm and 0.5 vvm air. To better understand the relationship between shear effects (agitation and aeration) and R. oryzae morphology and metabolism, oxygen transfer rate, fermentation kinetics, and lactate dehydrogenase activity were determined. In immobilized cell culture, higher oxygen transfer rate and lactic acid production were achieved but lower lactate dehydrogenase activity was found as compared with those in free cell culture operated at the same conditions. These results clearly imply that mass transport was the rate controlling step in lactic acid fermentation by R. oryzae.  相似文献   

19.
The enhancement of the cellulase activity of Aspergillus nidulans by combinational optimization technique and the usage of cellulase for the biofinishing of cotton fibers were investigated in this study. The strain isolated from decayed, outer shell of Arachis hypogaea was compared for the first time for its ability to produce cellulolytic enzyme in shaken cultures using the optimized media formulated by combinational statistical approach using one factor at a time methodology (OFAT), Plackett Burmann Methodology (PB) and response surface methodology (RSM). A four-factor-five-level central composite design (CCD) was employed to determine the maximum activity of cellulase at optimum levels of carboxy methyl cellulose (CMC), ammonium nitrate and potassium dihydrogen phosphate at varying pH values. The cellulase activity is the best so far obtained with this strain of Aspergillus nidulans. The optimum values of the parameters studied were found to be 0.75 mg/l, 1.5 mg/l, 0.01 mg/l, and 2.15 g/l for KH2PO4, NH4NO3, Thiamine HCl and CMC, respectively at pH 6.0. This optimization led to the fine tuning of the cellulase production, thereby enhancing the cellulase activity from 4.91 to 60.54 U/ml. This cellulase of higher activity was employed in the biofinishing of the cotton fibers. The results of the scanning electron microscope (SEM) analysis after the treatment favored the fact that maximum surface finishing was achieved at a cotton fiber concentration of 15% (w/v) at 45°C and pH 5.0 using cellulase (60.54 U/ml) at 16th hour of the treatment. A probable mechanism of enzymatic finishing of cotton fibers has also been represented.  相似文献   

20.
Silanized palygorskite for lipase immobilization   总被引:2,自引:0,他引:2  
Lipase from Candida lipolytica has been immobilized on 3-aminopropyltriethoxysilane-modified palygorskite support. Scanning electron micrographs proved the covalently immobilization of C. lipolytica lipase on the palygorskite support through glutaraldehyde. Using an optimized immobilization protocol, a high activity of 3300 U/g immobilized lipase was obtained. Immobilized lipase retained activity over wider ranges of temperature and pH than those of the free enzyme. The optimum pH of the immobilized lipase was at pH 7.0–8.0, while the optimum pH of free lipase was at 7.0. The retained activity of the immobilized enzyme was improved both at lower and higher pH in comparison to the free enzyme. The immobilized enzyme retained more than 70% activity at 40 °C, while the free enzyme retained only 30% activity. The immobilization stabilized the enzyme with 81% retention of activity after 10 weeks at 30 °C whereas most of the free enzyme was inactive after a week. The immobilized enzyme retains high activity after eight cycles. The kinetic constants of the immobilized and free lipase were also determined. The Km and Vmax values of immobilized lipase were 0.0117 mg/ml and 4.51 μmol/(mg min), respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号