首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The conjugative plasmid pAD1 (56.7 kilobases) in Streptococcus faecalis has been shown to confer a mating response to the sex pheromone cAD1 excreted by recipient strains. The response is characterized by the synthesis of a proteinaceous adhesin which coats the surface of the pAD1 -containing donor cell and facilitates the formation of mating aggregates. Donors exposed to cAD1 -containing filtrates of recipients undergo self-aggregation (clumping), an event believed to be associated with an interaction between the adhesin and a binding substance always present on the surface of both recipients and donors. To analyze the molecular processes involved in the mating response, mutants were generated by the erythromycin resistance transposon Tn917 . Transpositions to pAD1 in S. faecalis DS16 gave rise to a number of derivatives that exhibited "constitutive clumping" and the ability to transfer at high frequencies in short (10-min) matings. These mutants fell into two subclasses, which exhibited colony morphologies that were "dry" or "normal". The Tn917 insertions were mapped by restriction enzyme analysis to two separate clusters, designated traA and traB. The dry colony subclass corresponded to traA and represented a span of 1.5 kilobases, whereas the normal subclass corresponded to traB and spanned 1.3 kilobases. The two clusters were separated by 1.7 kilobases in which insertions of Tn917 did not affect the ability to respond normally to cAD1 . Neither type of constitutive clumper produced cAD1 . Another series of insertions exhibited reduced donor potential. In two cases, the reduction in transfer was three to four orders of magnitude; these mapped in traA . In two other cases, the reduction was one to two orders of magnitude. These mapped outside of traA and traB, and one was associated with an increase in plasmid copy number.  相似文献   

2.
Conjugative transfer of Enterococcus faecalis-specific sex pheromone plasmids relies on an adhesin, called aggregation substance, to confer a tight cell-to-cell contact between the mating partners. To analyze the dependence of pAD1-encoded aggregation substance, Asa1, on pheromone induction, a variety of upstream fragments were fused to an alpha-amylase reporter gene, amyL, by use of a novel promoter probe vector, pAMY-em1. For pheromone-regulated alpha-amylase activity, a total of at least six genes, traB, traC, traA, traE1, orfY, and orf1, are required: TraB efficiently represses asa1 (by a mechanism unrelated to its presumptive function in pheromone shutdown, since a complete shutdown is observed exclusively in the presence of traC); only traC can relieve traB-mediated repression in a pheromone-dependent manner. In addition to traB, traA is required but not sufficient for negative control. Mutational inactivation of traE1, orfY, or orf1, respectively, results in a total loss of alpha-amylase activity for constructs normally mediating constitutive expression. Inversion of a fragment covering traA, P(0), and traE1 without disrupting any gene or control element switches off amyL or asa1 expression, indicating the involvement of a cis-acting, orientation-dependent factor (as had been shown for plasmid pCF10). Unexpectedly, pAD1 represses all pAMY-em1 derivatives in trans, while its own pheromone-dependent functions are unaffected. The discrepancy between the new data and those of former studies defining TraE1 as a trans-acting positive regulator is discussed.  相似文献   

3.
The conjugative plasmid pAD1 (59.6 kilobases) of Streptococcus faecalis shows a 10,000-fold increase in transfer frequency following induction by the sex pheromone cAD1. Mutagenesis of the plasmid with transposon Tn917 was undertaken to determine the region(s) of pAD1 required for the mating response. The relevant genetic material was found to be distributed over a 31.2-kilobase contiguous region of the plasmid. Although insertions in two previously identified regions (traA and traB) exhibited increased transfer frequencies, insertions in five new regions (D, E, F, G, and H) decreased the ability of pAD1 to transfer. Insertions in region H allowed the cells to form visible mating aggregates, but the plasmid transfer frequency was decreased to levels below detection during a 1-h broth mating. Mutants with mutations in region G were able to form aggregates; however, insertions in regions D, E, and F prevented aggregate formation. Insertions in region C decreased the sensitivity of the cell to exogenous cAD1 and exhibited increased activity of the pheromone inhibitor iAD1. Surface protein profiles produced by a number of these mutants were examined, and in some cases were found to be different from those of the wild type. A map showing the various regions is presented, and related aspects of the regulation of the pAD1 mating response are discussed.  相似文献   

4.
5.
The Streptococcus faecalis pheromone-dependent conjugative plasmid pAD1::Tn916 and the membrane filter-dependent conjugative plasmid pPD5::Tn916 were used to introduce Tn916 into Staphylococcus aureus by intergeneric protoplast fusions and intergeneric membrane-filter matings. In recombinants obtained by protoplast fusion where no plasmid DNA could be detected, tetracycline resistance resulted from transposition of Tn916 from pAD1 to the S. aureus chromosome. Transformation analyses showed that S. aureus Tn916 chromosomal insertions occurred near pig, ilv, uraA, tyrB, fus, ala, and the trp operon. DNA hybridization analyses of EcoRI- and HindIII-digested chromosomal DNAs confirmed the diversity of chromosomal sites involved and demonstrated that the inserts were Tn916 insertions rather than integrations of all or part of pAD1::Tn916. Both pAD1::Tn916 and pPD5::Tn916 were transferred to S. aureus by membrane-filter matings. These plasmids remained intact and expressed tetracycline resistance in S. aureus. S. aureus strains carrying pAD1::Tn916, but not a chromosomal insert of Tn916, and any one of several conjugal gentamicin-resistance plasmids lost their ability to serve as conjugal donors of the gentamicin-resistance plasmids.  相似文献   

6.
Pheromone-induced conjugal transfer of the hemolysin-bacteriocin plasmid pAD1 of Enterococcus faecalis is regulated by a cluster of determinants designated traA, traB, and regions C and E. The E region is believed to include a positive regulator that controls many structural genes related to conjugation. The pheromone-inducible Tn917-lac fusion NR5, located in the E region, is regulated by the products of traA, traB, and the C region. To more closely examine the effects of these genes on the induction of E region products, inserts in each of these genes were combined with the NR5 fusion in a novel approach involving triparental matings with a pAD1 miniplasmid and recombinational mutagenesis. Results indicate that (i) the traA gene product is a key repressor of the pheromone response; (ii) the traB gene product, in cooperation with a gene within or regulated by the E region, controls pheromone shutdown; (iii) a primary function of the C region gene product is in pheromone sensing, with secondary functions in pheromone shutdown and negative regulation; and (iv) the host in which the plasmid resides has a dramatic effect on the regulation of the NR5 fusion in traB and C region mutants. Numerous parallels were observed between the regulation of the NR5 fusion and the regulation of the aggregation and transfer response. These parallels aided in further defining the functions of particular regulatory determinants as well as further establishing the link between the regulation of the E region and the regulation of the aggregation and transfer response.  相似文献   

7.
The tetracycline resistance plasmid pCF10 (58 kilobases [kb]) of Streptococcus faecalis possesses two separate conjugation systems. A 25-kb region of the plasmid (designated TRA) was shown previously to determine pheromone response and conjugation functions required for transfer of pCF10 between S. faecalis cells (P. J. Christie and G. M. Dunny, Plasmid 15:230-241, 1986). When S. faecalis cells were mixed with Bacillus subtilis in broth, tetracycline resistance was transferred from S. faecalis. The tetracycline-resistant B. subtilis cells contained a 16-kb region of pCF10 (distinct from TRA) that carried the tetracycline resistance determinant (Tetr). This Tetr element was found to transfer between S. faecalis and B. subtilis strains in the absence of plasmids. Genetic and molecular techniques were used to establish locations of the element at several different sites on the B. subtilis chromosome. The Tetr element could be transferred in filter matings from B. subtilis to S. faecalis strains and between recombination-proficient and -deficient S. faecalis strains in the absence of any plasmid DNA. The transfer required direct cell-to-cell contact and was not inhibited by DNase. The Tetr element was shown to transpose from the S. faecalis chromosome to various locations within the hemolysin plasmid pAD1. Together, the data indicate that the Tetr element, termed transposon Tn925, is very similar to the conjugative transposon Tn916 in both structure and function. A derivative of Tn925, containing transposon Tn917 inserted into a site approximately 3 kb from one end, exhibited elevated transfer frequencies and may provide a useful means for delivering Tn917 by conjugation into various gram-positive species.  相似文献   

8.
S R Kim  N Funayama    T Komano 《Journal of bacteriology》1993,175(16):5035-5042
A 3.6-kb BglII-SmaI segment of the transfer region of IncI1 plasmid R64drd-11 was sequenced and characterized. Analysis of the DNA sequence indicated the presence of four genes, traA, traB, traC, and traD, in this region. The expression of the traB, traC, and traD genes was examined by maxicell experiments and that of the traA gene was examined by constructing the traA-lacZ fusion gene. The introduction of frameshift mutations into the four genes indicated that the traB and traC genes are essential for conjugal transfer in liquid medium and on a solid surface. Both were also required for the formation of the thin pilus, which is the receptor for phages I alpha and PR64FS. Upstream of the traA gene, a promoter sequence for sigma 70 of E. coli RNA polymerase was identified by S1 nuclease mapping and primer extension experiments.  相似文献   

9.
S K Farrand  I Hwang    D M Cook 《Journal of bacteriology》1996,178(14):4233-4247
The Ti plasmids of Agrobacterium tumefaciens encode two transfer systems. One mediates the translocation of the T-DNA from the bacterium to a plant cell, while the other is responsible for the conjugal transfer of the entire Ti plasmid from one bacterium to another. The determinants responsible for conjugal transfer map to two regions, tra and trb, of the nopaline-type Ti plasmid pTiC58. By using transposon mutagenesis with Tn3HoHo1, we localized the tra determinants to an 8.5-kb region that also contains the oriT region. Fusions to lacZ formed by transposon insertions indicated that this region is expressed as two divergently transcribed units. We determined the complete nucleotide sequence of an 8,755-bp region of the Ti plasmid encompassing the transposon insertions defining tra. The region contains six identifiable genes organized as two units divergently transcribable from a 258-bp inter-genic region that contains the oriT site. One unit encodes traA, traF, and traB, while the second encodes traC, traD, and traG. Reporter insertions located downstream of both sets of genes did not affect conjugation but were expressed, suggesting that the two units encode additional genes that are not involved in transfer under the conditions tested. Proteins of the predicted sizes were expressible from traA, traC, traD, and traG. The products of several Ti plasmid tra genes are related to those of other conjugation systems. The 127-kDa protein expressed from traA contains domains related to MobA of RSF1O1O and to the helicase domain of TraI of plasmid F. The translation product of traF is related to TraF of RP4, and that of traG is related to TraG of RP4 and to VirD4 of the Ti plasmid T-DNA transfer system. Genetic analysis indicated that at least traG and traF are essential for conjugal transfer, while sequence analysis predicts that traA also encodes an essential function. traB, while not essential, is required for maximum frequency of transfer. Patterns of sequence relatedness indicate that the oriT and the predicted cognate site-specific endonuclease encoded by traA share lineage with those of the transfer systems of RSF1010 and plasmid F, while genes of the Ti plasmid encoding other essential tra functions share common ancestry with genes of the RP4 conjugation system.  相似文献   

10.
11.
Analysis of the transfer region of the Streptomyces plasmid SCP2*   总被引:6,自引:4,他引:2  
plJ903, a bifunctional derivative of the 31.4 kb low-copy number, conjugative Streptomyces plasmid SCP2, was mutagenized in Streptomyces lividans using Tn4560. Mutant plasmids differing in their transfer frequencies, chromosome mobilization abilities, pock formation, and complementation properties were isolated. The mutations defined five transfer-related genes, traA, traB, traC, traD and spd, clustered in a region of 9 kb. The deduced sequences of the putative TraA and TraB proteins showed no overall similarity to known protein sequences, but the phenotype of traA mutant plasmids and sequence motifs in the putative TraA protein suggested that it might be a DNA helicase.  相似文献   

12.
Plasmids pAD1 (37.8 megadaltons) and pAD2 (17.1 megadaltons) of Streptococcus faecalis strain DS16 have been mapped with restriction enzymes. The location of a hemolysin-bacteriocin determinant on the conjugative pAD1 plasmid was derived from analyses of transposon insertions. Electron microscope and hybridization analyses located Tn917(Em) and the streptomycin (Sm) and kanamycin (Km) resistance determinants on the nonconjugative pAD2 plasmid. It was shown previously that the erythromycin (Em) resistance associated with Tn917 is inducible and that transposition from pAD2 to pAD1 is also stimulated by exposure of cells to low concentrations of Em. Here we show that inducing concentrations of Em also increase the conjugative transfer potential of pAD1; this is possibly related to a mild and short-lived inhibitory stress placed on the cells before full induction of resistance. Selection of Em-resistant transconjugants arising from matings between DS16 and a plasmid-free recipient gave rise to transconjugants which primarily harbor stable pAD1::pAD2 cointegrates. A 30-min exposure of donors to Em (0.5 microgram/ml) before mating resulted in a severalfold increase in the number of such transconjugants. However, a small fraction (e.g., 3 of 40) of these Emr Smr Kmr transconjugants harbored pAD1::Tn917 and pAD2 molecules. Since we believe pAD2 is incapable of being mobilized by pAD1 without being covalently linked, it is likely that transfer in these cases involved cointegrates representing structural intermediates in the transposition of Tn917 from pAD2 to pAD1. It follows that such intermediates probably had two copies of Tn917 and readily resolved after transfer. (These cointegrates are different from the stable cointegrates which were shown to have only a single copy of Tn917; the latter are assumed not to be related to transposition.) Two variants with altered Tn917 transposition properties were derived. One of them transposed at an elevated frequency, whereas the other showed no detectabel transposition. In neither case was transposition influenced by Em exposure; however, both remained inducible for Em resistance.  相似文献   

13.
Fragments, generated by restriction enzyme digestion, of the 58-kilobase Enterococcus (Streptococcus) faecalis tetracycline resistance plasmid pCF10 were cloned and introduced into Escherichia coli and E. faecalis to characterize the pheromone-inducible conjugation system encoded by this plasmid. Western blot (immunoblot) analyses revealed that a 130-kilodalton (kDa) antigen, identical to the Tra130 antigen shown previously to be involved in pCF10-mediated pheromone-inducible surface exclusion, was produced by both bacterial hosts carrying the recombinant plasmid pINY1825 (cloned EcoRI C fragment). Both bacterial hosts carrying pINY1825 also produced various amounts of immunologically related 118- to 125-kDa antigens (designated pre-Tra130) that resembled antigens produced by E. faecalis cells carrying pCF10. An additional 150-kDa antigen, Tra150, probably involved in pheromone-induced cellular aggregation, was produced by Escherichia coli and E. faecalis hosts carrying pINY1801 (cloned EcoRI C and E fragments). The coding sequences for the Tra150 and Tra130 antigens were further localized in the TRA region of pCF10 by transposon insertion mutagenesis. Western blot analyses of the recombinant strains, and of strains carrying derivatives of pCF10 or various recombinant plasmids containing Tn5 or Tn917 insertions, suggested that the portion of pCF10 comprising the tra3 through -6 segments (previously defined by Tn917 insertional mutagenesis) contained several genes that are involved in regulating the synthesis of Tra130 and Tra150.  相似文献   

14.
15.
pAD1, a conjugative, 60-kb, hemolysin-bacteriocin plasmid in Enterococcus faecalis, encodes a mating response to a small peptide sex pheromone, cAD1, secreted by potential recipient bacteria. A gene, traC, encoding a 60.7-kDa protein with a typical amino terminal signal peptide, was identified within a region that appears to encode a product that binds to exogenous pheromone. A cloned segment of DNA containing traC resulted in specific binding of cells to synthetic cAD1. The putative traC product has strong similarity to a product of the E. faecalis plasmid pCF10 as well as oligopeptide binding proteins of Escherichia coli, Salmonella typhimurium, and Bacillus subtilis.  相似文献   

16.
A new IS element, IS1062, related to the enterococcal IS elements IS6770 and IS1252, was detected in the 3′-terminus of the surface exclusion gene,sep1, of sex pheromone plasmid pPD1 inEnterococcus faecalis. pPD1-bearing cells lack the surface exclusion function, probably as a consequence of this insertion. Analysis of pAD1 and pPD1 sequences (7.5 kb and 2.7 kb, respectively) downstream of their aggregation substance genes revealed no similarity in these DNA regions. Detailed DNA/DNA hybridization studies using DNA probes specific for various pAD1-encoded genes needed for plasmid transfer indicated that the sex pheromone plasmids have evolved by repeated recombination and insertion of diverse transposable elements which presumably account for recent acquisition of antibiotic resistances.  相似文献   

17.
Bacteriocin plasmid pPD1 in Enterococcus faecalis encodes a mating response to recipient-produced sex pheromone cPD1. Once a recipient acquires pPD1, transconjugants apparently shut off cPD1 activity in broth culture and no longer behave as recipients for pPD1. This event is performed by synthesis of the pheromone inhibitor iPD1 and also by repression of cPD1 production, the so-called "pheromone shutdown." A 5.4-kb EcoRV-HincII segment of pPD1, which expressed iPD1 in Escherichia coli, was sequenced and found to be organized as traC-traB-traA-ipd; each open reading frame is analogous to that found in other pheromone plasmids, pAD1 and pCF10, and thus is designated in accordance with the nomenclature in pAD1. The ipd gene encodes a peptide consisting of 21 amino acids, in which the C-terminal eight residues correspond to iPD1. The putative TraC product has a strong similarity to oligopeptide-binding proteins found in other bacterial species, as do pheromone-binding proteins of pCF10 and pAD1. A strain carrying traC-disrupted pPD1 required a concentration of cPD1 fourfold higher than that needed by the wild-type strain for induction of sexual aggregation. These results suggest that the TraC product contributes to pheromone sensitivity as a pheromone-binding protein. A strain transformed with traB-disrupted pPD1 produced a high level of cPD1 similar to that produced by plasmid-free recipients and underwent self-induction. Thus, the TraB product contributes to cPD1 shutdown.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号