首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of bipedal stance on the breaking stress in compression of rat femora is investigated as a function of animal weight. It is shown that the breaking stress is a linear function of body weight, bone density and specific calcium content of the femur. In all cases investigated, bipedal femora are shown to have a higher breaking stress than controls. It is concluded that there is a continuous change in the quality as well as the quantity of bone in the rat femur with age and that the increased strength of bone material found in bipedal animals compared to controls as well as large animals as compared to small ones, cannot be explained on the basis of bone mineral content alone.  相似文献   

2.
Vitamin D metabolism in the Dahl salt-sensitive (S) rat, a model of salt-induced hypertension, differs from that in the Dahl salt-resistant (R) rat. We have tested the hypothesis that differences in vitamin D metabolism would render the Dahl S rat more susceptible than the Dahl R rat to the effects of a space flight model. Dahl female rats were tail suspended (hind limb unloaded) for 28 days, while fed a low salt (3 g/kg sodium chloride) diet. Plasma 25-OHD concentrations of S rats were significantly lower than that of R rats. Plasma 1,25-(OH)2D concentration was 50% lower in unloaded than in loaded S rats, but was unaffected in unloaded R rats. The left soleus muscle weight and breaking strength of the left femur (torsion test) were 50% and 25% lower in unloaded than in loaded S and R rats. The mineral content of the left femur, however, was significantly lower (by 11%) only in unloaded S rats. We conclude that female S rats are more vulnerable than female R rats to decreases in plasma 1,25-(OH)2D concentration and femur mineral content during hind limb unloading, but equally vulnerable to muscle atrophy and reduced breaking strength of the femur.  相似文献   

3.
本文运用生物力学的观点,阐述了民猪和哈白猪荐髂关节和髋关节周围结构的差异,以及这些差异与后肢产肉量的密切关系.为民猪生产性能的改良提高提供一些科学依据  相似文献   

4.
Laying hens often experience unbalanced calcium utilization which can cause deficiencies in bone and egg mineralization. Because melatonin has been shown to affect bone mineralization in other animals, we examined whether treating hens with melatonin would affect eggshell thickness and improve skeletal performance, thereby reducing skeletal and egg shell defects. Birds were given a diet containing either low (30 µg/kg), medium (300 µg/kg), or high (3 mg/kg) concentrations of melatonin, or control feed through approximately one laying cycle. We examined the weight, length, and strength of egg, femur, tibia, and keel. Hens treated with a high concentration of melatonin showed significant strengthening in their femur and tibia, as measured by maximum force sustained and breaking force, compared to controls. Egg weights from hens treated with melatonin were significantly greater than those from hens that were not treated with melatonin. Conversely, egg shell mass of hens treated with melatonin was significantly lower than those of hens not treated with melatonin. Our data suggest that melatonin may affect the allocation of calcium to bone at the expense of egg shell mineralization.  相似文献   

5.
Objective: The purpose of this study was to examine the effect of weight cycling (as defined by the frequency and magnitude of intentional weight loss) on bone mineral density and bone mineral content in obese sedentary women. Research Methods and Procedures: Bone mineral content and density measured by DXA, submaximal physical fitness assessment, nutrient intake, oral contraceptive use, and weight‐cycling history were assessed in 195 healthy, overweight sedentary women (age, 21 to 45 years; body mass index, 27 to 40 kg/m2) before beginning a behavioral weight‐loss intervention. Results: After controlling for body weight, multivitamin use, oral contraceptive/estrogen use, and calcium and magnesium intake, women who had a history of weight cycling did not have significantly lower total‐body bone mineral content or density or total femur bone mineral density. In addition, 99% of subjects were above or within one SD of age and gender normative data for total femur bone mineral density. Discussion: It does not seem that a history of weight cycling has an adverse affect on total femur and total‐body bone mineral density in overweight sedentary premenopausal women.  相似文献   

6.
Some muscle-bone relationships were studied in terms of gastrocnemius muscle weight, femur and tibia length and femur and tibia weight in four lines of mice (CBi-, CBi+, CBi/L and CBi/C) artificially selected for different body conformations and in the unselected control line (CBi). CBi- (low body weight--short tail) and CBi+ (high body weight--long tail) lines were divergently selected following the positive genetic correlation between body weight and tail (skeleton) length (agonistic selection). In contrast, CBi/L (low body weight--long tail) and CBi/C (high body weight--short tail) were also divergently selected but against the aforementioned correlation (antagonistic selection). The relationship between bone length and muscle weight was interpreted based on the assumption that the increased tension generated by the longitudinal growth of a bone, brings about an increase in the mass of the muscles attached to it. All CBi+, CBi/C and CBi/L mice showed enlarged femurs and tibias, but only those genotypes simultaneously selected for high body weight (CBi+ and CBi/C) showed heavier muscles than controls. The CBi+ and CBi- genotypes with agonistic selection differ in bone length and muscle weight, as it would be expected of the allometric modification of their body conformation, showing the associated longitudinal bone growth-muscle growth. CBi/C and CBi/L mice, with a non-allometric modification of body conformation, exhibited the same bone length but different muscle weight. Consequently, the antagonistic criterion allowed to confirm that the genetic influence on of the proposed muscle-bone relationships could be modified, thus making it possible to lengthen the bone through selection of a long skeleton and to avoid the correlated effect on muscle mass, by selecting for a low body weight, bringing forth presumptive evidence that both processes were genetically independent.  相似文献   

7.
The effects of long-term (over several years) anabolic androgen steroids (AAS) administration on human skeletal muscle are still unclear. In this study, seventeen strength training athletes were recruited and individually interviewed regarding self-administration of banned substances. Ten subjects admitted having taken AAS or AAS derivatives for the past 5 to 15 years (Doped) and the dosage and type of banned substances were recorded. The remaining seven subjects testified to having never used any banned substances (Clean). For all subjects, maximal muscle strength and body composition were tested, and biopsies from the vastus lateralis muscle were obtained. Using histochemistry and immunohistochemistry (IHC), muscle biopsies were evaluated for morphology including fiber type composition, fiber size, capillary variables and myonuclei. Compared with the Clean athletes, the Doped athletes had significantly higher lean leg mass, capillary per fibre and myonuclei per fiber. In contrast, the Doped athletes had significantly lower absolute value in maximal squat force and relative values in maximal squat force (relative to lean body mass, to lean leg mass and to muscle fiber area). Using multivariate statistics, an orthogonal projection of latent structure discriminant analysis (OPLS-DA) model was established, in which the maximal squat force relative to muscle mass and the maximal squat force relative to fiber area, together with capillary density and nuclei density were the most important variables for separating Doped from the Clean athletes (regression  =  0.93 and prediction  =  0.92, p<0.0001). In Doped athletes, AAS dose-dependent increases were observed in lean body mass, muscle fiber area, capillary density and myonuclei density. In conclusion, long term AAS supplementation led to increases in lean leg mass, muscle fiber size and a parallel improvement in muscle strength, and all were dose-dependent. Administration of AAS may induce sustained morphological changes in human skeletal muscle, leading to physical performance enhancement.  相似文献   

8.
A heavy or light object fell into the cup held between the thumb and the index finger of a sitting subject. The anticipatory muscle activity and the grip force applied to the cup depended on the object mass, whereas the temporal parameters, such as the moment of the start and the duration of muscle activity and the moment of the maximum grip force remained unchanged. Preliminary verbal information about the object mass sufficed for the predictive programming of adequate muscle activity and grip force. Without this information, i.e., when the mass of the falling object was unknown, the anticipatory activity was planned in expectation of a heavy weight.  相似文献   

9.
Bone mechanical properties after exercise training in young and old rats   总被引:3,自引:0,他引:3  
The effects of a 10-wk training regimen on the mechanical properties of the femur and humerus were evaluated in 2.5- and 25-mo-old Fischer 344 female rats. The rats trained on a rodent treadmill 5 days/wk for 10 wk. Duration, grade, and speed increased until the rats maintained 1 h/day at 15% grade and either 15 m/min (old rats) or 36 m/min (young rats). Excised bones were mechanically tested with a 3-point flexure test for mechanical properties of force, stress, and strain. Fat-free dry weight (FFW) and moment of inertia were also obtained. With aging, similar increases were observed in both the femur and humerus for FFW, moment of inertia, and force. Ultimate stress was reduced in the senescent femur while strain was elevated; a similar but nonsignificant trend was observed in the humerus. Irrespective of age, training increased FFW in the femur and, to a lesser degree, in the humerus. Breaking force was elevated for both bones after training. In young and old bones, the training-induced differences in bone mass and force were similar, despite differences in training intensity. In the old trained rats, femur ultimate stress was greater than that in control rat femurs and similar to that in young rat femurs. The results of the present study indicate that training effects were not limited by age.  相似文献   

10.
Studies on locust femur solid cuticle indicate that there is a continuum of biomechanically important properties from one instar to the next, and that there is a constant ratio of stiffness to mass which is only interrupted at ecdysis. The biochemical nature of both larval and adult solid cuticle is interpreted in terms of both the tangent modulus and the breaking strength of the femur cuticle. The mechanical behaviour of the different layers in the cuticle is discussed.  相似文献   

11.
The present study examined the effect of prolonged undernutrition on diaphragmatic structure and force-generating ability. Studies were performed on 58 Syrian hamsters in which the feed was reduced by 33% for a 4-wk period. Sixty animals fed a similar diet ad libitum served as controls. Diaphragm muscle structure was assessed from its mass (wet and dry weight), thickness, fiber composition, and fiber size. Isometric force produced in vitro by isolated muscle strips in response to electrical stimulation of the phrenic nerve was examined over a range of muscle lengths (length-tension relationship). In undernourished animals, body weight decreased 25 +/- 5%. Diaphragm wet and dry weight, muscle thickness, and the cross-sectional area of fast-glycolytic (FG) and fast-oxidative (FO) fibers were significantly less in undernourished than control animals and correlated with reductions in body weight. The cross-sectional area of slow-oxidative (SO) fibers was the same in the two groups. The percentage of FG fibers in undernourished animals was decreased slightly and the percentage of SO fibers increased. Maximum isometric tension was reduced in undernourished animals as compared with controls, but the position and shape of the length-tension relationship was the same in the two groups. Reductions in muscle force appeared to be explained by decreases in muscle mass, since tension corrected for cross-sectional area or tissue weight was the same in the two groups. Therefore muscle mechanical efficiency appeared to be unaffected by undernutrition. These data indicate that prolonged undernutrition causes deleterious changes in diaphragm muscle structure that impair its ability to generate force.  相似文献   

12.
We investigated the calcium bioavailability of milk calcium, taken with or without cheese. Twenty-four 6-week-old male rats for a meal-feeding experiment were trained to consume an AIN-76 diet within 2 h (2 times per day) for 2 weeks. The rats were then divided into three experimental groups, each fed 2 types of experimental diets: Control group, Cheese group, and Ca-Cheese group. The rats were each alternately given 2 types of experimental diets at 2-h meal-feeding for 31 days. The breaking force and energy of the femur in the Ca-Cheese group were significantly higher than in the control group. The bone mineral density (BMD) of the lumbar spine and the femur in the Ca-Cheese group was also significantly higher than in the other two groups. These results indicate that milk calcium taken with cheese increases bone strength and BMD efficiently, results that may be useful for the prevention of osteoporosis.  相似文献   

13.
Cetaceans span a large range of body sizes and include species with the largest known locomotor muscles. To date, force output and thrust production have only been directly measured in the common bottlenose dolphin (Tursiops truncatus), although thrust forces have been hydrodynamically modeled for some whales. In this study, two metrics of epaxial muscle size—cross‐sectional area (CSA) and mass—were used to estimate force output for 22 species (= 83 specimens) ranging in size from bottlenose dolphins to blue whales (Balaenoptera musculus). Relative to total body length (TL), maximum force output estimated based upon both muscle CSA (TL1.56 ± 0.05) and mass (TL2.64 ± 0.07) scaled at rates lower than those predicted by geometric scaling, suggesting relative force output decreases with increasing body size in cetaceans. Estimated maximal force outputs were compared to both published drag forces and to the breaking strengths of commercial fishing lines known to entangle whales. The breaking strengths of these lines are within the same order of magnitude, and in some cases, exceed the estimated maximal force output of whales. These results suggest that while powerful animals, large whales may be unable to break the extremely strong fishing line used today.  相似文献   

14.

Objectives:

To investigate deterioration of musculoskeletal system due to prolonged disuse and the potential of daily short-duration weight-bearing as countermeasures.

Methods:

Twenty-four adult male Sprague-Dawley rats were divided into Control Group (CG, no intervention), Tail-suspension Group (TG, tail-suspension without treatment), and Weight-Bearing Group (WBG, tail-suspension with 20 min/day, 5 days/week body weight loading). After four weeks of treatment, femur and tibia, soleus and extensor digitorum longus were evaluated for bone and muscle quality respectively. Tensile properties of bone-tendon insertion (BTI) were evaluated using patella-patellar tendon complex.

Results:

Disuse induced deterioration on bone, muscle, and BTI after four weeks. Compared with CG, TG and WBG showed significant decrease in bone mineral density (BMD) of trabecular bone in distal femur (4.3-15.2%), muscle mass (31.3-52.3%), muscle cross-sectional area (29.1-35%), and failure strength of BTI (23.9-29.4%). Tensile test showed that the failure mode was avulsion of bone at the BTI. No significant difference was detected between TG and WBG for all assessments on bone, muscle, and BTI.

Conclusions:

Disuse caused deterioration of bone, muscle, and BTI while daily short-duration of weight-bearing did not prevent this deterioration. Mechanical stimulation with higher intensity and longer duration may be necessary to prevent musculoskeletal deterioration resulted from prolonged disuse.  相似文献   

15.
Bone loss from the paralysed limbs after spinal cord injury (SCI) is well documented. Under physiological conditions, bones are adapted to forces which mainly emerge from muscle pull. After spinal cord injury (SCI), muscles can no longer contract voluntarily and are merely activated during spasms. Based on the Ashworth scale, previous research has suggested that these spasms may mitigate bone losses. We therefore wished to assess muscle forces after SCI with a more direct measure and compare it to measures of bone strength. We hypothesized that the bones in SCI patients would be in relation to the loss of muscle forces. Six male patients with SCI 6.4 (SD 4.3) years earlier and 6 age-matched, able-bodied control subjects were investigated. Bone scans from the right knee were obtained by pQCT. The knee extensor muscles were electrically stimulated via the femoral nerve, isometric knee extension torque was measured and patellar tendon force was estimated. Tendon force upon electrical stimulation in the SCI group was 75% lower than in the control subjects (p<0.01). Volumetric bone mineral density of the patella and of the proximal tibia epiphysis were 50% lower in the SCI group than in the control subjects (p<0.01). Cortical area was lower by 43% in the SCI patients at the proximal tibia metaphysis, and by 33% at the distal femur metaphysis. No group differences were found in volumetric cortical density. Close curvilinear relationships were found between stress and volumetric density for the tibia epiphysis (r(2)=0.90) and for the patella (r(2)=0.91). A weaker correlation with the tendon force was found for the cortical area of the proximal tibia metaphysis (r(2)=0.63), and none for the distal femur metaphysis. These data suggest that, under steady state conditions after SCI, epiphyseal bones are well adapted to the muscular forces. For the metaphysis of the long bones, such an adaptation appears to be less evident. The reason for this remains unclear.  相似文献   

16.
王晓娜 《人类学学报》2022,41(3):463-469
为了探究啦啦操或健美操训练对初中女生身体成分、骨密度以肌肉爆发力的影响,在严格控制研究对象的纳入标准的情况下,招募参与啦啦操训练的初中女生62人(啦啦操组),参与健美操训练的初中女生58人(健美操组),无啦啦操或健美操训练经历的初中女生80人(对照组),分别测量其身高、体质量、身体成分、相关部位的骨密度和肌肉爆发力,进行比较研究。结果显示,与对照组相比较,啦啦操组和健美操组的蛋白质百分数、肌肉百分数和无机盐百分数都明显较高,而脂肪百分数明显较低;与啦啦操组相比较,健美操组的蛋白质百分数和肌肉百分数明显较高,而脂肪百分数明显较低。与对照组相比较,啦啦操组和健美操组的髋骨骨密度明显较高,健美操组的脊柱骨密度也明显较高;与啦啦操组相比较,健美操组的髋骨骨密度也明显较高。与对照组相比较,啦啦操组的下肢肌肉爆发力明显较高,健美操组的上肢肌肉、下肢肌肉、腰腹屈肌和腰背伸肌的爆发力也明显较高;与啦啦操组相比较,健美操组的上肢肌肉、下肢肌肉、腰腹屈肌和腰背伸肌的爆发力也明显较高。结果提示啦啦操或健美操训练都能够改善初中女生的身体成分,增加其骨密度和肌肉爆发力,但是健美操的干预效果要优于啦啦操,这可能与健美操的技术特点和运动强度有关。  相似文献   

17.
Stress shielding is a biomechanical phenomenon causing adaptive changes in bone strength and stiffness around metallic implants, which potentially lead to implant loosening. Accordingly, there is a need for standard, objective engineering measures of the “stress shielding” performances of an implant that can be employed in the process of computer-aided implant design. To provide and test such measures, we developed hierarchical computational models of adaptation of the trabecular microarchitecture at different sites in the proximal femur, in response to insertion of orthopaedic screws and in response to hypothetical reductions in hip joint and gluteal muscle forces. By identifying similar bone adaptation outcomes from the two scenarios, we were able to quantify the stress shielding caused by screws in terms of analogous hypothetical reductions in hip joint and gluteal muscle forces. Specifically, we developed planar lattice models of trabecular microstructures at five regions of interest (ROI) in the proximal femur. The homeostatic and abnormal loading conditions for the lattices were determined from a finite element model of the femur at the continuum scale and fed to an iterative algorithm simulating the adaptation of each lattice to these loads. When screws were inserted to the femur model, maximal simulated bone loss (17% decrease in apparent density, 10% decrease in thickness of trabeculae) was at the greater trochanter and this effect was equivalent to the effect of 50% reduction in gluteal force and normal hip joint force. We conclude that stress shielding performances can be quantified for different screw designs using model-predicted hypothetical musculoskeletal load fractions that would cause a similar pattern and extent of bone loss to that caused by the implants.  相似文献   

18.
The space flight or simulated gravitational unloading lead to the muscle atrophy, slow-to-fast transformation of muscle fibers and myofibrillar damages both in humans and animals (1, 7, 13, 17). This process could be prevented by the exercise training during space flight (1), (partly) by periodic weight support during unloading (13). It has been demonstrated in these studies that there is some level of force production necessary for the maintenance of skeletal muscle properties. It is known that adaptation to the physical training frequently induces augmentation in cross-sectional area (CSA) of muscle fibers (MF), transformation of fibers, augmentation of mitochondrial volume density, and increase in absolute volume of myofibrillas. Numerous observations suggest importance of gravitational loading in regulating muscle mass. The centrifuging is believed to be useful for preventing muscle functional and structural losses under microgravity. But there are few studies designed to investigate effect of artificial gravity on the skeletal musculature (2, 7). Our objective was to investigate structural adaptation in slow-twitch soleus muscle (percentage of connective tissue and central nuclei, fiber size, myosin heavy chain isotope, myofibrillar proteins and mitochondria volume density) after 19 and 33 days of hypergravity.  相似文献   

19.
The present work is concerned with the study of myosin fractions prepared from the hatching muscle (m. complexus) and a control muscle (m. pectoralis) of the developing goose embryo. The m. complexus attained its maximum mass at hatching and in the 4-day-old bird the mass of this muscle was only one fourth of that recorded at hatching. The m. complexus was hypertrophied already on the 21st day. At days 21, 27 and 28 of incubation and at posthatching days myosin preparations were made from both muscles. Partial purification of myosins from both sources yielded a high molecular weight fraction characteristic of the adult bird and one other protein fraction with molecular mass half of myosin. Both preparations exhibited the characteristic properties of myosin. The lower molecular weight fraction was also shown to develop filamentous aggregates as did the higher molecular-weight, gel filtrated myosin. The phosphate content of the half molecular mass myosin fraction prepared from the embryonic m. complexus at days prior to hatching was considerably higher than that of the high molecular weight fraction and the predominant component was P-Arg. Since the embryonic myosin was still not available in the m. complexus of the 4-day-old birds and the hypertrophied muscle underwent regression after hatching it appears that this myosin fraction is actively involved in breaking through the shell during the hatching period in geese.  相似文献   

20.
Stress shielding is a biomechanical phenomenon causing adaptive changes in bone strength and stiffness around metallic implants, which potentially lead to implant loosening. Accordingly, there is a need for standard, objective engineering measures of the "stress shielding" performances of an implant that can be employed in the process of computer-aided implant design. To provide and test such measures, we developed hierarchical computational models of adaptation of the trabecular microarchitecture at different sites in the proximal femur, in response to insertion of orthopaedic screws and in response to hypothetical reductions in hip joint and gluteal muscle forces. By identifying similar bone adaptation outcomes from the two scenarios, we were able to quantify the stress shielding caused by screws in terms of analogous hypothetical reductions in hip joint and gluteal muscle forces. Specifically, we developed planar lattice models of trabecular microstructures at five regions of interest (ROI) in the proximal femur. The homeostatic and abnormal loading conditions for the lattices were determined from a finite element model of the femur at the continuum scale and fed to an iterative algorithm simulating the adaptation of each lattice to these loads. When screws were inserted to the femur model, maximal simulated bone loss (17% decrease in apparent density, 10% decrease in thickness of trabeculae) was at the greater trochanter and this effect was equivalent to the effect of 50% reduction in gluteal force and normal hip joint force. We conclude that stress shielding performances can be quantified for different screw designs using model-predicted hypothetical musculoskeletal load fractions that would cause a similar pattern and extent of bone loss to that caused by the implants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号