首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 172 毫秒
1.
2.
Limb girdle muscular dystrophy type 2H (LGMD2H) is an inherited autosomal recessive disease of skeletal muscle caused by a mutation in the TRIM32 gene. Currently its pathogenesis is entirely unclear. Typically the regeneration process of adult skeletal muscle during growth or following injury is controlled by a tissue specific stem cell population termed satellite cells. Given that TRIM32 regulates the fate of mammalian neural progenitor cells through controlling their differentiation, we asked whether TRIM32 could also be essential for the regulation of myogenic stem cells. Here we demonstrate for the first time that TRIM32 is expressed in the skeletal muscle stem cell lineage of adult mice, and that in the absence of TRIM32, myogenic differentiation is disrupted. Moreover, we show that the ubiquitin ligase TRIM32 controls this process through the regulation of c-Myc, a similar mechanism to that previously observed in neural progenitors. Importantly we show that loss of TRIM32 function induces a LGMD2H-like phenotype and strongly affects muscle regeneration in vivo. Our studies implicate that the loss of TRIM32 results in dysfunctional muscle stem cells which could contribute to the development of LGMD2H.  相似文献   

3.
Activation of the PI3K–Akt–FoxO pathway induces cell growth, whereas its inhibition reduces cell survival and, in muscle, causes atrophy. Here, we report a novel mechanism that suppresses PI3K–Akt–FoxO signaling. Although skeletal muscle lacks desmosomes, it contains multiple desmosomal components, including plakoglobin. In normal muscle plakoglobin binds the insulin receptor and PI3K subunit p85 and promotes PI3K–Akt–FoxO signaling. During atrophy, however, its interaction with PI3K–p85 is reduced by the ubiquitin ligase Trim32 (tripartite motif containing protein 32). Inhibition of Trim32 enhanced plakoglobin binding to PI3K–p85 and promoted PI3K–Akt–FoxO signaling. Surprisingly, plakoglobin overexpression alone enhanced PI3K–Akt–FoxO signaling. Furthermore, Trim32 inhibition in normal muscle increased PI3K–Akt–FoxO signaling, enhanced glucose uptake, and induced fiber growth, whereas plakoglobin down-regulation reduced PI3K–Akt–FoxO signaling, decreased glucose uptake, and caused atrophy. Thus, by promoting plakoglobin–PI3K dissociation, Trim32 reduces PI3K–Akt–FoxO signaling in normal and atrophying muscle. This mechanism probably contributes to insulin resistance during fasting and catabolic diseases and perhaps to the myopathies and cardiomyopathies seen with Trim32 and plakoglobin mutations.  相似文献   

4.
5.
Modification of proteins by ubiquitin is essential for numerous cellular processes. The RING-H2 finger motif has been implicated in ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Four proteins, WSSV199, WSSV222, WSSV249, and WSSV403, from white spot syndrome virus (WSSV) contain the RING-H2 motif. Here we report that WSSV249 physically interacts with a shrimp ubiquitin-conjugating enzyme, PvUbc, and mediates ubiquitination through its RING-H2 motif in the presence of E1 and PvUbc. Mutations of the putative zinc coordination residues in the RING-H2 domain of WSSV249, however, ablate ubiquitination efficiency. In addition, the RING-H2 domain of WSSV249 is capable of ubiquitination with UbcH1, UbcH2, UbcH5a, UbcH5b, UbcH5c, UbcH6, and UbcH10, respectively, exhibiting a low degree of E2 specificity. Significantly, the expression of WSSV249 and PvUbc increased during infection, as revealed by real-time PCR. Furthermore, in situ hybridization showed that WSSV249 and PvUbc display similar expression patterns in infected shrimps, and immunofluorescence and immunohistochemistry assays showed an increase of PvUbc in infected shrimp cells. These results suggest that the RING-H2 protein WSSV249 from WSSV may function as an E3 ligase via sequestration of PvUbc for viral pathogenesis in shrimp.  相似文献   

6.
During muscle atrophy, myofibrillar proteins are degraded in an ordered process in which MuRF1 catalyzes ubiquitylation of thick filament components (Cohen et al. 2009. J. Cell Biol. http://dx.doi.org/10.1083/jcb.200901052). Here, we show that another ubiquitin ligase, Trim32, ubiquitylates thin filament (actin, tropomyosin, troponins) and Z-band (α-actinin) components and promotes their degradation. Down-regulation of Trim32 during fasting reduced fiber atrophy and the rapid loss of thin filaments. Desmin filaments were proposed to maintain the integrity of thin filaments. Accordingly, we find that the rapid destruction of thin filament proteins upon fasting was accompanied by increased phosphorylation of desmin filaments, which promoted desmin ubiquitylation by Trim32 and degradation. Reducing Trim32 levels prevented the loss of both desmin and thin filament proteins. Furthermore, overexpression of an inhibitor of desmin polymerization induced disassembly of desmin filaments and destruction of thin filament components. Thus, during fasting, desmin phosphorylation increases and enhances Trim32-mediated degradation of the desmin cytoskeleton, which appears to facilitate the breakdown of Z-bands and thin filaments.  相似文献   

7.
NK lytic-associated molecule (NKLAM) is a protein involved in the cytolytic function of NK cells and CTLs. It has been localized to the cytolytic granules in NK cells and is up-regulated when cells are exposed to cytokines IL-2 or IFN-beta. We report in this study that NKLAM contains a cysteine-rich really interesting new gene (RING) in between RING-RING domain, and that this domain possesses strong homology to the RING domain of the known E3 ubiquitin ligase, Dorfin. To determine whether NKLAM functions as an E3 ligase, we performed coimmunoprecipitation binding assays with ubiquitin conjugates (Ubcs) UbcH7, UbcH8, and UbcH10. We demonstrated that both UbcH7 and UbcH8 bind to full-length NKLAM. We then performed a similar binding assay using endogenous NKLAM and UbcH8 expressed by human NK clone NK3.3 to show that the protein interaction occurs in vivo. Using the yeast two-hybrid system, we identified uridine kinase like-1 (URKL-1) protein as a substrate for NKLAM. We confirmed that NKLAM and URKL-1 interact in mammalian cells by using both immunoprecipitation and confocal microscopy. We demonstrated decreased protein expression and enhanced ubiquitination of URKL-1 in the presence of NKLAM. These data indicate that NKLAM is a RING finger protein that binds Ubcs and has as one of its substrates, URKL-1, thus defining this cytolytic protein as an E3 ubiquitin ligase.  相似文献   

8.
The related RING domain proteins MdmX and Mdm2 are best known for their role as negative regulators of the tumor suppressor p53. However, although Mdm2 functions as a ubiquitin ligase for p53, MdmX does not have appreciable ubiquitin ligase activity. In this study, we performed a mutational analysis of the RING domain of MdmX, and we identified two distinct regions that, when replaced by the respective regions of Mdm2, turn MdmX into an active ubiquitin ligase for p53. Mdm2 and MdmX form homodimers as well as heterodimers with each other. One of the regions identified localizes to the dimer interface indicating that subtle conformational changes in this region either affect dimer stability and/or the interaction with the ubiquitin-conjugating enzyme UbcH5b. The second region contains the cryptic nucleolar localization signal of Mdm2 but is also assumed to be involved in the interaction with UbcH5b. Here, we show that this region has a significant impact on the ability of respective MdmX mutants to functionally interact with UbcH5b in vitro supporting the notion that this region serves two distinct functional purposes, nucleolar localization and ubiquitin ligase activity. Finally, evidence is provided to suggest that the RING domain of Mdm2 not only binds to UbcH5b but also acts as an allosteric activator of UbcH5b.  相似文献   

9.
Proteasome-dependent degradation of ubiquitinated proteins plays a key role in many important cellular processes. Ubiquitination requires the E1 ubiquitin activating enzyme, an E2 ubiquitin conjugating enzyme, and frequently a substrate-specific ubiquitin protein ligase (E3). One class of E3 ubiquitin ligases has been shown to contain a common zinc-binding RING finger motif. We have previously shown that herpes simplex virus type 1 ICP0, itself a RING finger protein, induces the proteasome-dependent degradation of several cellular proteins and induces the accumulation of colocalizing conjugated ubiquitin in vivo. We now report that both full-length ICP0 and its isolated RING finger domain induce the accumulation of polyubiquitin chains in vitro in the presence of E1 and the E2 enzymes UbcH5a and UbcH6. Mutations within the RING finger region that abolish the in vitro ubiquitination activity also cause severe reductions in ICP0 activity in other assays. We conclude that ICP0 has the potential to act as an E3 ubiquitin ligase during viral infection and to target specific cellular proteins for destruction by the 26S proteasome.  相似文献   

10.
The role of the interaction between actin and the secondary actin binding site of myosin (segment 565-579 of rabbit skeletal muscle myosin, referred to as loop 3 in this work) has been studied with proteolytically generated smooth and skeletal muscle myosin subfragment 1 and recombinant Dictyostelium discoideum myosin II motor domain constructs. Carbodiimide-induced cross-linking between filamentous actin and myosin loop 3 took place only with the motor domain of skeletal muscle myosin and not with those of smooth muscle or D. discoideum myosin II. Chimeric constructs of the D. discoideum myosin motor domain containing loop 3 of either human skeletal muscle or nonmuscle myosin were generated. Significant actin cross-linking to the loop 3 region was obtained only with the skeletal muscle chimera both in the rigor and in the weak binding states, i.e., in the absence and in the presence of ATP analogues. Thrombin degradation of the cross-linked products was used to confirm the cross-linking site of myosin loop 3 within the actin segment 1-28. The skeletal muscle and nonmuscle myosin chimera showed a 4-6-fold increase in their actin dissociation constant, due to a significant increase in the rate for actin dissociation (k(-)(A)) with no significant change in the rate for actin binding (k(+A)). The actin-activated ATPase activity was not affected by the substitutions in the chimeric constructs. These results suggest that actin interaction with the secondary actin binding site of myosin is specific for the loop 3 sequence of striated muscle myosin isoforms but is apparently not essential either for the formation of a high affinity actin-myosin interface or for the modulation of actomyosin ATPase activity.  相似文献   

11.
Doxorubicin, a commonly prescribed chemotherapeutic agent, causes skeletal muscle wasting in cancer patients undergoing treatment and increases mitochondrial reactive oxygen species (ROS) production. ROS stimulate protein degradation in muscle by activating proteolytic systems that include caspase-3 and the ubiquitin-proteasome pathway. We hypothesized that doxorubicin causes skeletal muscle catabolism through ROS, causing upregulation of E3 ubiquitin ligases and caspase-3. We tested this hypothesis by exposing differentiated C2C12 myotubes to doxorubicin (0.2 μM). Doxorubicin decreased myotube width 48 h following exposure, along with a 40-50% reduction in myosin and sarcomeric actin. Cytosolic oxidant activity was elevated in myotubes 2 h following doxorubicin exposure. This increase in oxidants was followed by an increase in the E3 ubiquitin ligase atrogin-1/muscle atrophy F-box (MAFbx) and caspase-3. Treating myotubes with SS31 (opposes mitochondrial ROS) inhibited expression of ROS-sensitive atrogin-1/MAFbx and protected against doxorubicin-stimulated catabolism. These findings suggest doxorubicin acts via mitochondrial ROS to stimulate myotube atrophy.  相似文献   

12.
TRIM32 is a member of the TRIpartite Motif family characterised by the presence of an N-terminal three-domain-module that includes a RING domain, which confers E3 ubiquitin ligase activity, one or two B-box domains and a Coiled-Coil region that mediates oligomerisation. Several TRIM32 substrates were identified including muscular proteins and proteins involved in cell cycle regulation and cell motility. As ubiquitination is a versatile post-translational modification that can affect target turnover, sub-cellular localisation or activity, it is likely that diverse substrates may be differentially affected by TRIM32-mediated ubiquitination, reflecting its multi-faceted roles in muscle physiology, cancer and immunity. With particular relevance for muscle physiology, mutations in TRIM32 are associated with autosomal recessive Limb-Girdle Muscular Dystrophy 2H, a muscle-wasting disease with variable clinical spectrum ranging from almost asymptomatic to wheelchair-bound patients. In this review, we will focus on the ability of TRIM32 to mark specific substrates for proteasomal degradation discussing how the TRIM32-proteasome axis may (i) be important for muscle homeostasis and for the pathogenesis of muscular dystrophy; and (ii) define either an oncogenic or tumour suppressive role for TRIM32 in the context of different types of cancer.  相似文献   

13.
TRIM32, which belongs to the tripartite motif (TRIM) protein family, has the RING finger, B-box, and coiled-coil domain structures common to this protein family, along with an additional NHL domain at the C terminus. TRIM32 reportedly functions as an E3 ligase for actin, a protein inhibitor of activated STAT y (PIASy), dysbindin, and c-Myc, and it has been associated with diseases such as muscular dystrophy and epithelial carcinogenesis. Here, we identify a new substrate of TRIM32 and propose a mechanism through which TRIM32 might regulate apoptosis. Our overexpression and knockdown experiments demonstrate that TRIM32 sensitizes cells to TNFα-induced apoptosis. The RING domain is necessary for this pro-apoptotic function of TRM32 as well as being responsible for its E3 ligase activity. TRIM32 colocalizes and directly interacts with X-linked inhibitor of apoptosis (XIAP), a well known cancer therapeutic target, through its coiled-coil and NHL domains. TRIM32 overexpression enhances XIAP ubiquitination and subsequent proteasome-mediated degradation, whereas TRIM32 knockdown has the opposite effect, indicating that XIAP is a substrate of TRIM32. In vitro reconstitution assay reveals that XIAP is directly ubiquitinated by TRIM32. Our novel results collectively suggest that TRIM32 sensitizes TNFα-induced apoptosis by antagonizing XIAP, an anti-apoptotic downstream effector of TNFα signaling. This function may be associated with TRIM32-mediated tumor suppressive mechanism.  相似文献   

14.
In mitosis, the anaphase-promoting complex (APC) regulates the onset of sister-chromatid separation and exit from mitosis by mediating the ubiquitination and degradation of the securin protein and mitotic cyclins. With the use of a baculoviral expression system, we have reconstituted the ubiquitin ligase activity of human APC. In combination with Ubc4 or UbcH10, a heterodimeric complex of APC2 and APC11 is sufficient to catalyze the ubiquitination of human securin and cyclin B1. However, the minimal APC2/11 ubiquitin ligase module does not possess substrate specificity, because it also ubiquitinates the destruction box deletion mutants of securin and cyclin B1. Both APC11 and UbcH10 bind to the C-terminal cullin homology domain of APC2, whereas Ubc4 interacts with APC11 directly. Zn(2+)-binding and mutagenesis experiments indicate that APC11 binds Zn(2+) at a 1:3 M ratio. Unlike the two Zn(2+) ions of the canonical RING-finger motif, the third Zn(2+) ion of APC11 is not essential for its ligase activity. Surprisingly, with Ubc4 as the E2 enzyme, Zn(2+) ions alone are sufficient to catalyze the ubiquitination of cyclin B1. Therefore, the Zn(2+) ions of the RING finger family of ubiquitin ligases may be directly involved in catalysis.  相似文献   

15.
Salmonella translocate a group of type III effectors into the host cells to induce entry, promote survival and cause intestinal inflammation. Although the biochemical and cellular mechanisms of how bacterial effectors function inside host cells remain largely unknown, studies have indicated that a likely strategy is to exploit host cellular pathways through functional mimicry. We report here that SopA, a Salmonella type III effector, mimics the mammalian HECT E3 ubiquitin ligase. SopA preferentially uses the host UbcH5a, UbcH5c and UbcH7 as E2s, which are involved in inflammation. Both the wild-type SopA and the mutant SopAC753S were expressed and translocated at similar levels during the infection of HeLa cells. A Salmonella strain expressing a catalytically incompetent SopAC753S mutant had reduced Salmonella-induced polymorphonuclear leukocytes transepithelial migration. We speculate that SopA ubiquitinate bacterial/host proteins involved in Salmonella-induced intestinal inflammation.  相似文献   

16.
Specificity of neurotrophin factor signaling is dictated through the action of Trk receptor tyrosine kinases. Once activated, Trk receptors are internalized and targeted for degradation. However, the mechanisms implicated in this process are incompletely understood. Here we report that the Trk receptors are multimonoubiquitinated in response to neurotrophins. We have identified an E3 ubiquitin ligase, Nedd4-2, that associates with the TrkA receptor and is phosphorylated upon NGF binding. The binding of Nedd4-2 to TrkA through a PPXY motif leads to the ubiquitination and downregulation of TrkA. Activated TrkA receptor levels and the survival of NGF-dependent sensory neurons, but not BDNF-dependent sensory neurons, are directly influenced by Nedd4-2 expression. Unexpectedly, Nedd4-2 does not bind or ubiquitinate related TrkB receptors, due to the lack of a consensus PPXY motif. Our results indicate that Trk neurotrophin receptors are differentially regulated by ubiquitination to modulate the survival of neurons.  相似文献   

17.
PDZ motifs are protein–protein interaction domains that often bind to COOH-terminal peptide sequences. The two PDZ proteins characterized in skeletal muscle, syntrophin and neuronal nitric oxide synthase, occur in the dystrophin complex, suggesting a role for PDZ proteins in muscular dystrophy. Here, we identify actinin-associated LIM protein (ALP), a novel protein in skeletal muscle that contains an NH2-terminal PDZ domain and a COOH-terminal LIM motif. ALP is expressed at high levels only in differentiated skeletal muscle, while an alternatively spliced form occurs at low levels in the heart. ALP is not a component of the dystrophin complex, but occurs in association with α-actinin-2 at the Z lines of myofibers. Biochemical and yeast two-hybrid analyses demonstrate that the PDZ domain of ALP binds to the spectrin-like motifs of α-actinin-2, defining a new mode for PDZ domain interactions. Fine genetic mapping studies demonstrate that ALP occurs on chromosome 4q35, near the heterochromatic locus that is mutated in fascioscapulohumeral muscular dystrophy.  相似文献   

18.
This review of androgen receptor (AR) coregulators, which also function as actin-binding proteins, intends to establish the connection between actin cytoskeletal components and androgen signaling, especially in skeletal muscle. In cellular and animal models, androgen activated AR modulates myoblasts proliferation, promotes sexual dimorphic muscle development, and alters muscle fiber type. In the clinical setting, administration of anabolic androgens can decrease cachexia and speed wound healing. During myogenesis and regeneration of skeletal muscle in embryo and adult, the membrane of myoblasts fuse and the actin cytoskeleton is rearranged to form an alignment with myosin to form myotubes then ultimately the myofibrils. Contraction of skeletal muscle promotes the growth of myocytes by coordinating signals from the neuromuscular junction to intra-myofibrils through costameres, the functional structure comprised of signal proteins closely associated with actin filaments and involved in muscular dystrophy. Therefore, the discovery of actin-binding proteins functioning as AR coregulators implies that androgen signaling is tightly regulated during the process of the development and regeneration of skeletal muscle. The search for selective androgen receptor modulators (SARM) that act precisely in skeletal muscle instead of other tissues could target the engineering of a SARM-AR complex that selectively recruits these coregulators.  相似文献   

19.
The E2 ubiquitin-conjugating enzymes UbcH7 and UbcH5B both show specific binding to the RING (really interesting new gene) domain of the E3 ubiquitin-protein ligase c-Cbl, but UbcH7 hardly supports ubiquitination of c-Cbl and substrate in a reconstituted system. Here, we found that neither structural changes nor subtle differences in the E2-E3 interaction surface are possible explanations for the functional specificity of UbcH5B and UbcH7 in their interaction with c-Cbl. The quick transfer of ubiquitin from the UbcH5B∼Ub thioester to c-Cbl or other ubiquitin acceptors suggests that UbcH5B might functionally be a relatively pliable E2 enzyme. In contrast, the UbcH7∼Ub thioester is too stable to transfer ubiquitin under our assay conditions, indicating that UbcH7 might be a more specific E2 enzyme. Our results imply that the interaction specificity between c-Cbl and E2 is required but not sufficient for transfer of ubiquitin to potential targets.  相似文献   

20.
The post‐translational modification of DNA repair and checkpoint proteins by ubiquitin and small ubiquitin‐like modifier (SUMO) critically orchestrates the DNA damage response (DDR). The ubiquitin ligase RNF4 integrates signaling by SUMO and ubiquitin, through its selective recognition and ubiquitination of SUMO‐modified proteins. Here, we define a key new determinant for target discrimination by RNF4, in addition to interaction with SUMO. We identify a nucleosome‐targeting motif within the RNF4 RING domain that can bind DNA and thereby enables RNF4 to selectively ubiquitinate nucleosomal histones. Furthermore, RNF4 nucleosome‐targeting is crucially required for the repair of TRF2‐depleted dysfunctional telomeres by 53BP1‐mediated non‐homologous end joining.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号