首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Functional reconstitution of U1 small nuclear ribonucleoprotein particle (U1 snRNP) was performed using in vitro transcribed U1 snRNA. Hela cell nuclear extract was depleted of its constituent snRNPs by centrifugation at 100,000 X g. The supernatant was devoid of snRNAs and lacked cleavage activity in splicing reactions using in vitro transcribed beta-globin pre-mRNA as substrate. The resulting pellet which contained the snRNAs, retained 5' splice site cleavage activity in a similar splicing reaction. Supplementation of the inactive supernatant fraction with in vitro transcribed U1 snRNA, partially restored 5' splice site cleavage activity thereby demonstrating the specific requirement of U1 snRNP in the initial stage of pre-mRNA splicing.  相似文献   

2.
To investigate the function of the U5 small nuclear ribonucleoprotein (snRNP) in pre-mRNA splicing, we have screened for factors that genetically interact with Saccharomyces cerevisiae U5 snRNA. We isolated trans-acting mutations that exacerbate the phenotypes of conditional alleles of the U5 snRNA and named these genes SLU, for synergistically lethal with U5 snRNA. SLU1 and SLU2 are essential for the first catalytic step of splicing, while SLU7 and SLU4 (an allele of PRP17 [U. Vijayraghavan, M. Company, and J. Abelson, Genes Dev. 3:1206-1216, 1989]) are required only for the second step of splicing. Furthermore, slu4-1 and slu7-1 are lethal in combination with mutations in PRP16 and PRP18, which also function in the second step, but not with mutations in factors required for the first catalytic step, such as PRP8 and PRP4. We infer from these data that SLU4, SLU7, PRP18, PRP16, and the U5 snRNA interact functionally and that a major role of the U5 snRNP is to coordinate a set of factors that are required for the completion of the second catalytic step of splicing.  相似文献   

3.
Binding of U2 small nuclear ribonucleoprotein (snRNP) to the pre-mRNA is an early and important step in spliceosome assembly. We searched for evidence of cooperative function between yeast U2 small nuclear RNA (snRNA) and several genetically identified splicing (Prp) proteins required for the first chemical step of splicing, using the phenotype of synthetic lethality. We constructed yeast strains with pairwise combinations of 28 different U2 alleles with 10 prp mutations and found lethal double-mutant combinations with prp5, -9, -11, and -21 but not with prp3, -4, -8, or -19. Many U2 mutations in highly conserved or invariant RNA structures show no phenotype in a wild-type PRP background but render mutant prp strains inviable, suggesting that the conserved but dispensable U2 elements are essential for efficient cooperative function with specific Prp proteins. Mutant U2 snRNA fails to accumulate in synthetic lethal strains, demonstrating that interaction between U2 RNA and these four Prp proteins contributes to U2 snRNP assembly or stability. Three of the proteins (Prp9p, Prp11p, and Prp21p) are associated with each other and pre-mRNA in U2-dependent splicing complexes in vitro and bind specifically to synthetic U2 snRNA added to crude splicing extracts depleted of endogenous U2 snRNPs. Taken together, the results suggest that Prp9p, -11p, and -21p are U2 snRNP proteins that interact with a structured region including U2 stem loop IIa and mediate the association of the U2 snRNP with pre-mRNA.  相似文献   

4.
Early commitment of yeast pre-mRNA to the spliceosome pathway.   总被引:39,自引:12,他引:27       下载免费PDF全文
Pre-mRNA splicing in vitro is preceded by complex formation (spliceosome assembly). U2 small nuclear RNA (snRNA) is found in the earliest form of the spliceosome detected by native gel electrophoresis, both in Saccharomyces cerevisiae and in metazoan extracts. To examine the requirements for the formation of this early complex (band III) in yeast extracts, we cleaved the U2 snRNA by oligonucleotide-directed RNase H digestion. U2 snRNA depletion by this means inhibits both splicing and band III formation. Using this depleted extract, we were able to design a chase experiment which shows that a pre-mRNA substrate is committed to the spliceosome assembly pathway in the absence of functional U2 snRNP. Interactions occurring during the commitment step are highly resistant to the addition of an excess of unlabeled substrate and require little or no ATP. Sequence requirements for this commitment step have been analyzed by competition experiments with deletion mutants: both the 5' splice site consensus sequence and the branch point TACTAAC box sequence are necessary. These experiments strongly suggest that the initial assembly process requires a trans-acting factor(s) (RNA and/or proteins) that recognizes and stably binds to the two consensus sequences of the pre-mRNA prior to U2 snRNP binding.  相似文献   

5.
Roles of U4 and U6 snRNAs in the assembly of splicing complexes.   总被引:14,自引:3,他引:11       下载免费PDF全文
A series of U4 and U6 snRNA mutants was analysed in Xenopus oocytes to determine whether they block splicing complex assembly or splicing itself. All the U4 and U6 mutants found to be inactive in splicing complementation resulted in defects in assembly of either U4/U6 snRNP or of splicing complexes. No mutants were found to separate the entry of U5 and U6 snRNAs into splicing complexes and neither of these RNAs was able to associate with the pre-mRNA in the absence of U4. In the absence of U6 snRNA, however, U4 entered a complex containing pre-mRNA as well as the U1 and U2 snRNAs. U6 nucleotides whose mutation resulted in specific blockage of the second step of splicing in Saccharomyces cerevisiae are shown not to be essential for splicing in the oocyte assay. The results are discussed in terms of the roles of U4 and U6 in the assembly and catalytic steps of the splicing process.  相似文献   

6.
We present evidence for the existence of an additional long-range interaction in vertebrate U1 snRNAs. By submitting human U1 snRNP, HeLa nuclear extracts, authentic human or X. laevis in vitro transcribed U1 snRNAs to RNase V1, a nuclease specific for double-stranded regions, cleavages occurred in the sequence psi psi ACC (positions 5-9) residing in the 5' terminal region of the RNA. The RNase V1 sensitive region is insensitive to single-stranded probes, something unexpected knowing that it was considered single-stranded in order to base-pair to pre-mRNA 5' splice site. We have identified the sequence GGUAG (positions 132-136) as the only possible 3' partner. Mutants, either abolishing or restoring the interaction between the partners, coupled to an RNase V1 assay, served to substantiate this base-pairing model. The presence of this additional helix, even detected in nuclear extracts under in vitro splicing conditions, implies that a conformational change must occur to release a free U1 snRNA 5' end.  相似文献   

7.
An in vitro reconstitution/splicing complementation system has been developed which has allowed the investigation of the role of mammalian U2 and U5 snRNP components in splicing. U2 or U5 snRNP cores are first reconstituted from purified native snRNP core proteins and snRNA in the absence of cellular extract and are subsequently added to splicing extracts depleted of either U2 or U5 snRNP. When snRNPs reconstituted with HeLa U2 or U5 snRNA were added to U2- or U5-depleted nuclear extract, splicing was complemented. Addition of naked snRNA, on the other hand, did not restore splicing, demonstrating that the core proteins are essential for both U2 and U5 snRNP functions in splicing. Hybrid U2 or U5 snRNPs, reconstituted with core proteins isolated from U1 or U2 snRNPs, were equally active in splicing complementation, indicating that the snRNP core proteins are functionally interchangeable. U5 snRNPs reconstituted from in vitro transcribed U5 snRNA restored splicing to a level identical to that observed with particles reconstituted from authentic HeLa U5 snRNA. In contrast, splicing could not be restored to U2-depleted extract by the addition of snRNPs reconstituted from synthetic U2 snRNA, suggesting that U2 snRNA base modifications are essential for U2 snRNP function.  相似文献   

8.
We have previously shown that the yeast PRP19 protein is associated with the spliceosome during the splicing reaction by immunoprecipitation studies with anti-PRP19 antibody. We have extended such studies by using extracts depleted of specific splicing factors to investigate the step of the spliceosome assembly process that PRP19 is involved in. PRP19 was not associated with the splicing complexes formed in U2- or U6-depleted extracts but was associated with the splicing complex formed in heat-inactivated prp2 extracts. This finding indicates that PRP19 becomes associated with the splicing complexes after or concomitant with binding of the U6 small nuclear ribonucleoprotein particle (snRNP) to the precursor RNA and before formation of the functional spliceosome. We further analyzed whether PRP19 is an integral component of snRNPs. We have constructed a strain in which an epitope of nine amino acid residues recognized by a well-characterized monoclonal antibody, 12CA5, is linked to the carboxyl terminus of the wild-type PRP19 protein. Immunoprecipitation of the splicing extracts with anti-PRP19 antibody or precipitation of the extracts prepared from the epitope-tagged strain with the 12CA5 antibody did not precipitate significant amounts of snRNAs. Addition of micrococcal nuclease-treated extracts to the PRP19-depleted extract restored its splicing activity. These results indicate that PRP19 is not tightly associated with any of the snRNAs required for the splicing reaction. No non-snRNP protein factor has been demonstrated to participate in either step of the spliceosome assembly pathway that PRP19 might be involved in. Thus, PRP19 represents a novel splicing factor.  相似文献   

9.
M Cooper  L H Johnston    J D Beggs 《The EMBO journal》1995,14(9):2066-2075
The SDB23 gene of Saccharomyces cerevisiae was isolated in a search for high copy-number suppressors of mutations in a cell cycle gene, DBF2, SDB23 encodes a 21,276 Da protein with significant sequence similarity to characterized mammalian snRNP core proteins. Examination of multiple sequence alignments of snRNP core proteins with Sdb23p indicates that all of these proteins share a number of highly conserved residues, and identifies a novel motif for snRNP core proteins. Sdb23p is essential for cell viability and is required for nuclear pre-mRNA splicing both in vivo and in vitro. Extracts prepared from Sdb23p-depleted cells are unable to support splicing and have vastly reduced levels of U6 snRNA. The stability of U1, U2, U4 and U5 spliceosomal snRNAs is not affected by the loss of Sdb23p. Antibodies raised against Sdb23p strongly coimmunoprecipitate free U6 snRNA and U4/U6 base-paired snRNAs. These results establish that SDB23 encodes a novel U6 snRNA-associated protein that is essential for the stability of U6 snRNA. We therefore propose the more logical name USS1 (U-Six SnRNP) for this gene.  相似文献   

10.
Differences observed between plant and animal pre-mRNA splicing may be the result of primary or secondary structure differences in small nuclear RNAs (snRNAs). A cDNA library of pea snRNAs was constructed from anti-trimethylguanosine (m3(2,2,7)G immunoprecipitated pea nuclear RNA. The cDNA library was screened using oligo-deoxyribonucleotide probes specific for the U1, U2, U4 and U5 snRNAs. cDNA clones representing U1, U2, U4 and U5 snRNAs expressed in seedling tissue have been isolated and sequenced. Comparison of the pea snRNA variants with other organisms suggest that functionally important primary sequences are conserved phylogenetically even though the overall sequences have diverged substantially. Structural variations in U1 snRNA occur in regions required for U1-specific protein binding. In light of this sequence analysis, it is clear that the dicot snRNA variants do not differ in sequences implicated in RNA:RNA interactions with pre-mRNA. Instead, sequence differences occur in regions implicated in the binding of small ribonucleoproteins (snRNPs) to snRNAs and may result in the formation of unique snRNP particles.  相似文献   

11.
Saccharomyces cerevisiae PRP17-null mutants are temperature-sensitive for growth. In vitro splicing with extracts lacking Prp17 are kinetically slow for the first step of splicing and are arrested for the second step at temperatures greater than 34 degrees C. In the present study we show that these stalled spliceosomes are compromised for an essential conformational switch that is triggered by Prp16 helicase. These results suggest a plausible mechanistic basis for the second-step arrest in prp17Delta extracts and support a role for Prp17 in conjunction with Prp16. To understand the association of Prp17 with spliceosomes we used a functional epitope-tagged protein in co-immunoprecipitation experiments. Examination of co-precipitated snRNAs (small nuclear RNAs) show that Prp17 interacts with U2, U5 and U6 snRNPs (small nuclear ribonucleoproteins) but it is not a core component of any one snRNP. Prp17 association with in-vitro-assembled spliceosome complexes on actin pre-mRNAs was also investigated. Although the U5 snRNP proteins Prp8 and Snu114 are found in early pre-spliceosomes that contain all five snRNPs, Prp17 is not detectable at this step; however, Prp17 is present in the subsequent pre-catalytic A1 complex, containing unspliced pre-mRNA, formed after the dissociation of U4 snRNP. Thus Prp17 joins the spliceosome prior to both catalytic reactions. Our results indicate continued interactions in catalytic spliceosomes that contain reaction intermediates and in post-splicing complexes containing the lariat intron. These Prp17-spliceosome association analyses provide a biochemical basis for the delayed first step in prp17Delta and explain the previously known multiple genetic interactions between Prp17, factors of the Prp19-complex [NTC (nineteen complex)], functional elements in U2 and U5 snRNAs and other second-step splicing factors.  相似文献   

12.
Structural requirements for the function of a yeast chromosomal replicator   总被引:76,自引:0,他引:76  
S Kearsey 《Cell》1984,37(1):299-307
We have investigated the role of small nuclear ribonucleoprotein particles (snRNPs) in the in vitro splicing of messenger RNA precursors by a variety of procedures. Removal of the U-type snRNPs from the nuclear extracts of HeLa cells with protein A-Sepharose-coupled human autoimmune antibodies leads to complete loss of splicing activity. The inhibition of splicing can be prevented by saturating the coupled antibodies with purified nucleoplasmic U snRNPs prior to incubation with nuclear extract. We further demonstrate that an intact 5' terminus of U1 snRNA is required for the functioning of U1 snRNP in the splicing reaction. Antibodies directed against the trimethylated cap structure of the U snRNAs inhibit splicing. Upon removal of the first eight nucleotides of the U1 snRNA in the particles by site-directed hydrolysis with ribonuclease H in the presence of a synthetic complementary oligodeoxynucleotide splicing is completely abolished. These results are in strong support of current models suggesting that a base-pairing interaction between the 5' terminus of the U1 snRNA and the 5' splice site of a mRNA precursor is a prerequisite for proper splicing.  相似文献   

13.
Spliceosomal U6 small nuclear RNA (snRNA) plays a central role in the pre-mRNA splicing mechanism and is highly conserved throughout evolution. Previously, a sequence element essential for both capping and cytoplasmic-nuclear transport of U6 snRNA was mapped in the 5'-terminal domain of U6 snRNA. We have identified a protein in cytoplasmic extracts of mammalian and Trypanosoma brucei cells that binds specifically to this U6 snRNA element. Competition studies with mutant and heterologous RNAs demonstrated the conserved binding specificity of the mammalian and trypanosomal proteins. The in vitro capping analysis of mutant U6 snRNAs indicated that protein binding is required but not sufficient for capping of U6 snRNA by a gamma-monomethyl phosphate. Through RNA affinity purification of mammalian small nuclear ribonucleoproteins (snRNPs), we detected this protein also in nuclear extract as a new specific component of the U6 snRNP but surprisingly not of the U4/U6 or the U4/U5/U6 multi-snRNP. These results suggest that the U6-specific protein is involved in U6 snRNA maturation and transport and may therefore be functionally related to the Sm proteins of the other spliceosomal snRNPs.  相似文献   

14.
Intron removal during pre-messenger RNA (pre-mRNA) splicing involves arrangement of snRNAs into conformations that promote the two catalytic steps. The Prp19 complex [nineteen complex (NTC)] can specify U5 and U6 snRNA interactions with pre-mRNA during spliceosome activation. A candidate for linking the NTC to the snRNAs is the NTC protein Cwc2, which contains motifs known to bind RNA, a zinc finger and RNA recognition motif (RRM). In yeast cells mutation of either the zinc finger or RRM destabilize Cwc2 and are lethal. Yeast cells depleted of Cwc2 accumulate pre-mRNA and display reduced levels of U1, U4, U5 and U6 snRNAs. Cwc2 depletion also reduces U4/U6 snRNA complex levels, as found with depletion of other NTC proteins, but without increase in free U4. Purified Cwc2 displays general RNA binding properties and can bind both snRNAs and pre-mRNA in vitro. A Cwc2 RRM fragment alone can bind RNA but with reduced efficiency. Under splicing conditions Cwc2 can associate with U2, U5 and U6 snRNAs, but can only be crosslinked directly to the U6 snRNA. Cwc2 associates with U6 both before and after the first step of splicing. We propose that Cwc2 links the NTC to the spliceosome during pre-mRNA splicing through the U6 snRNA.  相似文献   

15.
A photoactivatable azidophenacyl group has been introduced into seven positions in the backbone of the 11 nucleotide invariant loop of U5 snRNA. By reconstituting depleted splicing extracts with reassembled U5 snRNP particles, molecular neighbors were assessed as a function of splicing. All cross-links to the pre-mRNA mapped to the second nucleotide downstream of the 5' splice site, and formed most readily when the reactive group was at the phosphate between U5 positions 42 and 43 or 43 and 44. Both their kinetics of appearance and sensitivity to oligonucleotide inhibition suggest that these cross-links capture a late state in spliceosome assembly occurring immediately prior to the first step. A later forming, second cross-linked species is a splicing product of the first cross-link, suggesting that the U5 loop backbone maintains this position through the first step. The proximity of the U5 loop backbone to the intron's 5' end provides sufficient restrictions to develop a three-dimensional model for the arrangement of RNA components in the spliceosome during the first step of pre-mRNA splicing.  相似文献   

16.
HeLa cell nuclear splicing extracts have been prepared that are specifically and efficiently depleted of U1, U2, or U4/U6 snRNPs by antisense affinity chromatography using biotinylated 2'-OMe RNA oligonucleotides. Removal of each snRNP particle prevents pre-mRNA splicing but arrests spliceosome formation at different stages of assembly. Mixing extracts depleted for different snRNP particles restores formation of functional splicing complexes. Specific binding of factors to the 3' splice site region is still detected in snRNP-depleted extracts. Depletion of U1 snRNP impairs stable binding of U2 snRNP to the pre-mRNA branch site. This role of U1 snRNP in promoting stable preslicing complex formation is independent of the U1 snRNA-5' splice site interaction.  相似文献   

17.
Both the Prp18 protein and the U5 snRNA function in the second step of pre-mRNA splicing. We identified suppressors of mutant prp18 alleles in the gene for the U5 snRNA (SNR7). The suppressors' U5 snRNAs have either a U4-to-A or an A8-to-C mutation in the evolutionarily invariant loop 1 of U5. Suppression is specific for prp18 alleles that encode proteins with mutations in a highly conserved region of Prp18 which forms an unstructured loop in crystals of Prp18. The snr7 suppressors partly restored the pre-mRNA splicing activity that was lost in the prp18 mutants. The close functional relationship of Prp18 and U5 is emphasized by the finding that two snr7 alleles, U5A and U6A, are dominant synthetic lethal with prp18 alleles. Our results support the idea that Prp18 and the U5 snRNA act in concert during the second step of pre-mRNA splicing and suggest a model in which the conserved loop of Prp18 acts to stabilize the interaction of loop 1 of the U5 snRNA with the splicing intermediates.  相似文献   

18.
Previously, yeast prp3 mutants were found to be blocked prior to the first catalytic step of pre-mRNA splicing. No splicing intermediates or products are formed from pre-mRNA in heat-inactivated prp3 mutants or prp3 mutant extracts. Here we show that Prp3p is a component of the U4/U6 snRNP and is also present in the U4/U6.U5 tri-snRNP. Heat inactivation of prp3 extracts results in depletion of free U6 snRNPs and U4/U6.U5 tri-snRNPs, but not U4/U6 snRNPs or U5 snRNPs. Free U4 snRNP, normally not present in wild-type extracts, accumulates under these conditions. Assays of in vivo levels of snRNAs in a prp3 mutant revealed that amounts of free U6 snRNA decreased, free U4 snRNA increased, and U4/U6 hybrids decreased slightly. These results suggest that Prp3p is required for formation of stable U4/U6 snRNPs and for assembly of the U4/U6.U5 tri-snRNP from its component snRNPs. Upon inactivation of Prp3p, spliceosomes cannot assemble from prespliceosomes due to the absence of intact U4/U6.U5 tri-snRNPs. Prp3p is homologous to a human protein that is a component of U4/U6 snRNPs, exemplifying the conservation of splicing factors between yeast and metazoans.  相似文献   

19.
J R Maddock  J Roy    J L Woolford  Jr 《Nucleic acids research》1996,24(6):1037-1044
We have identified six new genes whose products are necessary for the splicing of nuclear pre-mRNA in the yeast Saccharomyces cerevisiae. A collection of 426 temperature-sensitive yeast strains was generated by EMS mutagenesis. These mutants were screened for pre-mRNA splicing defects by an RNA gel blot assay, using the intron- containing CRY1 and ACT1 genes as hybridization probes. We identified 20 temperature-sensitive mutants defective in pre-mRNA splicing. Twelve appear to be allelic to the previously identified prp2, prp3, prp6, prp16/prp23, prp18, prp19 or prp26 mutations that cause defects in spliceosome assembly or the first or second step of splicing. One is allelic to SNR14 encoding U4 snRNA. Six new complementation groups, prp29-prp34, were identified. Each of these mutants accumulates unspliced pre-mRNA at 37 degrees C and thus is blocked in spliceosome assembly or early steps of pre-mRNA splicing before the first cleavage and ligation reaction. The prp29 mutation is suppressed by multicopy PRP2 and displays incomplete patterns of complementation with prp2 alleles, suggesting that the PRP29 gene product may interact with that of PRP2. There are now at least 42 different gene products, including the five spliceosomal snRNAs and 37 different proteins that are necessary for pre-mRNA splicing in Saccharomyces cerevisiae. However, the number of yeast genes identifiable by this approach has not yet been exhausted.  相似文献   

20.
A short 5' splice site RNA oligonucleotide (5'SS RNA oligo) undergoes both steps of splicing when a second RNA containing the 3' splice site region (3'SS RNA) is added in trans. This trans-splicing reaction displays the same 5' and 3' splice site sequence requirements as cis-splicing of full-length pre-mRNA. The analysis of RNA-snRNP complexes formed on each of the two splice site RNAs is consistent with the formation of partial complexes, which then associate to form the complete spliceosome. Specifically, U2 snRNP bound to the 3'SS RNA associates with U4/U5/U6 snRNP bound to the 5'SS RNA oligo. Thus, as expected, trans-splicing depends on the integrity of U2, U4, and U6 snRNAs. However, unlike cis-splicing, trans-splicing is enhanced when the 5' end of U1 snRNA is blocked or removed or when the U1 snRNP is depleted. Thus, the early regulatory requirement for U1 snRNP, which is essential in cis-splicing, is bypassed in this trans-splicing system. This simplified trans-splicing reaction offers a unique model system in which to study the mechanistic details of pre-mRNA splicing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号