首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The introduction of transgenic plants into agricultural ecosystems has raised the question of the ecological impact of these plants on nontarget organisms, such as soil bacteria. Although differences in both the genetic structure and the metabolic function of the microbial communities associated with some transgenic plant lines have been established, it remains to be seen whether these differences have an ecological impact on the soil microbial communities. We conducted a 2-year, multiple-site field study in which rhizosphere samples associated with a transgenic canola variety and a conventional canola variety were sampled at six times throughout the growing season. The objectives of this study were to identify differences between the rhizosphere microbial community associated with the transgenic plants and the rhizosphere microbial community associated with the conventional canola plants and to determine whether the differences were permanent or depended on the presence of the plant. Community-level physiological profiles, fatty acid methyl ester profiles, and terminal amplified ribosomal DNA restriction analysis profiles of rhizosphere microbial communities were compared to the profiles of the microbial community associated with an unplanted, fallow field plot. Principal-component analysis showed that there was variation in the microbial community associated with both canola variety and growth season. Importantly, while differences between the microbial communities associated with the transgenic plant variety were observed at several times throughout the growing season, all analyses indicated that when the microbial communities were assessed after winter, there were no differences between microbial communities from field plots that contained harvested transgenic canola plants and microbial communities from field plots that did not contain plants during the field season. Hence, the changes in the microbial community structure associated with genetically modified plants were temporary and did not persist into the next field season.  相似文献   

2.
Drought-induced changes in two-dimensional silver stained protein patterns of Brassica napus L. var. oleifera M. root system were detected both at quantitative and qualitative levels. Particularly, 13 new polypeptides of low molecular weight were evidenced in the drought-stressed tap root, 12 of which were also present in the short tuberized roots, a specific drought-induced root type. The reversibility of these modifications, observed after 3 days rehydration, suggests that they might be involved in drought tolerance.  相似文献   

3.
Protoplast cultures were prepared from hypocotyls of ten spring rapeseed cultivars. Protoplasts from all genotypes tested formed calli, and shoots were regenerated from calli of nine of the genotypes at frequencies varying from 15 to 76%. The regenerating cultivars fell into a high regenerating group (>60% and a low regenerating group <25%).  相似文献   

4.
The impact of genetically modified oilseed rape (Brassica napus L.) on the foraging behaviour of honey bees (Apis mellifera L.) was evaluated on two different lines transformed to express constitutively heterologous chitinase in somatic tissue for enhanced disease resistance. Experiments were conducted in confinement in an indoor flight room with controlled conditions and in an outdoor flight cage with conditions more representative of the open environment. Foraging behaviour was analysed by observations of general bee behaviour (total number of visits) and of individual bee behaviour (using a video camera coupled with a special software program to process the data). The plants were analysed in terms of nectar quantity and quality (nectar volume and sugar content). The results showed no effects on bee foraging behaviour due to the modification of the genome of these plants by the introduction of a chitinase gene even though some differences between lines were found in the nectar. The methods applied in this original approach for the evaluation of the impact of genetically modified oilseed rape were shown to be sufficiently sensitive to detect changes in bee behaviour resulting from differences between plants.  相似文献   

5.
A new low-molecular-mass (6767.8 Da) serine proteinase isoinhibitor has been isolated from oil-rape (Brassica napus var. oleifera) seed, designated 5-oxoPro1-Gly62-RTI-III. The 5-oxoPro1-Gly62-RTI-III isoinhibitor is longer than the Asp2-Pro61-RTI-III and the Ser3-Pro61-RTI-III forms, all the other amino acid residues being identical. In RTI-III isoinhibitors, the P1-P1' reactive site bond (where residues forming the reactive site have been identified as PnellipsisP1 and P1'ellipsisPn', where P1-P1' is the inhibitor scissile bond) has been identified at position Arg21-Ile22. The inhibitor disulphide bridges pattern has been determined as Cys5-Cys27, Cys18-Cys31, Cys42-Cys52 and Cys54-Cys57. The disulphide bridge arrangement observed in the RTI-III isoinhibitors is reminiscent of that found in a number of toxins (e.g. erabutoxin b). Moreover, the organization of the three disulphide bridges subset Cys5-Cys27, Cys18-Cys31 and Cys42-Cys52 is reminiscent of that found in epidermal growth factor domains. Preliminary 1H-NMR data indicates the presence of alphaalphaNOEs and 3JalphaNH coupling constants, typical of the beta-structure(s). These data suggest that the three-dimensional structure of the RTI-III isoinhibitors may be reminiscent of that of toxins and epidermal growth factor domains, consisting of three-finger shaped loops extending from the crossover region. Values of the apparent association equilibrium constant for RTI-III isoinhibitors binding to bovine beta-trypsin and bovine alpha-chymotrypsin are 3.3 x 109 m-1 and 2.4 x 106 m-1, respectively, at pH 8.0 and 21.0 degrees C. The serine proteinase : inhibitor complex formation is a pH-dependent entropy-driven process. RTI-III isoinhibitors do not show any similarity to other serine proteinase inhibitors except the low molecular mass white mustard trypsin isoinhibitor, isolated from Sinapis alba L. seed (MTI-2). Therefore, RTI-III and MTI-2 isoinhibitors could be members of a new class of plant serine proteinase inhibitors.  相似文献   

6.
Rapacz M 《Annals of botany》2002,89(5):543-549
The aim of this work was to establish the role of factors that may trigger elongation growth in the dehardening response, namely temperature during daylight, photoperiod and vernalization. Fully cold-acclimated seedlings of winter (with incomplete vernalization) and spring oilseed rape were subjected to deacclimation under temperatures of 2/12, 12/2, 12/12, 12/20, 20/12 and 20/20 degrees C (day/night) and a 12 h photoperiod. Plants were also deacclimated under photoperiods of 8 and 16 h at constant temperatures of 12 and 20 degrees C. After deacclimation, plants were subjected to reacclimation. Results suggest that the level of growth activity induced during deacclimation affects both the deacclimation rate and the capacity for reacclimation. Deacclimation is fully reversible if it is not accompanied by induction of elongation growth. In such cases the rate of the decrease in freezing tolerance depends on the mean temperature of deacclimation. Deacclimation becomes partially or completely irreversible when it is connected with promotion of elongation growth. The stimuli triggering elongation growth during deacclimation may be the growth-promoting temperature (20 degrees C) during the day and the lack of vernalization blockage of elongation growth. When elongation growth was stimulated by other factors such as long-day treatments, rehardening was also disturbed.  相似文献   

7.
Abstract. Soil grown oilseed rape ( Brassica napus L. var. oleifera M., cv. Darmor) seedlings at the cotyledon stage (one week old), were inoculated in vivo at the base of the hypocotyl with Agrobacterium rhizogenes harbouring the pRi 15834 plasmid. Resulting adventitious root formation was observable about 2 or 3 weeks after infection. Differential Ri-induced root emergence and subsequent development occurred depending on water conditions and closeness of the wounding site to the soil surface: either thin, hairy roots growing rapidly and plagiotropically at the soil level under humid atmosphere, or hairless and fleshy, slowly growing aerial roots developed. The hairy roots were highly drought susceptible, whereas aerial roots revealed some potential for drought tolerance. Unlike normal roots, none of these Ri-induced roots appeared able to give rise to drought rhizogenesis in plants subjected to progressive drought stress. However, under hardening, achieved through successive and moderate drought stress-rehydration cycles, both types of Ri-induced roots improved drought tolerance and could express the morphogenetic differentiation programme leading to the formation of short, tuberized, drought-adapted, roots. These results, discussed in terms of hormonal imbalance and drought tolerance regulation, suggest that the Ri T-DNA gene expression, responsible for adventitious root induction and growth behaviour, is further regulated through the host plant.  相似文献   

8.
Differential two-dimensional protein patterns as related to tissue specificity and water conditions were investigated within Brassica napus var oleifera root system. The different parts of the root system (tap root, lateral roots, and drought-induced short roots) were analyzed under various moisture regimes (regular watering at field capacity, progressive drought stress, and rewatering). Tissue specificity was evident from 25 differences in protein patterns (qualitative and quantitative) between well-watered lateral and tap roots. Twice as many polypeptides (52) were drought-affected and the response to the water stress was shown to be similar in both root types. In addition, more than half of the polypeptides detected as organ-specific were affected by drought. Based upon the trend of variation observed under drought and rehydration, three categories of polypeptides could be defined that might be differently involved in drought susceptibility or tolerance. A highly differentiated protein pattern characterized the drought-induced short roots. This pattern appeared as far from the watered as from the water-stressed normal roots. In particular, 13 unique polypeptides were detected which could be relevant to their adaptive morphogenesis and/or their specific drought tolerance induction. Upon rehydration, their polypeptide pattern and their specific morphology returned to a normal well-watered lateral root type.  相似文献   

9.
Acclimation of winter oilseed plants in the cold (i.e. at temperatures >0 degrees C) followed by short exposure to sub-lethal freezing temperatures resulted in pronounced ultrastructural changes of leaf epidermal and mesophyll cells. The following major changes were observed upon acclimation at 2 degrees C: increased thickness of cell walls; numerous invaginations of plasma membranes; the appearance of many large vesicles localized in the cytoplasm in close proximity to the central vacuole; the occurrence of abundant populations of microvesicles associated with the endoplasmic reticulum (ER) cisternae or located in the vicinity of dictyosomes; and the occurrence of paramural bodies and myelin-like structures. In addition, large phenolic deposits were observed in the vicinity of the plasma membrane and membrane-bound organelles such as chloroplasts, large vesicles or cytoplasm/tonoplast interfaces. Transient freezing (-5 degrees C for 18 h) of the cold-acclimated leaves led to reversible disorganization of the cytoplasm and to pronounced structural changes of the cellular organelles. Chloroplasts were swollen, with the stroma occupying one half of their volume and the thylakoid system being displaced to the other half. Large phenolic aggregates disappeared but distinct layers of phenolic deposits were associated with mitochondrial membranes and with chloroplast envelopes. In frost-thawed cells recovered at 2 degrees C for 24 h, dictyosomes and dictyosome- or ER-derived small vesicles reappeared in the ribosome-rich cytoplasm. Aberrations in the structure of chloroplasts and mitochondria were less pronounced. Few phenolic deposits were seen as small grains associated with chloroplast envelopes and vesicle membranes. These observations demonstrate that plants undergo different changes in cell ultrastructure depending on whether they are subjected to chilling or freezing temperatures. Results are discussed in relation to membrane recycling and the possible role of phenolics during the first and second stages of plant acclimation at low temperature.  相似文献   

10.
Changes in the membrane lipid and sterols content and composition were studied during induction and differentiation in callus cultures of Brassica napus var. oleifera. Callus induction was associated with an increase of DGDG content, significant changes in fatty acids composition of all lipid fractions and increased degree of lipid unsaturation. The membrane lipid composition of tissue at different degrees of differentiation was found to vary significantly, particularly two weeks after transfer of callus to regeneration medium. The main differences concerned the content and composition of galactolipids. Curiously in many cases, these differences declined during subsequent culture, in spite of the morphogenesis process which was in progress. Another result of differentiation was the change in free sterol composition: in shoot regenerating calli the content of stigmasterol had rose whereas the accumulation of campesterol decreased. Even though observed changes in membrane properties may not play a role in morphogenesis they are nevertheless useful as developmental markers and can be invaluable in understanding biochemical basis of morphogenesis.  相似文献   

11.
12.
On the occurrence of Phoma nigrificans (P. Karst.) comb. nov. (teleomorph Didymella macropodii Petrak) on winterrape (Brassica napus L. var. oleifera Metzger) With a screening for resistence of winterrape to Phoma lingam (teleomorph Leptosphaeria maculans), in various places in North Germany, another species of Phoma was repeatedly isolated from plants with blackleg symptoms. This Phoma species could easily be distinguished from P. lingam by its larger conidia and its lower optimal temperature. Comparative study with isolates in the Phoma-collection of the “Plantenziektenkundige Dienst” (Wageningen) showed that it, represents the anamorph of Didymella macropodii, an Eurasian Ascomycete occurring on different wild crucifers and originally described from Macropodium nivale in Siberia. The Phoma-anamorph of this fungus was first described in Finl, and from Armoracia rusticana as Sphaeronaema nigrificans. This binomial is now transferred to Phoma (“section Sclerophomella”). Inoculation of rape seedlings with Phoma nigrificans (Didymella macropodii) resulted, in dark discolorations and constrictions of the hypocotyls of the seedlings.  相似文献   

13.
Three-week acclimation of winter oilseed rape (Brassica napusL. var. oleifera L.) plants in the cold (2 °C) resultedin a modified pattern of leaf cell enlargement, indicated bythe increased thickness of young leaf blades and modified dimensionsof mesophyll cells, as compared with non-acclimated tissuesgrown at 20/15 °C (day/night). The thickness of leaf cellwalls also increased markedly during cold acclimation but itdecreased in response to a transient freezing event (5 °Cfor 18 h followed by 6 or 24 h at 2 °C, in the dark). Cellwalls of the upper (adaxial) epidermis were most affected. Theirultrastructure was modified by cold and freezing treatmentsin different ways, as revealed by electron microscopy. Possiblereasons for the cold- and freezing-induced modifications inthe leaf and cell wall morphology and their role in plant acclimationto low temperature conditions are discussed. Copyright 1999Annals of Botany Company Acclimation, Brassica napus var. oleifera, cell wall ultrastructure, cold, freezing, leaf structure, winter oilseed rape.  相似文献   

14.
In 1975, tests with UK populations of Plasmodiophora brassicae not only revealed a lack of effective clubroot resistance in swedes (Brassica napus), but also the outstanding resistance of the European Clubroot Differential (ECD)04 (B. rapa). It was, therefore, decided to transfer the resistance genes from ECD04 to swedes, using the most pathogenic UK population of clubroot (C56) available for screening purposes. An autotetraploid form of ECD04 was crossed with tetraploid kale (B. oleracea) using the latter as female parent. One of the euploid, 2n = 38, hybrids secured by embryo rescue in 1976 was crossed to the swede cultivars Marian and Ruta Øtofte. Three further backcrosses of clubroot resistant plants to lines derived from modern swede cultivars were made over the period 1980 to 1982. Selfing commenced in 1983 to produce F2 populations. From F3 to F5 there was family selection for yield and agronomic characters, as well as single plant selection for clubroot resistance. In 1991, the six most promising F5 families were multiplied for subsequent evaluation in replicated yield trials in Dundee. The most promising family entered official trials at the beginning of 1993 and, 2 years later, was added to the National List as cv. Invitation and granted Plant Breeders' Rights. The first certified seed was sold in 1996, 20 years after the original synthetic B. napus was produced. The breeding programme provided evidence for only one of the three postulated dominant genes in ECD04 being required for resistance to C56 and also good evidence of differential resistance from tests with other clubroot populations. Hence, whilst the differential resistance in cv. Invitation should prove useful in the UK in the immediate future, it may not be durable in the longer term. It is, therefore, argued that the next and more difficult goal to achieve should be to introduce high levels of non-differential resistance from B. oleracea.  相似文献   

15.
Two novel glucosinolates along with one known glucosinolate were isolated from Broccoli (Brassica oleracea L. var. italica) florets. Their structures were established mainly by 1D ((1)H and (13)C NMR), 2D NMR ((1)H-(1)H COSY, DEPT 135°, HSQC and HMBC), and Tandem MS-MS spectrometric data as 2-mercaptomethyl sulfinyl glucosinolate [(Z)-4-(methylsulfinyl)-N-(sulfooxy)-2-((2'S,3'R,4'S,5'S,6'R)-3',4',5'-trihydroxy-6'(hydroxylmethyl)-2'-mercapto tetrahydro-2H-pyran-2-yl) butane amide] 1, (Z)-1-((2S,5S)-5-hydroxytetra-hydro-2H-pyran-2-ylthio)-2-(1H-indol-3-yl) ethylidene amino sulfate 2 and a known cinnamoyl [6'-O-trans-(4″-hydroxy cinnamoyl)4-(methylsulphinyl)butyl glucosinolate] 3. Compound 1 exhibited scavenging activity against DPPH with an inhibitory concentration IC(50) of 20mM, whereas compound 3 was a weak antioxidant when compared to the standard quercetin (5mM) as a positive control. Both the compounds showed a significant and similar antimicrobial activity against Staphylococcus aureus with an IC(50) of <625μg/mL when compared to antibiotic duricef. Against Salmonella typhimurium the IC(50) of 1 and 3 was determined as <625μg/mL and <1250μg/mL, respectively, when compared to ampicillin (IC(50) ?39μg/mL) as a positive control.  相似文献   

16.
Diepenbrock, W. 1988. Alterations in membrane lipids and nutrientuptake during root development of rape-seed (Brassica napusL.). J. exp. Bot. 39: 193–198. Oil-seed rape was grown hydroponically in two experiments. Inthe first one, the effects of root development on phosphorusbound in lipids (lipid-P) and on nutrient uptake were tested.The content of lipid-P in root tissue decreased markedly withtime. This decline was accompanied by reduced rates of nitrogenaccumulation in the shoot. In the second experiment, plantswere grown in a split-root system with two chambers per pot.A part of the root system was harvested at 28 d after seedlingtransfer (DAS) referring to ‘continuous growth’.The other part was cut at 14 DAS and roots from the same chamberwere gathered at 14 d after root cutting (DAR) referring to‘re-growth’ Not only at 14 DAS but also at 14 DARhigh concentrations of lipid-P were detected whereas at 28 DASthe lipid-P content decreased dramatically. Changes in lipid-Pwere reflected in the fluctuation of fatty acid compositionof phosphatidyl choline, a major phospholipid in root tissue.It was clearly demonstrated that during re-growth, nutrientuptake was intensified as compared to continuous growth. Generally,membrane lipids and nutrient uptake were closely related. Key words: Root, lipids, nutrient uptake  相似文献   

17.
The treatment of rape plants grown in nonsterile soil with 2,4-dichlorophenoxyacetic acid (auxin-like growth-promoting substance) or their inoculation with the bacterial association Micrococcus sp. + Rhodococcus sp. and/or with the mixed nitrogen-fixing culture Azotobacter nigricans + Bacillus sp. led to the formation of paranodules on the rape roots. The introduced bacteria were detected both in the intercellular space and inside the cells of the paranodules and the rape roots. The nitrogen-fixing activity of the paranodulated plants was two times higher than that of the inoculated plants lacking paranodules and five times higher than that of the control (i.e., not inoculated) plants. The paranodulation led to a 40% increase in the crop yield of rape plants and provided for a statistically significant increase in the total nitrogen as well as protein nitrogen contents of the plants.  相似文献   

18.
In 1989 seven F[hybrid swedes were produced in polythene tunnels. The female parent was an inbred line derived from cv. Ruta 0tofte, and made self-incompatible with an S-allele introduced by backcrossing. Three more hybrids were produced in 1990 in a similar way with an inbred line from cv. Criffel as female parent. In trials in Dundee over the period 1990 to 1992, better parent heterosis for dry matter yield in the hybrids ranged from 1.9% to 19.2%. There was no such heterosis for dry matter percentage nor for mildew resistance. The highest yielding hybrid was the one between the Criffel line and an inbred line from cv. Magres. It averaged 9.9% heterosis over the two years 1991 and 1992, outyielded seven commercial cultivars, but had a lower yield (12.3 t/ha) than an F6 line SS5 (13.3 t/ha) derived from the cross between the Criffel and Magres lines by pedigree inbreeding with selection. It is concluded that high yielding heterotic F/s should be the starting point rather than the finishing point of swede breeding programmes, and that research into breeding methods should concentrate on improving the efficiency of pedigree inbreeding following hybridisations, rather than on ways of producing Fj hybrids.  相似文献   

19.
The reproductive development of oilseed rape (Brassica napusL. cv. Bienvenu) was studied using light and scanning electronmicroscopy. By using the two techniques on comparable samples,internal events such as microspore development were relatedto the morphology of the developing floral parts, and this inturn was linked to the growth stage of the plant. Reproductive development, oilseed rape, Brassica napus, growth stage  相似文献   

20.
Cabbage belonging to Brassicaceae family is one of the most important vegetables cultivated worldwide. The economically important part of cabbage crop is head, formed by leaves which may be of splitting and non-splitting types. Cabbage varieties showing head splitting causes huge loss to the farmers and therefore finding the molecular and structural basis of splitting types would be helpful to breeders. To determine which anatomical characteristics were related to head-splitting in cabbage, we analyzed two contrasting cabbage lines and their offspring using a field emission scanning electron microscope. The inbred line “747” is an early head-splitting type, while the inbred line “748” is a head-splitting-resistant type. The petiole cells of “747” seems to be larger than those of “748” at maturity; however, there was no significant difference in petiole cell size at both pre-heading and maturity stages. The lower epidermis cells of “747” were larger than those of “748” at the pre-heading and maturity stages. “747” had thinner epidermis cell wall than “748” at maturity stage, however, there was no difference of the epidermis cell wall thickness in the two lines at the pre-heading stage. The head-splitting plants in the F1 and F2 population inherited the larger cell size and thinner cell walls of epidermis cells in the petiole. In the petiole cell walls of “747” and the F1 and F2 plants that formed splitting heads, the cellulose microfibrils were loose and had separated from each other. These findings verified that anomalous cellulose microfibrils, larger cell size and thinner-walled epidermis cells are important genetic factors that make cabbage heads prone to splitting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号