首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxidative stress may cause apoptosis of cardiomyocytes in ischemia-reperfused myocardium, and heat shock pretreatment is thought to be protective against ischemic injury when cardiac myocytes are subjected to ischemia or simulated ischemia. However, the detailed mechanisms responsible for the protective effect of heat shock pretreatment are currently unclear. The aim of this study was to determine whether heat shock pretreatment exerts a protective effect against hydrogen peroxide(H2O2)-induced apoptotic cell death in neonatal rat cardiomyocytes and C2C12 myogenic cells and whether such protection is associated with decreased release of second mitochondria-derived activator of caspase-direct IAP binding protein with low pl (where IAP is inhibitor of apoptosis protein) (Smac/DIABLO) from mitochondria and the activation of caspase-9 and caspase-3. After heat shock pretreatment (42 +/- 0.3 degrees C for 1 hour, recovery for 12 hours), cardiomyocytes and C2C12 myogenic cells were exposed to H2O2 (0.5 mmol/L) for 6, 12, 24, and 36 hours. Apoptosis was evaluated by Hoechst 33258 staining and DNA laddering. Caspase-9 and caspase-3 activities were assayed by caspase colorimetric assay kit and Western analysis. Inducible heat shock proteins (Hsp) were detected using Western analysis. The release of Smac/DIABLO from mitochondria to cytoplasm was observed by Western blot and indirect immunofluorescence analysis. (1) H2O2 (0.5 mmol/L) exposure induced apoptosis in neonatal rat cardiomyocytes and C2C12 myogenic cells, with a marked release of Smac/DIABLO from mitochondria into cytoplasm and activation of caspase-9 and caspase-3, (2) heat shock pretreatment induced expression of Hsp70, Hsp90, and alphaB-crystallin and inhibited H2O2-mediated Smac/DIABLO release from mitochondria, the activation of caspase-9, caspase-3, and subsequent apoptosis. H2O2 can induce the release of Smac/DIABLO from mitochondria and apoptosis in cardiomyocytes and C2C12 myogenic cells. Heat shock pretreatment protects the cells against H2O2-induced apoptosis, and its mechanism appears to involve the inhibition of Smac release from mitochondria.  相似文献   

2.
Mammalian target of rapamycin complex 1 (mTORC1) is a key regulator of cell growth and metabolism. Its activity is controlled by various types of signals, including growth factors, nutrients, and stresses. In this study, we show that changes in expression levels of two antiapoptotic proteins, Bcl-2 and Bcl-XL, also affect mTORC1 signaling activity. In cells overexpressing Bcl-XL, mTORC1 activity is increased and becomes less sensitive to growth factor or nutrient conditions. In contrast, reduction in expression levels of the two antiapoptotic proteins inhibits mTORC1 signaling activity. Our results suggest that the effect of Bcl-2 and Bcl-XL on mTORC1 is mediated by FKBP38, an inhibitor of mTORC1. The two proteins compete with mTORC1 for FKBP38 binding and hence alter mTORC1 activity. This study reveals a novel cross-talk between Bcl-2/XL and mTORC1 signaling, which is likely to contribute to cancer development.  相似文献   

3.
In this study, the effect of aucubin on H2O2-induced apoptosis was studied by using a rat pheochromocytoma (PC12) cell line. We have analyzed the apoptosis of H2O2-induced PC12 cells, H2O2-induced apoptosis appeared to correlate with lower Bcl-2 expression, higher Bax expression and sequential activation of caspase-3 leading to cleavage of poly-ADP-ribose polymerase (PARP). Aucubin not only inhibited lower Bcl-2 expression, high Bax expression, but also modulated caspase-3 activation, PARP cleavage, and eventually protected against H2O2-induced apoptosis. These results indicated that aucubin can obstruct H2O2-induced apoptosis by regulating of the expression of Bcl-2 and Bax, as well as suppression of caspases cascade activation.  相似文献   

4.
Inhibitor of apoptosis protein (IAP)-binding proteins such as Grim, Reaper and HID have been shown to exert a critical role in regulating caspase activity in species such as D. Melanogaster. However, a comparable role for the mammalian homologue of second mitochondrial-derived activator of caspase/direct IAP-binding protein with low pI (Smac/DIABLO) has yet to be clearly established in vivo. Despite tremendous interest in recent years in the use of so-called Smac mimetics to enhance chemotherapeutic potency, our understanding of the true physiologic nature of Smac/DIABLO in regulating programmed cell death (PCD) remains elusive. In order to critically evaluate the role of Smac/DIABLO in regulating mammalian PCD, deficiency of caspase-3 was used as a sensitizing mutation in order to reduce aggregate levels of executioner caspase activity. We observe that combinatorial deletion of Diablo and Casp3, but neither alone, results in perinatal lethality in mice. Consistent with this, examination of both intrinsic and extrinsic forms of PCD in lines of murine embryonic fibroblasts demonstrate that loss of Smac/DIABLO alters both caspase-dependent and caspase-independent intrinsic PCD. Comparative small interfering RNA inhibition studies of X-linked inhibitor of apoptosis, cellular inhibitor of apoptosis (cIAP)-1, cIAP-2, caspase-6 and -7 in both wild-type and Casp3/Diablo DKO mouse embryonic fibroblast lineages, supports a model in which Smac/DIABLO acts to enhance the early phase executioner caspase activity through the modulation of inhibitory interactions between specific IAP family members and executioner caspases-3 and -7.  相似文献   

5.
Although resveratrol, an active ingredient derived from grapes and red wine, possesses chemopreventive properties against several cancers, the molecular mechanisms by which it inhibits cell growth and induces apoptosis have not been clearly understood. Here, we examined the molecular mechanisms of resveratrol and its interactive effects with TRAIL on apoptosis in prostate cancer PC-3 and DU-145 cells. Resveratrol inhibited cell viability and colony formation, and induced apoptosis in prostate cancer cells. Resveratrol downregulated the expression of Bcl-2, Bcl-XL and survivin and upregulated the expression of Bax, Bak, PUMA, Noxa, and Bim, and death receptors (TRAIL-R1/DR4 and TRAIL-R2/DR5). Treatment of prostate cancer cells with resveratrol resulted in generation of reactive oxygen species (ROS), translocation of Bax to mitochondria and subsequent drop in mitochondrial membrane potential, release of mitochondrial proteins (cytochrome c, Smac/DIABLO, and AIF) to cytosol, activation of effector caspase-3 and caspase-9, and induction of apoptosis. Resveratrol-induced ROS production, caspase-3 activity and apoptosis were inhibited by N-acetylcysteine. Bax was a major proapoptotic gene mediating the effects of resveratrol as Bax siRNA inhibited resveratrol-induced apoptosis. Resveratrol enhanced the apoptosis-inducing potential of TRAIL, and these effects were inhibited by either dominant negative FADD or caspase-8 siRNA. The combination of resveratrol and TRAIL enhanced the mitochondrial dysfunctions during apoptosis. These properties of resveratrol strongly suggest that it could be used either alone or in combination with TRAIL for the prevention and/or treatment of prostate cancer.  相似文献   

6.
Many viruses belonging to diverse viral families with differing structure and replication strategies induce apoptosis both in cultured cells in vitro and in tissues in vivo. Despite this fact, little is known about the specific cellular apoptotic pathways induced during viral infection. We have previously shown that reovirus-induced apoptosis of HEK cells is initiated by death receptor activation but requires augmentation by mitochondrial apoptotic pathways for its maximal expression. We now show that reovirus infection of HEK cells is associated with selective cytosolic release of the mitochondrial proapoptotic factors cytochrome c and Smac/DIABLO, but not the release of apoptosis-inducing factor. Release of these factors is not associated with loss of mitochondrial transmembrane potential and is blocked by overexpression of Bcl-2. Stable expression of caspase-9b, a dominant-negative form of caspase-9, blocks reovirus-induced caspase-9 activation but fails to significantly reduce activation of the key effector caspase, caspase-3. Smac/DIABLO enhances apoptosis through its action on cellular inhibitor of apoptosis proteins (IAPs). Reovirus infection is associated with selective down-regulation of cellular IAPs, including c-IAP1, XIAP, and survivin, effects that are blocked by Bcl-2 expression, establishing the dependence of IAP down-regulation on mitochondrial events. Taken together, these results are consistent with a model in which Smac/DIABLO-mediated inhibition of IAPs, rather than cytochrome c-mediated activation of caspase-9, is the key event responsible for mitochondrial augmentation of reovirus-induced apoptosis. These studies provide the first evidence for the association of Smac/DIABLO with virus-induced apoptosis.  相似文献   

7.
Adenosine has been shown to initiate apoptosis through different mechanisms: (i) activation of adenosine receptors, (ii) intracellular conversion to AMP and stimulation of AMP-activated kinase, (iii) conversion to S-adenosylhomocysteine (AdoHcy), which is an inhibitor of S-adenosylmethionine (AdoMet)-dependent methyltransferases. Since the pathways involved are still not completely understood, we further investigated the role of AdoHcy hydrolase in adenosine-induced apoptosis. In HepG2 cells, adenosine induced caspase-like activity and DNA fragmentation, a marker of apoptosis. These effects were potentiated by co-incubation with homocysteine or adenosine deaminase inhibitor, pentostatin, and were mimicked by inhibition of AdoHcy hydrolase by adenosine-2',3'-dialdehyde (Adox). Adenosine-induced effects were significantly inhibited by dipyridamole, an inhibitor of adenosine transporter, whereas inhibitors of adenosine kinase did not affect adenosine-induced changes. Various adenosine receptor agonists and AICAR, an activator of AMP-activated kinase, did not mimic the effect of adenosine. Thus, adenosine-induced apoptosis is likely due to intracellular action of AdoHcy and independent of AMP-activated kinase and adenosine receptors. Because elevated AdoHcy levels are associated with reduced mRNA methylation, we studied mRNA expression in Adox-treated cells by microarray analysis. Since several p53-target genes and other apoptosis-related genes were up-regulated by Adox, we conclude that AdoHcy is involved in adenosine-induced apoptosis by altering gene expression.  相似文献   

8.

Background

We have previously shown that prostate cancer LNCaP cells are resistant to TRAIL, and downregulation of PI-3K/Akt pathway by molecular and pharmacological means sensitizes cells to undergo apoptosis by TRAIL and curcumin. The purpose of this study was to examine the molecular mechanisms by which resveratrol sensitized TRAIL-resistant LNCaP cells.

Results

Resveratrol inhibited growth and induced apoptosis in androgen-dependent LNCaP cells, but had no effect on normal human prostate epithelial cells. Resveratrol upregulated the expression of Bax, Bak, PUMA, Noxa, Bim, TRAIL-R1/DR4 and TRAIL-R2/DR5, and downregulated the expression of Bcl-2, Bcl-XL, survivin and XIAP. Treatment of LNCaP cells with resveratrol resulted in generation of reactive oxygen species, translocation of Bax and p53 to mitochondria, subsequent drop in mitochondrial membrane potential, release of mitochondrial proteins (cytochrome c, AIF, Smac/DIABLO and Omi/HtrA2), activation of caspase-3 and caspase-9 and induction of apoptosis. The ability of resveratrol to sensitize TRAIL-resistant LNCaP cells was inhibited by dominant negative FADD, caspase-8 siRNA or N-acetyl cysteine. Smac siRNA inhibited resveratrol-induced apoptosis, whereas Smac N7 peptide induced apoptosis and enhanced the effectiveness of resveratrol.

Conclusion

Resveratrol either alone or in combination with TRAIL or Smac can be used for the prevention and/or treatment of human prostate cancer.  相似文献   

9.
10.
The wide variation in sensitivity of cancer cells to TRAIL- or histone deacetylase (HDAC) inhibitor – induced apoptosis precludes successful treatment of cancer with these agents. We report here that TRAIL and SBHA synergistically induce apoptosis of melanoma cells as revealed by quantitative analysis using the normalized isobologram method. This is supported by enhanced activation of caspase-3 and cleavage of its substrates, PARP and ICAD. Co-treatment with SBHA and TRAIL did not enhance formation of the death-inducing signaling complex (DISC) and processing of caspase-8 and Bid, but potentiated activation of Bax and release of Cytochrome C and Smac/DIABLO from mitochondria into the cytosol. SBHA down-regulated Bcl-XL, Mcl-1 and XIAP, but up-regulated Bax, Bak, and the BH3-only protein BimEL. Up-regulation of the latter by SBHA was attenuated by the presence of TRAIL, which was inhibitable by the pan-caspase inhibitor z-VAD-fmk. Inhibition of Bim by siRNA attenuated conformational changes of Bax, mitochondrial apoptotic events, and activation of caspase-3, leading to marked inhibition of the synergy between SBHA and TRAIL. Thus, Bim plays an essential role in synergistic induction of apoptosis by SBHA and TRAIL in melanoma. This work was supported by the NSW State Cancer Council, the Melanoma and Skin Cancer Research Institute Sydney, the Hunter Melanoma Foundation, NSW, and the National Health and Medical Research Council, Australia. X.D. Zhang is a Cancer Institute NSW Fellow.  相似文献   

11.
We investigated the expression of XIAP (X chromosome-linked inhibitor of apoptosis protein) and Smac/DIABLO, a newly identified mitochondrial apoptogenig molecule in the hippocampus following transient global ischemia. Transient global ischemia produced by two-vessel occlusion triggers the delayed neuronal death of CA1 neurons in the hippocampus. We demonstrate that CA1 neuronal loss induced by ischemia (10 min) is preceded by a selective and marked elevation of catalytically active caspase-3 in these neurons, indicative of apoptosis. XIAP (X chromosome-linked inhibitor of apoptosis protein) is a member of the inhibitor of apoptosis (IAP) gene family that, in addition to suppressing cell death by inhibition of caspases, is involved in an increasing number of signalling cascades. The present study shows alterations in the levels of XIAP and of Smac/DIABLO (second mitochondrial activator of caspase) after cerebral ischemia. The protein levels of XIAP and the number of XIAP-positive cells were regulated by cerebral ischemia in a strictly time and region dependent manner. The largest change in XIAP-IR was observed in the CA1 sub field, which is the most vulnerable area of hippocampus. The mitochondrial expression level of Smac/DIABLO increased during reperfusion. Smac/DIABLO expression was associated with alteration of the XIAP levels and the appearance of activated form of caspase-3 within the hippocampus during reperfusion in spatial and temporal manners.  相似文献   

12.
Smac/DIABLO was recently identified as a protein released from mitochondria in response to apoptotic stimuli which promotes apoptosis by antagonizing inhibitors of apoptosis proteins. Furthermore, Smac/DIABLO plays an important regulatory role in the sensitization of cancer cells to both immune-and drug-induced apoptosis. However, little is known about the role of Smac/DIABLO in hydrogen peroxide (H(2)O(2))-induced apoptosis of C2C12 myogenic cells. In this study, Hoechst 33258 staining was used to examine cell morphological changes and to quantitate apoptotic nuclei. DNA fragmentation was observed by agarose gel electrophoresis. Intracellular translocation of Smac/DIABLO from mitochondria to the cytoplasm was observed by Western blotting. Activities of caspase-3 and caspase-9 were assayed by colorimetry and Western blotting. Full-length Smac/DIABLO cDNA and antisense phosphorothioate oligonucleotides against Smac/DIABLO were transiently transfected into C2C12 myogenic cells and Smac/DIABLO protein levels were analyzed by Western blotting. The results showed that: (1) H(2)O(2) (0.5 mmol/L) resulted in a marked release of Smac/DIABLO from mitochondria to cytoplasm 1 h after treatment, activation of caspase-3 and caspase-9 4 h after treatment, and specific morphological changes of apoptosis 24 h after treatment; (2) overexpression of Smac/DIABLO in C2C12 cells significantly enhanced H(2)O(2)-induced apoptosis and the activation of caspase-3 and caspase-9 (P<0.05). (3) Antisense phosphorothioate oligonucleotides against Smac/DIABLO markedly inhibited de novo synthesis of Smac/DIABLO and this effect was accompanied by decreased apoptosis and activation of caspase-3 and caspase-9 induced by H(2)O(2) (P<0.05). These data demonstrate that H(2)O(2) could result in apoptosis of C2C12 myogenic cells, and that release of Smac/DIABLO from mitochondria to cytoplasm and the subsequent activation of caspase-9 and caspase-3 played important roles in H(2)O(2)-induced apoptosis in C2C12 myogenic cells.  相似文献   

13.
The CXCR4 chemokine receptor promotes survival of many different cell types. Here, we describe a previously unsuspected role for CXCR4 as a potent inducer of apoptosis in acute myeloid leukemia (AML) cell lines and a subset of clinical AML samples. We show that SDF-1, the sole ligand for CXCR4, induces the expected migration and ERK activation in the KG1a AML cell line transiently overexpressing CXCR4, but ERK activation did not lead to survival. Instead, SDF-1 treatment led via a CXCR4-dependent mechanism to apoptosis, as evidenced by increased annexin V staining, condensation of chromatin, and cleavage of both procaspase-3 and PARP. This SDF-1-induced death pathway was partially inhibited by hypoxia, which is often found in the bone marrow of AML patients. SDF-1-induced apoptosis was inhibited by dominant negative procaspase-9 but not by inhibition of caspase-8 activation, implicating the intrinsic apoptotic pathway. Further analysis showed that this pathway was activated by multiple mechanisms, including up-regulation of Bak at the level of mRNA and protein, stabilization of the Bak activator Noxa, and down-regulation of antiapoptotic Bcl-XL. Furthermore, adjusting expression levels of Bak, Bcl-XL, or Noxa individually altered the level of apoptosis in AML cells, suggesting that the combined modulation of these family members by SDF-1 coordinates their interplay to produce apoptosis. Thus, rather than mediating survival, SDF-1 may be a means to induce apoptosis of CXCR4-expressing AML cells directly in the SDF-1-rich bone marrow microenvironment if the survival cues of the bone marrow are disrupted.  相似文献   

14.
We have examined the mechanism of action of adenosine, a naturally occurring nucleoside that has profound effects on lymphocyte function. Adenosine (0.01 micrometer to 10 micrometer) increased lymphocytes cAMP levels in a dose-dependent fashion with a maximal (10 micrometer) increase of about 4-fold, whereas adenine, guanosine, and inosine had no effect on lymphocyte cAMP levels at concentrations of 100 micrometer. Adenosine appears to act on the cell surface since 1) 2-chloroadenosine, a poorly metabolized adenosine analogue, was as active as adenosine and 2) dipyridamole, which markedly inhibited [3H]-adenosine uptake by human lymphocytes, did not affect adenosine-induced accumulation of cAMP. The specificity of the adenosine effect was established by showing that the methylxanthine derivatives, theophylline and 3-isobutyl-1-methylxanthine (IBMX), specifically block the accumulation of cAMP in lymphocytes induced by adenosine. Theophylline is a competitive inhibitor of the effect of adenosine, with an estimated dissociation constant of theophylline-receptor complex of about 6.3 X 10(-7) M. The results suggest that adenosine increases the intracellular cAMP content of lymphocytes as a result of its interaction with a specific membrane receptor which results in the activation of adenylate cyclase.  相似文献   

15.
X-linked inhibitor of apoptosis protein (XIAP), the most potent member of the inhibitor of apoptosis protein (IAP) family, plays a crucial role in the regulation of apoptosis. XIAP is structurally characterized by three baculovirus IAP repeat (BIR) domains that mediate binding to and inhibition of caspases and a RING domain that confers ubiquitin ligase activity. The caspase inhibitory activity of XIAP can be eliminated by the second mitochondria-derived activator of caspases (Smac)/direct IAP-binding protein with low pI (DIABLO) during apoptosis. Here we report the identification and characterization of a novel isoform of Smac/DIABLO named Smac3, which is generated by alternative splicing of exon 4. Smac3 contains an NH2-terminal mitochondrial targeting sequence required for mitochondrial targeting of Smac3 and an IAP-binding motif essential for Smac3 binding to XIAP. Smac3 is released from mitochondria into the cytosol in response to apoptotic stimuli, where it interacts with the second and third BIR domains of XIAP. Smac3 disrupts processed caspase-9 binding to XIAP, promotes caspase-3 activation, and potentiates apoptosis. Strikingly, Smac3, but not Smac/DIABLO, accelerates XIAP auto-ubiquitination and destruction. Smac3-stimulated XIAP ubiquitination is contingent upon the physical association of XIAP with Smac3 and an intact RING domain of XIAP. Smac3-accelerated XIAP destabilization is, at least in part, attributed to its ability to enhance XIAP ubiquitination. Our study demonstrates that Smac3 is functionally additive to, but independent of, Smac/DIABLO.  相似文献   

16.
Searching for new strategies to trigger apoptosis in rhabdomyosarcoma (RMS), we investigated the effect of two novel classes of apoptosis-targeting agents, i.e. monoclonal antibodies against TNF-related apoptosis-inducing ligand (TRAIL) receptor 1 (mapatumumab) and TRAIL receptor 2 (lexatumumab) and small-molecule inhibitors of inhibitor of apoptosis (IAP) proteins. Here, we report that IAP inhibitors synergized with lexatumumab, but not with mapatumumab, to reduce cell viability and to induce apoptosis in several RMS cell lines in a highly synergistic manner (combination index <0.1). Cotreatment-induced apoptosis was accompanied by enhanced activation of caspase-8, -9, and -3; loss of mitochondrial membrane potential; and caspase-dependent apoptosis. In addition, IAP inhibitor and lexatumumab cooperated to stimulate the assembly of a cytosolic complex containing RIP1, FADD, and caspase-8. Importantly, knockdown of RIP1 by RNA interference prevented the formation of the RIP1·FADD·caspase-8 complex and inhibited subsequent activation of caspase-8, -9, and -3; loss of mitochondrial membrane potential; and apoptosis upon treatment with IAP inhibitor and lexatumumab. In addition, RIP1 silencing rescued clonogenic survival of cells treated with the combination of lexatumumab and IAP inhibitor, thus underscoring the critical role of RIP1 in cotreatment-induced apoptosis. By comparison, the TNFα-blocking antibody Enbrel had no effect on IAP inhibitor/lexatumumab-induced apoptosis, indicating that an autocrine TNFα loop is dispensable. By demonstrating that IAP inhibitors and lexatumumab synergistically trigger apoptosis in a RIP1-dependent but TNFα-independent manner in RMS cells, our findings substantially advance our understanding of IAP inhibitor-mediated regulation of TRAIL-induced cell death.  相似文献   

17.
Livin promotes Smac/DIABLO degradation by ubiquitin-proteasome pathway   总被引:13,自引:0,他引:13  
Livin, a member of the inhibitor of apoptosis protein (IAP) family, encodes a protein containing a single baculoviral IAP repeat (BIR) domain and a COOH-terminal RING finger domain. It has been reported that Livin directly interacts with caspase-3 and -7 in vitro and caspase-9 in vivo via its BIR domain and is negatively regulated by Smac/DIABLO. Nonetheless, the detailed mechanism underlying its antiapoptotic function has not yet been fully characterized. In this report, we provide, for the first time, the evidence that Livin can act as an E3 ubiquitin ligase for targeting the degradation of Smac/DIABLO. Both BIR domain and RING finger domain of Livin are required for this degradation in vitro and in vivo. We also demonstrate that Livin is an unstable protein with a half-life of less than 4 h in living cells. The RING domain of Livin promotes its auto-ubiquitination, whereas the BIR domain is likely to display degradation-inhibitory activity. Mutation in the Livin BIR domain greatly enhances its instability and nullifies its binding to Smac/DIABLO, resulting in a reduced antiapoptosis inhibition. Our findings provide a novel function of Livin: it exhibits E3 ubiquitin ligase activity to degrade the pivotal apoptotic regulator Smac/DIABLO through the ubiquitin-proteasome pathway.  相似文献   

18.
The glucocorticoid dexamethasone (Dex) has been reported to modulate a number of signaling pathways and physiological processes, including apoptosis. This study was carried out to investigate the cytoprotective mechanism of Dex in C6 glioma cells. Pre-treatment of cells with Dex inhibited apoptosis induced by staurosporine, etoposide and thapsigargin. Apoptosis inhibition correlated with blockade of mitochondrial cytochrome c release, abolition of caspase-3 activity along with inhibition of caspase-9 and PARP cleavage. Dex-mediated cytoprotection coincided with the induction of the anti-apoptotic protein, Bcl-XL. The specific glucocorticoid receptor antagonist, RU486, reversed the anti-apoptotic effect of Dex and prevented Bcl-XL induction. Here, we show for the first time that knockdown of Bcl-XL expression with siRNA reversed the protective effects of the glucocorticoid in glioma cells. We conclude that Dex-mediated inhibition of apoptosis in C6 glioma cells is through induction of Bcl-XL.  相似文献   

19.
Smac/DIABLO, HtrA2/Omi, and caspase-9 play key roles in the initiation of apoptosis. The inhibitor of apoptosis proteins (IAPs) are believed to bind to the N-terminal IAP binding motifs of the mature (proteolytically processed) forms of Smac, HtrA2, and caspase-9. However, we show here that BRUCE/Apollon, a 528-kDa IAP whose degradation promotes apoptosis, associates with their precursors as well as the mature forms by binding to regions in addition to the IAP binding motif. Through these associations, BRUCE promotes the degradation of Smac and inhibits the activity of caspase-9 but not the effector caspase, caspase-3. In response to apoptotic stimuli, BRUCE is degraded by proteasomes and/or cleaved by caspases and HtrA2 depending on the specific stimulus and the cell type. These results suggest that the ability of BRUCE to antagonize both the precursor and mature forms of Smac and caspase-9 is an important mechanism for the prevention of apoptosis under normal conditions.  相似文献   

20.
The inhibitor of apoptosis proteins (IAP) regulates cell death by inhibiting caspases. The region of X-linked (X) IAP containing the second baculovirus IAP repeat domain (BIR2) is sufficient for inhibiting caspase-3 and -7. In this study, we found that the modes of inhibition of these two caspases were different: caspase-3 is inhibited in a competitive manner whereas caspase-7 inhibition occurs through a mixed competitive and noncompetitive mechanism. Binding assays revealed that the inhibition of caspase-3 by XIAP was totally dependent on the interaction between the active site of caspase-3 and the linker region between the BIR1 and BIR2 domains of XIAP. In contrast, the active site and the NH(2)-terminal region of caspase-7 bound to the linker region and the BIR2, respectively. Moreover the BIR2 with a mutated linker region, which inhibited caspase-3 very weakly, still bound to and inhibited caspase-7. Furthermore, a chimeric caspase-7/3 comprising the NH(2)-terminal portion of caspase-7 and COOH-terminal portion of caspase-3 was inhibited by XIAP by a mixed competitive and noncompetitive mechanism. Our results suggest that the linker region between BIR1 and BIR2 domains is responsible for active site-directed, competitive inhibition of both caspase-3 and -7, whereas the BIR2 itself is involved in noncompetitive inhibition of caspase-7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号