首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We have previously shown that naive SJL (H-2(s)) mice, which are highly susceptible to myelin proteolipid protein (PLP)-induced experimental autoimmune encephalomyelitis (EAE), have a very high frequency (1/20,000 CD4 T cells) of PLP(139-151)-reactive T cells in the naive repertoire. In this study, we examine the function of this endogenous PLP(139-151)-reactive repertoire in vivo and find that this repertoire encompasses the precursors of pathogenic T cells. Because SJL mice do not develop spontaneous EAE, we have explored the mechanisms that keep this autopathogenic repertoire in check and prevent the development of spontaneous autoimmunity. We crossed IL-4 and IL-10 deficiency onto the SJL background and analyzed the roles of these two immunoregulatory cytokines in regulating the size and effector function of the endogenous PLP(139-151)-reactive repertoire and development of autoimmune disease. We find that IL-10 is important in the homeostatic regulation of the endogenous PLP(139-151)-reactive repertoire in that it both limits the size of the repertoire and prevents development of effector autoaggressive T cells. SJL IL-10(-/-) mice with high numbers of PLP(139-151)-specific precursors in the repertoire did not develop spontaneous EAE, but when they were injected with pertussis toxin, they showed atypical clinical signs of EAE with small numbers of typical mononuclear cell infiltrates predominantly in the meninges. EAE could be inhibited by prior tolerization of the mice with soluble PLP(139-151) peptide. These findings indicate that IL-10 may contribute to the regulation of the endogenous autoimmune repertoire.  相似文献   

2.
Studies of human and murine T cells have shown that public TCR beta-chain rearrangements can dominate the Ag-specific and naive repertoires of distinct individuals. We show that mouse T cells responding to the minor histocompatibility Ag HYDbSmcy share an invariant Vbeta8.2-Jbeta2.3 TCR gene rearrangement. The dominance of this rearrangement shows that it successfully negotiated thymic selection and was highly favored during clonal expansion in all animals examined. We hypothesized that such beta-chains are advantaged during thymic and/or peripheral selection and, as a result, may be over-represented in the naive repertoire. A sequencing study was undertaken to examine the diversity of Vbeta8.2-Jbeta2.3 CDR3 loops from naive T cell repertoires of multiple mice. Public TCR beta-chain sequences were identified across different repertoires and MHC haplotypes. To determine whether such public beta-chains are advantaged during thymic selection, individual chains were followed through T cell development in a series of novel bone marrow competition chimeras. We demonstrate that beta-chains were positively selected with similar efficiency regardless of CDR3 loop sequence. Therefore, the establishment and maintenance of public beta-chains in the periphery is predominantly controlled by post-thymic events through modification of the primary, thymus-derived TCR repertoire.  相似文献   

3.
Chronic progression of two T cell-mediated central nervous system (CNS) demyelinating models of multiple sclerosis, relapsing EAE (R-EAE) and Theiler's murine encephalomyelitis virus-induced demyelinating disease (TMEV-IDD) is dependent on the activation of T cells to endogenous myelin epitopes (epitope spreading). Using transfer of carboxyfluorescein succinyl ester (CFSE)-labeled T-cell receptor (TCR)-transgenic T cells and mixed bone marrow chimeras, we show that activation of naive proteolipid protein (PLP)139-151-specific T cells in SJL mice undergoing PLP178-191-induced R-EAE or TMEV-IDD occurs directly in the CNS and not in the cervical lymph nodes or other peripheral lymphoid organs. Examination of the antigen-presentation capacity of antigen-presenting cell (APC) populations purified from the CNS of mice with PLP178-191-induced R-EAE shows that only F4/80-CD11c+CD45hi dendritic cells (DCs) efficiently present endogenous antigen to activate naive PLP139-151-specific T cells in vitro. In contrast, DCs as well as F4/80+CD45hi macrophages and F4/80+CD45lo microglia activate a PLP139-151-specific helper T cell line. The data suggest that naive T cells enter the inflamed CNS and are activated by local APCs, possibly DCs, to initiate epitope spreading.  相似文献   

4.
Immunodominance in self-Ag-reactive pathogenic CD4(+) T cells has been well established in several experimental models. Although it is clear that regulatory lymphocytes (Treg) play a crucial role in the control of autoreactive cells, it is still not clear whether immunodominant CD4(+) Treg clones are also involved in control of autoreactivity. We have shown that TCR-peptide-reactive CD4(+) and CD8(+) Treg play an important role in the spontaneous recovery and resistance from reinduction of experimental autoimmune encephalomyelitis in B10.PL mice. We report, by sequencing of the TCR alpha- and beta-chain associated with CD4(+) Treg, that the TCR repertoire is limited and the majority of CD4(+) Treg use the TCR Vbeta14 and Valpha4 gene segments. Interestingly, sequencing and spectratyping data of cloned and polyclonal Treg populations revealed that a dominant public CD4(+) Treg clonotype expressing Vbeta14-Jbeta1.2 with a CDR3 length of 7 aa exists in the naive peripheral repertoire and is expanded during the course of recovery from experimental autoimmune encephalomyelitis. Furthermore, a higher frequency of CD4(+) Treg clones in the naive repertoire correlates with less severity and more rapid spontaneous recovery from disease in parental B10.PL or PL/J and (B10.PL x PL/J)F(1) mice. These findings suggest that unlike the Ag-nonspecific, diverse TCR repertoire among the CD25(+)CD4(+) Treg population, TCR-peptide-reactive CD4(+) Treg involved in negative feedback regulation of autoimmunity use a highly limited TCR V-gene repertoire. Thus, a selective set of immunodominant Treg as well as pathogenic T cell clones can be targeted for potential intervention in autoimmune disease conditions.  相似文献   

5.
Multiple sclerosis is characterized by perivascular CNS infiltration of myelin-specific CD4(+) T cells and activated mononuclear cells. TCR transgenic mice on the SJL background specific for proteolipid protein (PLP)(139-151) develop a high incidence of spontaneous experimental autoimmune encephalomyelitis (sEAE). We examined the intrinsic mechanisms regulating onset and severity of sEAE. CD4(+) T cells isolated from the cervical lymph nodes, but not spleens, of diseased 5B6 transgenic mice are hyperactivated when compared with age-matched healthy mice and produce both IFN-gamma and IL-17, indicating that the cervical lymph node is the initial peripheral activation site. The age-associated development of sEAE correlates with a decline in both the functional capacity of natural regulatory T cells (nTregs) and in PLP(139-151)-induced IL-10 production and a concomitant increase in IL-17 production. Anti-CD25-induced inactivation of nTregs increased the incidence and severity of sEAE. Conversely, induction of peripheral tolerance via the i.v. injection of PLP(139-151)-pulsed, ethylcarbodiimide-fixed APCs (PLP(139-151)-SP) inhibited the development of clinical disease concomitant with increased production of IL-10 and conversion of Foxp3(+) Tregs from CD4(+)CD25(-) progenitors. These data indicate that heterogeneous populations of Tregs regulate onset of sEAE, and that induction of peripheral tolerance can be exploited to prevent/treat spontaneous autoimmune disease.  相似文献   

6.
Detection of autoreactive T cells using MHC II tetramers is difficult because of the low affinity of their TCR. We have generated a class II tetramer using the IA(s) class II molecule combined with an autoantigenic peptide from myelin proteolipid protein (PLP; PLP(139-151)) and used it to analyze myelin PLP(139-151)-reactive T cells. Using monomers and multimerized complexes labeled with PE, we confirmed the specificity of the reagent by bioassay and flow cytometry. The IA(s) tetramers stimulated and stained the PLP(139-151)-specific 5B6 TCR transgenic T cells and a polyclonal cell line specific for PLP(139-151), but not a control T cell line specific for PLP(178-191). We used this reagent to optimize conditions to detect low affinity autoreactive T cells. We found that high pH ( approximately 8.0) and neuraminidase treatment enhances the staining capacity of PLP(139-151) tetramer without compromising specificity. Furthermore, we found that induction of calcium fluxing by tetramers in T cells may be used as a sensitive measure to detect autoreactive T cells with a low affinity. Taken together, the data show that the tetrameric reagent binds and stimulates PLP(139-151)-reactive T cells with specificity. This tetrameric reagent will be useful in studying the evolution of PLP(139-151)-specific repertoire in naive mice and its expansion during the autoimmune disease experimental autoimmune encephalomyelitis.  相似文献   

7.
Proteolipid protein (PLP) is the major protein of central nervous system myelin. SJL (H-2s) mice immunized with a synthetic peptide corresponding to PLP residues 139-151 develop acute EAE. In this study, 6 IAs-restricted, CD4+, TCR alpha beta-bearing T cell clones were derived from SJL/J mice after immunization with this synthetic peptide. The clones responded in in vitro proliferative assays to the whole PLP molecule and to PLP peptide 139-151, but not to irrelevant Ag. They also responded to truncated and overlapping forms of the peptide but five distinct reactivity patterns were observed using these peptides. A panel of anti-TCR V beta mAb and TCR V beta-specific cDNA probes were used to determine the TCR V beta usage of the clones. Five clones were found to use four different V beta (V beta 2, V beta 6, V beta 10, or V beta 17a), whereas the V beta on the sixth clone could not be identified. Five of the clones induced EAE of varying severity upon adoptive transfer into naive syngeneic mice or mice pretreated with irradiation and pertussis and one clone was nonencephalitogenic. The Ag-specific proliferative response of all but the nonencephalitogenic clone could be blocked by an anti-CD4 mAb. Thus, the clones showed differences in their fine specifity, TCR V beta usage, sensitivity to antibody blocking, and encephalitogenic potency. These data demonstrate that the T cell response to the encephalitogenic PLP peptide 139-151 is heterogeneous.  相似文献   

8.
Molecular mimicry is the process by which T cells activated in response to determinants on an infecting microorganism cross-react with self epitopes, leading to an autoimmune disease. Normally, infection of SJL/J mice with the BeAn strain of Theiler's murine encephalomyelitis virus (TMEV) results in a persistent CNS infection, leading to a chronic progressive, CD4(+) T cell-mediated demyelinating disease. Myelin damage is initiated by T cell responses to virus persisting in CNS APCs, and progressive demyelinating disease (50 days postinfection) is perpetuated by myelin epitope-specific CD4(+) T cells activated by epitope spreading. We developed an infectious model of molecular mimicry by inserting a sequence encompassing the immunodominant myelin epitope, proteolipid protein (PLP) 139-151, into the coding region of a nonpathogenic TMEV variant. PLP139-TMEV-infected mice developed a rapid onset paralytic inflammatory, demyelinating disease paralleled by the activation of PLP139-151-specific CD4(+) Th1 responses within 10-14 days postinfection. The current studies demonstrate that the early onset demyelinating disease induced by PLP139-TMEV is the direct result of autoreactive PLP139-151-specific CD4(+) T cell responses. PLP139-151-specific CD4(+) T cells from PLP139-TMEV-infected mice transferred demyelinating disease to naive recipients and PLP139-151-specific tolerance before infection prevented clinical disease. Finally, infection with the mimic virus at sites peripheral to the CNS induced early demyelinating disease, suggesting that the PLP139-151-specific CD4(+) T cells could be activated in the periphery and traffic to the CNS. Collectively, infection with PLP139-151 mimic encoding TMEV serves as an excellent model for molecular mimicry by inducing pathologic myelin-specific CD4(+) T cells via a natural virus infection.  相似文献   

9.
Central tolerance to tumor-associated Ags is an immune-escape mechanism that significantly limits the TCR repertoires available for tumor eradication. The repertoires expanded in wild-type BALB/c and rat-HER-2/neu (rHER-2) transgenic BALB-neuT mice following DNA immunization against rHER-2 were compared by spectratyping the variable (V)beta and the joining (J)beta CDR 3. Following immunization, BALB/c mice raised a strong response. Every mouse used one or more CD8+ T cell rearrangements of the Vbeta9-Jbeta1.2 segments characterized by distinct length of the CDR3 and specific for 63-71 or 1206-1214 rHER-2 peptides. In addition, two CD4+ T cell rearrangements recurred in >50% of mice. Instead, BALB-neuT mice displayed a limited response to rHER-2. Their repertoire is smaller and uses different rearrangements confined to CD4+ T cells. Thus, central tolerance in BALB-neuT mice acts by silencing the BALB/c mice self-reactive repertoire and reducing the size of the CD8+ T cell component. CD8+ and CD4+ T cells from both wild-type and transgenic mice home to tumors. This definition of the T cell repertoires available is critical to the designing of immunological maneuvers able to elicit an effective immune reaction against HER-2-driven carcinogenesis.  相似文献   

10.
Female B10.S mice are highly resistant to proteolipid protein (PLP) 139-151-induced experimental autoimmune encephalomyelitis (EAE) and depletion of PLP 139-151-reactive CD4+CD25+ regulatory T (Treg) cells can slightly increase their EAE susceptibility. Although male B10.S mice are moderately susceptible to EAE, we report that depletion of Treg cells in male B10.S mice before immunization with PLP 139-151 renders them highly susceptible to severe EAE with more CNS neutrophil infiltrates than nondepleted controls. Increased susceptibility is associated with an enhanced PLP 139-151-specific T cell response and greater production of IFN-gamma, IL-6, and IL-17. Male CD4+CD25- effector cells depleted of Treg cells proliferate to a greater degree than those from females in response to either anti-CD3 or PLP 139-151. These data suggest that because of their capacity to regulate potent autoaggressive effector cells, Treg cells partly contribute to the resistance to autoimmunity in the male mice.  相似文献   

11.
We previously described a synthetic peptide of myelin proteolipid protein (PLP), peptide 139-151, which induces experimental allergic encephalomyelitis in SJL/J (H-2s) mice. We have now identified an additional determinant, PLP residues 178-191, that is also a potent encephalitogen in this strain. When PLP peptide 178-191 was compared with peptide 139-151 on an equimolar basis, the day of onset of disease induced by PLP 178-191 was earlier, but the incidence, severity, and histologic features were indistinguishable. Lymph node cells from animals immunized with the whole PLP molecule responded to both PLP 178-191 and 139-151, suggesting immunologic codominance of the two epitopes. PLP 178-191 elicited stronger proliferative responses and this may relate to the earlier onset of disease induced with this peptide. Two CD4+, peptide-specific, I-A(s)-restricted T cell lines, selected by stimulation of lymph node cells with either PLP 178-191 or 139-151, were each encephalitogenic in naive syngeneic mice. The presence of multiple encephalitogenic codominant PLP epitopes within a single mouse strain emphasizes the complexity of the immune response to PLP and its potential as a target Ag in autoimmune demyelinating diseases.  相似文献   

12.
The NK1.1(+)TCRalphabeta(int) CD4(+), or double negative T cells (NK T cells) consist of a mixture of CD1d-restricted and CD1d-unrestricted cells. The relationships between CD4(+)NK1.1(+) T cells and conventional T cells are not understood. To compare their respective TCR repertoires, NK1.1(+)TCRalphabeta(int), CD4(+) T cells have been sorted out of the thymus, liver, spleen, and bone marrow of C57BL/6 mice. Molecular analysis showed that thymus and liver used predominantly the Valpha14-Jalpha281 and Vbeta 2, 7, and 8 segments. These cells are CD1d restricted and obey the original definition of NK T cells. The complementarity-determining region 3 (CDR3) sequences of the TCR Vbeta8.2-Jbeta2.5 chain of liver and thymus CD4(+) NK T cells were determined and compared with those of the same rearrangements of conventional CD4(+) T cells. No amino acid sequence or usage characteristic of NK T cells could be evidenced: the Vbeta8.2-Jbeta2.5 diversity regions being primarily the same in NK T and in T cells. No clonal expansion of the beta-chains was observed in thymus and liver CD1d-restricted CD4(+)NK T cells, suggesting the absence of acute or chronic Ag-driven stimulation. Molecular analysis of the TCR used by Valpha14-Jalpha281 transgenic mice on a Calpha(-/-) background showed that the alpha-chain can associate with beta-chains using any Vbeta segment, except in NK T cells in which it paired predominately with Vbeta 2, 7, and 8(+) beta-chains. The structure of the TCR of NK T cells thus reflects the affinity for the CD1d molecule rather than a structural constraint leading to the association of the invariant alpha-chain with a distinctive subset of Vbeta segment.  相似文献   

13.
Synthetic peptides of proteolipid protein (PLP) were screened for their ability to induce experimental autoimmune encephalomyelitis (EAE) in SJL/J, PL/J, and (SJL x PL)F1 mice, and T cell lines were selected by stimulation of lymph node cells with PLP peptides. PLP 141-151 was found to be less encephalitogenic in SJL/J mice than PLP 139-151, due to deletion of two amino acids from the amino-terminal end. PLP 139-151 immunization induced relapsing EAE in SJL/J and F1 mice but not PL/J mice. In contrast, PLP 43-64 induced relapsing EAE in PL/J and F1 mice but not SJL/J mice. F1 T cell lines specific for either PLP 43-64 or PLP 139-151 adoptively transferred demyelinating EAE to naive F1 recipients. Haplotypes H-2s and H-2u appear to be immunologically co-dominant in F1 mice in the PLP EAE system, which differs from the H-2u dominance in F1 mice in the myelin basic protein EAE system. The identification of a PLP peptide that is encephalitogenic in PL/J mice, in addition to the previous demonstration of PLP peptides that are encephalitogenic for SWR mice (PLP 103-116) and SJL/J mice (PLP 139-151), lends support to a role for PLP as a target Ag in autoimmune demyelinating diseases.  相似文献   

14.
We recently reported that Acanthamoeba castellanii (ACA), an opportunistic pathogen of the central nervous system (CNS) possesses mimicry epitopes for proteolipid protein (PLP) 139–151 and myelin basic protein 89–101, and that the epitopes induce experimental autoimmune encephalomyelitis (EAE) in SJL mice reminiscent of the diseases induced with their corresponding cognate peptides. We now demonstrate that mice infected with ACA also show the generation of cross-reactive T cells, predominantly for PLP 139–151, as evaluated by T cell proliferation and IAs/dextramer staining. We verified that PLP 139–151-sensitized lymphocytes generated in infected mice contained a high proportion of T helper 1 cytokine-producing cells, and they can transfer disease to naïve animals. Likewise, the animals first primed with suboptimal dose of PLP 139–151 and later infected with ACA, developed EAE, suggesting that ACA infection can trigger CNS autoimmunity in the presence of preexisting repertoire of autoreactive T cells. Taken together, the data provide novel insights into the pathogenesis of Acanthamoeba infections, and the potential role of infectious agents with mimicry epitopes to self-antigens in the pathogenesis of CNS diseases such as multiple sclerosis.  相似文献   

15.
Relapsing experimental autoimmune encephalomyelitis (R-EAE) is a CD4+ T cell-mediated demyelinating disease model for multiple sclerosis. Myelin destruction during the initial relapsing phase of R-EAE in SJL mice initiated by immunization with the proteolipid protein (PLP) epitope PLP139-151 is associated with activation of T cells specific for the endogenous, non-cross-reactive PLP178-191 epitope (intramolecular epitope spreading), while relapses in R-EAE induced with the myelin basic protein (MBP) epitope MBP84-104 are associated with PLP139-151-specific responses (intermolecular epitope spreading). Here, we demonstrate that T cells specific for endogenous myelin epitopes play the major pathologic role in mediating clinical relapses. T cells specific for relapse-associated epitopes can serially transfer disease to naive recipients and are demonstrable in the CNS of mice with chronic R-EAE. More importantly, induction of myelin-specific tolerance to relapse-associated epitopes, by i.v. injection of ethylene carbodiimide-fixed peptide-pulsed APCs, either before disease initiation or during remission from acute disease effectively blocks the expression of the initial disease relapse. Further, blockade of B7-1-mediated costimulation with anti-B7-1 F(ab) during disease remission from acute PLP139-151-induced disease prevents clinical relapses by inhibiting activation of PLP178-191-specific T cells. The protective effects of anti-B7-1 F(ab) treatment are long-lasting and highly effective even when administered following the initial relapsing episode wherein spreading to a MBP epitope (MBP84-104) is inhibited. Collectively, these data indicate that epitope spreading is B7-1 dependent, plays a major pathologic role in disease progression, and follows a hierarchical order associated with the relative encephalitogenic dominance of the myelin epitopes (PLP139-151 > PLP178-191 > MBP84-104).  相似文献   

16.
Ig-proteolipid protein 1 (Ig-PLP1) is an Ig chimera expressing the encephalitogenic PLP1 peptide corresponding to amino acid residues 139-151 of PLP. Newborn mice given Ig-PLP1 in saline on the day of birth and challenged 7 wk later with PLP1 peptide in CFA develop an organ-specific neonatal immunity that confers resistance against experimental allergic encephalomyelitis. The T cell responses in these animals are comprised of Th2 cells in the lymph node and anergic Th1 lymphocytes in the spleen. Intriguingly, the anergic splenic T cells, although nonproliferative and unable to produce IFN-gamma or IL-4, secrete significant amounts of IL-2. Studies were performed to determine whether the two populations display any structural differences in the TCR H chain variable region that could contribute to the differential affinity and retention in different organs. Responsive Th2 lymph node T cells and anergic splenic lymphocytes were immortalized, and the structures of their TCR Vbeta were determined. The results show that Vbeta and Jbeta usage was random, but the CDR3 regions of the lymph node cells had a conserved Gly-Gly motif. Analysis of TCR affinity/avidity correlated the Gly-Gly motif with lower affinity and retention of the Th2 cells in the lymph node. Also, it is suggested that a higher TCR affinity may be a contributing factor for the development of the neonatal Th1 response in the spleen.  相似文献   

17.
18.
Our previous studies demonstrated that oligomeric recombinant TCR ligands (RTL) can treat clinical signs of experimental autoimmune encephalomyelitis (EAE) and induce long-term T cell tolerance against encephalitogenic peptides. In the current study, we produced a monomeric I-A(s)/PLP 139-151 peptide construct (RTL401) suitable for use in SJL/J mice that develop relapsing disease after injection of PLP 139-151 peptide in CFA. RTL401 given i.v. or s.c. but not empty RTL400 or free PLP 139-151 peptide prevented relapses and significantly reduced clinical severity of EAE induced by PLP 139-151 peptide in SJL/J or (C57BL/6 x SJL)F(1) mice, but did not inhibit EAE induced by PLP 178-191 or MBP 84-104 peptides in SJL/J mice, or MOG 35-55 peptide in (C57BL/6 x SJL/J)F(1) mice. RTL treatment of EAE caused stable or enhanced T cell proliferation and secretion of IL-10 in the periphery, but reduced secretion of inflammatory cytokines and chemokines. In CNS, there was a modest reduction of inflammatory cells, reduced expression of very late activation Ag-4, lymphocyte function-associated Ag-1, and inflammatory cytokines, chemokines, and chemokine receptors, but enhanced expression of Th2-related factors, IL-10, TGF-beta3, and CCR3. These results suggest that monomeric RTL therapy induces a cytokine switch that curbs the encephalitogenic potential of PLP 139-151-specific T cells without fully preventing their entry into CNS, wherein they reduce the severity of inflammation. This mechanism differs from that observed using oligomeric RTL therapy in other EAE models. These results strongly support the clinical application of this novel class of peptide/MHC class II constructs in patients with multiple sclerosis who have focused T cell responses to known encephalitogenic myelin peptides.  相似文献   

19.
Multiple Ag peptides (MAPs) containing eight proteolipid protein (PLP)(139-151) peptides arranged around a dendrimeric branched lysine core were used to influence the expression and development of relapsing experimental allergic encephalomyelitis (EAE) in SJL mice. The PLP(139-151) MAPs were very efficient agents in preventing the development of clinical disease when administered after immunization with the PLP(139-151) monomeric encephalitogenic peptide in CFA. The treatment effect with these MAPs was peptide specific; irrelevant multimeric peptides such as guinea pig myelin basic protein GPBP(72-84) MAP (a dendrimeric octamer composed of the 72-84 peptide) and PLP(178-191) MAP (a dendrimeric octamer composed of the PLP(178-191) peptide) had no treatment effect on PLP(139-151)-induced EAE. PLP(139-151) MAP treatment initiated after clinical signs of paralysis also altered the subsequent course of EAE; it limited developing signs of paralysis and effectively limited the severity and number of disease relapses in MAP-treated mice over a 60-day observation period. PLP(139-151) MAP therapy initiated before disease onset acts to limit the numbers of Th17 and IFN-gamma-producing cells that enter into the CNS. However, Foxp3(+) cells entered the CNS in numbers equivalent for nontreated and PLP(139-151) MAP-treated animals. The net effect of PLP(139-151) MAP treatment dramatically increases the ratio of Foxp3(+) cells to Th17 and IFN-gamma-producing cells in the CNS of PLP(139-151) MAP-treated animals.  相似文献   

20.
Direct measurements of the frequency and the cytokine signature of the neuroantigen-specific effector cells in experimental allergic encephalomyelitis (EAE) are a continuing challenge. This is true for lymphoid tissues, and more importantly, for the CNS itself. Using enzyme-linked immunospot analysis (ELISPOT) assays, we followed proteolipid protein (PLP) 139--151-specific T cells engaged by active immunization of SJL mice. The total numbers of PLP(139--151)-specific CD4 cells were highest before disease onset. At this time, these cells resided in lymphoid and nonlymphoid tissues, but were not detected in the CNS. While the PLP(139--151)-specific cells reached high frequencies in the CNS during clinical EAE, in absolute numbers, less than 20% of them were present in the target organ, with the majority residing in the periphery throughout all stages of the disease. The numbers of PLP(139--151)-specific cells gradually declined in both compartments with time. While eventually this first wave of effector cells completely disappeared from the CNS, PLP(178--191)-specific cells became engaged, being detected first in the CNS. These data suggest that throughout all stages of EAE, the effector cells in the CNS are recruited from a vast peripheral reservoir, and that the second wave of effector cells is engaged while the first wave undergoes exhaustion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号