首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biomarker discovery results in the creation of candidate lists of potential markers that must be subsequently verified in plasma.1 The most mature methods at present require abundant protein depletion and fractionation at the protein/peptide levels in order to detect and quantitate low ng/mL concentrations of plasma proteins by stable isotope dilution mass spectrometry. Sample-processing methods with sufficient throughput, recovery, and reproducibility to enable robust detection and quantitation of candidate bio-marker proteins were evaluated by adding five non-native proteins to immunoaffinity-depleted female plasma at varying concentrations (1000, 100, 50, 25, and 10 ng/mL). Each protein was monitored by one or more representative synthetic tryptic peptides labeled with [13C6]leucine or [13C5] valine. Following reduction, carbamidomethylation, and enzymatic digestion, two separate processing paths were compared. In path 1, digested plasma was diluted 1:10 and [13C] internal standards were added just prior to direct analysis by multiple reaction monitoring with LC-MS/MS (MRM LC-MS/MS). In path 2, peptides were separated by strong cation exchange, and [13C] internal standards were added to corresponding SCX fractions prior to analysis by MRM LC-MS/MS. Detection and quantitation by MRM used the response of at least two product ions from each of the signature peptides. Using processing path 1, we achieved detection and quantitation down to 50 ng/mL in depleted plasma. However, using processing path 2, we achieved detection and quantitation of all spiked proteins, including the non-native protein at 10 ng/mL. While analysis of non-fractionated plasma achieved higher recovery of those proteins detected in both processes, SCX fractionation at the peptide level clearly increases detection and LOQs for potential biomarker proteins in plasma.  相似文献   

2.
Isotope dilution is currently the most accurate technique in humans to determine vitamin A status and bioavailability/bioconversion of provitamin A carotenoids such as β-carotene. However, limits of MS detection, coupled with extensive isolation procedures, have hindered investigations of physiologically-relevant doses of stable isotopes in large intervention trials. Here, a sensitive liquid chromatography-tandem mass spectrometry (LC/MS/MS) analytical method was developed to study the plasma response from coadministered oral doses of 2 mg [13C10]β-carotene and 1 mg [13C10]retinyl acetate in human subjects over a 2 week period. A reverse phase C18 column and binary mobile phase solvent system separated β-carotene, retinol, retinyl acetate, retinyl linoleate, retinyl palmitate/retinyl oleate, and retinyl stearate within a 7 min run time. Selected reaction monitoring of analytes was performed under atmospheric pressure chemical ionization in positive mode at m/z 537→321 and m/z 269→93 for respective [12C]β-carotene and [12C] retinoids; m/z 547→330 and m/z 274→98 for [13C10]β-carotene and [13C5] cleavage products; and m/z 279→100 for metabolites of [13C10]retinyl acetate. A single one-phase solvent extraction, with no saponification or purification steps, left retinyl esters intact for determination of intestinally-derived retinol in chylomicrons versus retinol from the liver bound to retinol binding protein. Coadministration of [13C10]retinyl acetate with [13C10]β-carotene not only acts as a reference dose for inter-individual variations in absorption and chylomicron clearance rates, but also allows for simultaneous determination of an individual''s vitamin A status.  相似文献   

3.
A specific, sensitive and accurate quantitation method for glyceryl trinitrate was developed using gas chromatography—negative ion chemical ionization—selected ion monitoring with dichloromethane as a reagent gas. [15N3] and [2H5, 15N3] variants were synthesized from non-labelled or [2H8]glycerol and [15N]nitric acid. The former variant was used for preventing adsorption of glyceryl trinitrate onto active sites on column materials and the latter was used as an internal standard for quantitation of glyceryl trinitrate in biological fluids by selected ion monitoring. The quantitation limit of this method is 0.1 ng/ml of human plasma. When glyceryl trinitrate was administered intravenously in the dose of 4 μg/kg to patients receiving hypotensive anesthesia for surgical operation, the plasma levels exhibited a biexponential decay. The mean and standard deviation of half-lives of the α and β phases were found to be about 0.41 ± 0.13 and 5.34 ± 1.60 min, respectively.  相似文献   

4.
A simple and rapid method with high performance liquid chromatography/tandem mass spectrometry is described for the quantitation of the kinase inhibitor sorafenib and its active metabolite sorafenib N-oxide in human plasma. A protein precipitation extraction procedure was applied to 50 μL of plasma. Chromatographic separation of the two analytes, and the internal standard [2H313C]-sorafenib, was achieved on a C18 analytical column and isocratic flow at 0.3 mL/min for 4 min. Mean within-run and between-run precision for all analytes were <6.9% and accuracy was <5.3%. Calibration curves were linear over the concentration range of 50–10,000 ng/mL for sorafenib and 10–2500 ng/mL for sorafenib N-oxide. This method allows a specific, sensitive, and reliable determination of the kinase inhibitor sorafenib and its active metabolite sorafenib N-oxide in human plasma in a single analytical run.  相似文献   

5.
Perillyl alcohol (POH), a metabolite of d-limonene and a component of the lavender oil, is currently in Phase I clinical trials both as a chemopreventative and chemotherapeutic agent. In vivo, POH is metabolized to less active perillic acid (PA) and cis- and trans-dihydroperillic acids [DHPA, 4-(1′-methylethenyl)-cyclohexane-1-carboxylic acid]. Previous pharmacokinetic studies using a GC–MS method detected POH metabolites but not POH itself; thus these studies lacked information on the parent drug. The present report describes a sensitive GC–MS method for the quantitation of POH and metabolites using stable-isotopically labeled internal standards. The residue obtained from CH2Cl2 extraction of a plasma sample was silylated. The products were separated on a capillary column and analyzed by an ion-trap GC–MS using NH3 chemical ionization. POH-d3 was used as the internal standard for POH while 13C-PA-d2 was used as the internal standards for the metabolites. The quantitation limits for POH, PA, cis- and trans-DPA were <10 ng/ml using 1–2 ml plasma. The assay was validated in rat and human plasma. The assay was linear from 2 to 2000 ng/ml for POH, 10 to 1000 ng/ml for PA and trans-DHPA, and 20 to 1000 ng/ml for cis-DHPA monitored. The within-run and between-run coefficients of variation were all <8%. Preliminary pharmacokinetic data from a rat following i.v. administration of POH at 23 mg/kg and from a patient receiving POH at 500 mg/m2 p.o. was also provided. Intact POH, PA, cis- and trans-DHPA were all detected in plasma in both cases. Two new major metabolites were found in human and one in the rat plasma.  相似文献   

6.
After exposure to [U-13C3]glycerol, the liver produces primarily [1,2,3-13C3]- and [4,5,6-13C3]glucose in equal proportions through gluconeogenesis from the level of trioses. Other 13C-labeling patterns occur as a consequence of alternative pathways for glucose production. The pentose phosphate pathway (PPP), metabolism in the citric acid cycle, incomplete equilibration by triose phosphate isomerase, or the transaldolase reaction all interact to produce complex 13C-labeling patterns in exported glucose. Here, we investigated 13C labeling in plasma glucose in rats given [U-13C3]glycerol under various nutritional conditions. Blood was drawn at multiple time points to extract glucose for NMR analysis. Because the transaldolase reaction and incomplete equilibrium by triose phosphate isomerase cannot break a 13C-13C bond within the trioses contributing to glucose, the appearance of [1,2-13C2]-, [2,3-13C2]-, [5,6-13C2]-, and [4,5-13C2]glucose provides direct evidence for metabolism of glycerol in the citric acid cycle or the PPP but not an influence of either triose phosphate isomerase or the transaldolase reaction. In all animals, [1,2-13C2]glucose/[2,3-13C2]glucose was significantly greater than [5,6-13C2]glucose/[4,5-13C2]glucose, a relationship that can only arise from gluconeogenesis followed by passage of substrates through the PPP. In summary, the hepatic PPP in vivo can be detected by 13C distribution in blood glucose after [U-13C3]glycerol administration.  相似文献   

7.
A simple and precise high-performance liquid chromatographic (HPLC) assay was developed and validated for the determination of a novel angiotensin II antagonist, 1-[5-(2-cyclopropyl-5,7-dimethyl-imidazo[4,5-b]pyridin-3-ylmethyl)thiopen-2-yl)cyclopent-3-enecarboxylic acid (CP-191,166, I), in dog and rat plasma. The internal standard (II, a saturated derivative of I) and analyte were extracted by liquid-liquid extraction using methyl tert.-butyl ether. Samples were analyzed by reversed-phase HPLC using a Zorbax C8 narrow-bore column with ultraviolet detection at 289 nm. The quantitation limit of I was 10 ng/ml and the calibration curve was linear over the range of 0.01–10.0 μg/ml (r2>0.99). In dog and rat plasma, intra- and inter-assay precision ranged from 0.00 to 3.36% and 0.00 to 4.95%, respectively. The average recoveries were similar (73%) for both I and II and the upper limit of quantification of I can be as high as 500 μg/ml. The method described has been successfully applied to the quantification of I in about 2000 dog and rat plasma samples over a nine-month period.  相似文献   

8.
We developed an isotopic technique to assess mitochondrial acetyl-CoA turnover (≈citric acid flux) in perfused rat hearts. Hearts are perfused with buffer containing tracer [13C2,2H3]acetate, which forms M5 + M4 + M3 acetyl-CoA. The buffer may also contain one or two labeled substrates, which generate M2 acetyl-CoA (e.g. [13C6]glucose or [1,2-13C2]palmitate) or/and M1 acetyl-CoA (e.g. [1-13C]octanoate). The total acetyl-CoA turnover and the contributions of fuels to acetyl-CoA are calculated from the uptake of the acetate tracer and the mass isotopomer distribution of acetyl-CoA. The method was applied to measurements of acetyl-CoA turnover under different conditions (glucose ± palmitate ± insulin ± dichloroacetate). The data revealed (i) substrate cycling between glycogen and glucose-6-P and between glucose-6-P and triose phosphates, (ii) the release of small excess acetyl groups as acetylcarnitine and ketone bodies, and (iii) the channeling of mitochondrial acetyl-CoA from pyruvate dehydrogenase to carnitine acetyltransferase. Because of this channeling, the labeling of acetylcarnitine and ketone bodies released by the heart are not proxies of the labeling of mitochondrial acetyl-CoA.  相似文献   

9.
Diphenylmethoxyacetic acid (DPMA) is a major metabolite of diphenhydramine in monkeys, dogs, and humans. The metabolic fate of diphenhydramine (DPHM) in sheep is not yet well understood; however, preliminary studies have demonstrated the presence of DPMA in the plasma and urine of sheep following an intravenous bolus of DPHM. Our current studies employ the simultaneous intravenous co-administration of DPHM and the stable isotope analog of DPHM to investigate the pharmacokinetics of DPHM in sheep. In these studies, in order to investigate the pharmacokinetics of the DPMA metabolite, measurement of both unlabeled and stable-isotope labeled DPMA is required. Thus, a stable isotope analog of DPMA ([2H10]DPMA) was synthesized, characterized, and purified for use as an analytical standard. The quantitative method for the gas chromatography—electron-impact mass spectrometry (GC—EI-MS) analysis of DPMA and [2H10]DPMA used a single step liquid-liquid extraction procedure using toluene for sample cleanup. The samples were derivatized with N-methyl-N-(tert.-butyldimethylsilyl) trifluoroacetamide. A 1.0-μl aliquot of the prepared sample was injected into the GC-MS system and quantitated using selected-ion monitoring (SIM). One ion was monitored for each compound, namely, m/z 165 for the internal standard diphenylacetic acid, m/z 183 for DPMA, and m/z 177 for [2H10]DPMA. The ion chromatograms were free from chromatographic peaks co-eluting with the compound of interest. The calibration curve was linear from 2.5 ng/ml (limit of quantitation) to 250.0 ng/ml in both urine and plasma. The intra-day and inter-day variabilities of this assay method were within acceptable limits (below 20% at the limit of quantitation and below 10% at all other concentrations). This method was used to measure the concentration of DPMA and [2H10]DPMA in plasma and urine samples from a ewe in which equimolar amounts of DPHM and [2H10]DPHM were administered by an intravenous bolus dose via the femoral vein. DPMA appeared to persist longer in the plasma and the urine as compared to DPHM. This method is robust and reliable for the quantitation of DPMA and [2H10]DPMA in biological samples obtained from sheep (e.g. plasma and urine).  相似文献   

10.
Potent agonist and antagonist analogues of luliberin containing an azaglycine residue in position 10 were synthesised and tested in androgen-sterilised constant-oestrus rats. The agonist, [D-Ser(But)6, Azgly10]-luliberin, induced ovulation at a dose of 6ng/rat i.v., 10μg/rat p.o. and was at least five times as potent as [D-Ser(But)6, des-Gly-NH210, Pro-ethylamide9]-luliberin. [D-Ser(But)6, Azgly10]-luliberin (1μg/rat) also prevented HCG-induced increases in ovarian and uterine weight in immature rats and was a highly potent antitumour agent when given to rats bearing DMBA-induced mammary tumours. The antagonist, [D-Phe2, D-Phe6, Azgly10]-luliberin at a dose of 15μg/rat completely inhibited ovulation induced by luliberin (0.5μg/rat), whereas [D-Phe2, D-Phe6]-luliberin lost activity below 125μg/rat.  相似文献   

11.
The in vitro cultured liverwort Jungermannia subulata produces the unique molecule subulatin. In this study, we examined the incorporation of [1-13C] and [1,2-13C2] glucose, [2-13C] arabinose, [2-13C] caffeic acid, and [1-13C] phenylalanine into subulatin. The trilobatinoic acid C unit of subulatin incorporated 13C atoms from [1-13C] and [1,2-13C2] glucose and from [2-13C] arabinose but not from any other of the other precursors. Based on these results and labeling patterns, the trilobatinoic acid C unit of subulatin appears to be biosynthesized from arabinose-5-phosphate and phosphoenolpyruvate.  相似文献   

12.
A multiple-label stable isotope dilution assay for quantifying glutathione (GSH), glutathione disulfide (GSSG), and glutathione sulfonic acid in erythrocytes was developed. As the internal standards, [13C3,15N]glutathione, [13C4,15N2]glutathione disulfide, and [13C3,15N]glutathione sulfonic acid were used. Analytes and internal standards were detected by LC–MS/MS after derivatization of GSH with iodoacetic acid and dansylation of all compounds under study. The calibration functions for all analytes relative to their respective isotopologic standards revealed slopes close to 1.0 and negligible intercepts. As various labelings of the standards for GSH and GSSG were used, their simultaneous quantitation was possible, although GSH was partly oxidized to its disulfide during analysis. The degree of this artifact formation of GSSG was calculated from the abundance of the mixed disulfide formed from unlabeled GSH and its respective standard. Thus, the detected GSSG amount could be corrected for the artifact amount. In this way, the amount of GSSG in erythrocytes was found to be less than 0.5% of the GSH concentration. Similar to GSSG, the detected amount of glutathione sulfonic acid was found to be formed at least in part during the analytical process, but the degree could not be quantified.  相似文献   

13.
A high-performance liquid chromatographic method has been developed and tested for simultaneous extraction, elution and determination of doxorubicin and prochlorperazine content in human plasma samples. The procedure consists of extraction through a conditioned C18 solid-phase extraction cartridge, elution from a Spherisorb C8 reversed-phase column by an isocratic mobile phase (60% acetonitrile, 15% methanol and 25% buffer) followed by detection with electrochemical and fluorescence detectors. Recovery of doxorubicin and prochlorperazine from pooled human plasma samples (n=3) containing 100 ng/ml of the two drugs was 77.8±3.5% and 89.1±6.0%, respectively. The lower limits of quantitation for doxorubicin and prochlorperazine in plasma samples were 6.25 ng/ml and 10 ng/ml, respectively. A linear calibration curve was obtained for up to 2 μg/ml of doxorubicin and prochlorperazine. This combination method may be of particular value in clinical studies where phenothiazines such as prochlorperazine are used to enhance retention of doxorubicin in drug resistant tumor cells.  相似文献   

14.
Summary [2-13C]-L-lysine, [3,4-13C2]-L-lysine and [5,6-13C2]-L-lysine are prepared from simple, commercially available, highly enriched starting materials as [2-13C]-glycine, ethyl [1,2-13C2]-bromo acetate, and [1,2-13C2]-acetonitrile. The introduction of the chiral center is based on a general method starting from the bis-lactim ether of cyclo-(D-Val-Gly). The synthesis of (2R)-[5-13C]-3,6-diethoxy-2,5-dihydro-2-isopropylpyrazine is described. The availability of our method for the preparation of specifically enriched bis-lactim ethers allows the synthesis of a great variety of site specific isotopically labelled (L- and D-)-amino acids. Moreover, intermediate 4-[(2R,5S)-3,6-diethoxy-2,5-dihydro-2-isopropyl-5-pyrazinyl]butyronitrile is a valuable precursor in the synthesis of L--aminoadipic acid. The synthetic scheme in this publication makes both L-lysine and L--aminoadipic acid13C- or15N-labelled at any position, easily available. The isotopomers of lysine are obtained on a preparative scale in good yields, with 99%13C and high enantiomeric purity (>97% e.e.). Three isotopomers are characterized using various spectroscopic techniques,e.g.,1H NMR,13C NMR and Mass spectrometry.  相似文献   

15.
Indole-3-acetaldoxime (IAOx) is a branch point compound of tryptophan (Trp) metabolism in glucosinolate-producing species such as Arabidopsis, serving as a precursor to indole-glucosinolates (IGs), the defense compound camalexin, indole-3-acetonitrile (IAN) and indole-3-acetic acid (IAA). We synthesized [2H5] and [13C1015N2]IAOx and [13C6], [2H5] and [2′,2′-2H2]IAN in order to quantify endogenous IAOx and IAN in Arabidopsis and tobacco, a non-IG producing species. We found that side chain-labeled [2′,2′-2H2]IAN overestimated the amount of IAN by 2-fold compared to when [2H5]IAN was used as internal standard, presumably due to protium-deuterium exchange within the internal standard during extraction of plant tissue. We also determined that [13C1]IAN underestimated the amount of IAN when the ratio of [13C1]IAN standard to endogenous IAN was greater than five to one, whereas either [2H5]IAN or [13C6]IAN showed a linear relationship with endogenous IAN over a broader range of concentrations. Transgenic tobacco vector control lines did not have detectable levels of IAOx or IAN (limit of detection ∼ 100 pg/g fr. wt), while lines expressing either the IAOx-producing CYP79B2 or CYP79B3 genes from Arabidopsis under CaMV 35S promoter control accumulated IAOx in the range of 1-9 μg/g fr. wt. IAN levels in these lines ranged from 0.6 to 6.7 μg/g fr. wt, and IAA levels were ∼9-14-fold above levels in control lines. An Arabidopsis line expressing the same CYP79B2 overexpression construct accumulated IAOx in two of three lines measured (∼200 and 400 ng/g fr. wt) and accumulated IAN in all three lines. IAN is proposed to be a metabolite of IAOx or an enzymatic breakdown product of IGs induced upon tissue damage. Since tobacco does not produce detectable IGs, the tobacco data are consistent with IAN being a metabolite of IAOx. IAOx and IAN were also examined in the Arabidopsis activation tagged yucca mutant, and no accumulation of IAOx was found above the limits of detection but accumulation of IAN (3-fold above wt) occurred. The latter was surprising in light of recent reports that rule out IAOx and IAN as intermediates in YUCCA-mediated IAA synthesis.  相似文献   

16.
This study investigates the effects of ethanol on neuronal and astroglial metabolism using 1H‐[13C]‐NMR spectroscopy in conjunction with infusion of [1,6‐13C2]/[1‐13C]glucose or [2‐13C]acetate, respectively. A three‐compartment metabolic model was fitted to the 13C turnover of GluC3, GluC4, GABAC2, GABAC3, AspC3, and GlnC4 from [1,6‐13C2]glucose to determine the rates of tricarboxylic acid (TCA) and neurotransmitter cycle associated with glutamatergic and GABAergic neurons. The ratio of neurotransmitter cycle to TCA cycle fluxes for glutamatergic and GABAegic neurons was obtained from the steady‐state [2‐13C]acetate experiment and used as constraints during the metabolic model fitting. 1H MRS measurement suggests that depletion of ethanol from cerebral cortex follows zero order kinetics with rate 0.18 ± 0.04 μmol/g/min. Acute exposure of ethanol reduces the level of glutamate and aspartate in cortical region. GlnC4 labeling was found to be unchanged from a 15 min infusion of [2‐13C]acetate suggesting that acute ethanol exposure does not affect astroglial metabolism in naive mice. Rates of TCA and neurotransmitter cycle associated with glutamatergic and GABAergic neurons were found to be significantly reduced in cortical and subcortical regions. Acute exposure of ethanol perturbs the level of neurometabolites and decreases the excitatory and inhibitory activity differentially across the regions of brain.

  相似文献   


17.
Isolated hepatocytes from fed rats were exposed for 120 min to D-glucose (10 mM) and either D-[1-13C]fructose, D-[2-13C]fructose or D-[6-13C]fructose (also 10 mM) in the presence of D2O. The identification and quantification of 13C-enriched D-fructose and its metabolites (D-glucose, L-lactate, L-alanine) in the incubation medium and the measurement of their deuterated isotopomers indicated, by comparison with a prior study conducted in the absence of exogenous D-glucose, that the major effects of the aldohexose were to increase the recovery of 13C-enriched D-fructose, decrease the production of 13C-enriched D-glucose, restrict the deuteration of the 13C-enriched isotopomers of D-glucose to those generated by cells exposed to D-[2-13C]fructose, and to accentuate the lesser deuteration of the C2 (as compared to C5) of 13C-enriched D-glucose derived from D-[2-13C]fructose. The ratio between C2-deuterated and C2-hydrogenated L-lactate, as well as the relative amounts of the CH3-, CH2D-, CHD2 and CD3- isotopomers of 13C-enriched L-lactate were not significantly different, however, in the absence or presence of exogenous D-glucose. These findings indicate that exogenous D-glucose suppressed the deuteration of the C1 of D-[1-13C]glucose generated by hepatocytes exposed to D-[1-13C]fructose or D-[6-13C]fructose, as otherwise attributable, in part at least, to gluconeogenesis from fructose-derived [3-13C]pyruvate, and apparently favoured the phosphorylation of D-fructose by hexokinase isoenzymes, probably through stimulation of D-fructose phosphorylation by glucokinase.  相似文献   

18.
[13C]Formaldehyde was selectively incorporated into the C-1 position of D-fructose 6-phosphate by condensation with D-ribulose 5-phosphate catalyzed by a partially purified enzyme system for formaldehyde fixation in Methylomonas aminofaciens 77a. Much of the [1-13C]D-fructose 6-phosphate produced in this reaction was converted to [1-13C]D-glucose 6-phosphate by the addition of glucose-6-phosphate isomerase. A fed-batch reaction with periodic additions of the substrates afforded 56.2 g/liter D-glucose 6-phosphate and 26.8g/liter D-fructose 6-phosphate. When [13C]methanol was used as the C1-donor, the yield of [1-13C]D-glucose 6-phosphate was high when alcohol oxidase was added. The optimum conditions for sugar phosphate production in the fed-batch reaction gave 45.6g/liter [1-13C]D-glucose 6-phosphate and 16.4g/liter [1-13C]D-fructose 6-phosphate in 165min. The molar yield of the total sugar phosphates to methanol added was 95%. The addition of H2O2 and catalase to the reaction system supplied molecular oxygen for methanol oxidation to formaldehyde by alcohol oxidase.  相似文献   

19.
A sensitive, specific and rapid reversed-phase high-performance liquid chromatographic (HPLC) assay was developed for the quantitation of melphalan and its hydrolysis products in samples from the isolated perfusion of human and rat limbs. Samples of perfusate, plasma and tissue were analysed, following methanol precipitation, using a phenyl column and fluorescence detection. Dansyl-arginine (38 μg ml−1) was employed as the internal standard. Good resolution was observed allowing quantitation of melphalan, monohydroxymelphalan (MOH) and dihydroxymelphalan (DOH) in perfusate and plasma and melphalan in tissue. The mean recoveries of melphalan, MOH and DOH from perfusate and plasma were all 100 ± 10%. The recovery of melphalan in tissue was 93.5%. A linear response was demonstrated for melphalan in the concentration range 1.8–56.8 μg ml−1, for DOH in the concentration range 0.5–30.0 μg ml−1 and for MOH in the range 1.4–25.1 μg ml−1, in perfusate and plasma. The lower limits of quantitation of melphalan, MOH and DOH in perfusate and plasma were 1.4, 2.4 and 1.2 ng on column, respectively, and 7.2 ng of melphalan on column in tissue. Intra-assay coefficients of variation (C.V.) for melphalan, MOH and DOH, at low and high concentrations were all less than 5% and the inter-assay C.V.s were less than 9%. An ultra-filtration study to determine the protein binding of melphalan and the hydrolysis products showed that the unbound fractions (fu) of melphalan in buffer containing dextran and bovine serum albumin were 0.873 and 0.521, respectively. The assay was used to quantitate melphalan and its hydrolysis products in samples from isolated perfusions in the human limb and rat hindlimb.  相似文献   

20.
Acyl-CoA:diacylglycerol acyltransferase (DGAT) catalyzes the terminal step in triglyceride (TG) synthesis using diacylglycerol (DAG) and fatty acyl-CoA as substrates. In the liver, the production of VLDL permits the delivery of hydrophobic TG from the liver to peripheral tissues for energy metabolism. We describe here a novel high-content, high-throughput LC/MS/MS-based cellular assay for determining DGAT activity. We treated endogenous DGAT-expressing cells with stable isotope-labeled [13C18]oleic acid. The [13C18]oleoyl-incorporated TG and DAG lipid species were profiled. The TG synthesis pathway assay was optimized to a one-step extraction, followed by LC/MS/MS quantification. Further, we report a novel LC/MS/MS method for tracing hepatic TG synthesis and VLDL-TG secretion in vivo by administering [13C18]oleic acid to rats. The [13C18]oleic acid-incorporated VLDL-TG was detected after one-step extraction without conventional separation of TG and recovery by derivatizing [13C18]oleic acid for detection. Using potent and selective DGAT1 inhibitors as pharmacological tools, we measured changes in [13C18]oleoyl-incorporated TG and DAG and demonstrated that DGAT1 inhibition significantly reduced [13C18]oleoyl-incorporated VLDL-TG. This DGAT1-selective assay will enable researchers to discern differences between the roles of DGAT1 and DGAT2 in TG synthesis in vitro and in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号