首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cheng NH  Liu JZ  Nelson RS  Hirschi KD 《FEBS letters》2004,559(1-3):99-106
Precise regulation of calcium transporters is essential for modulating the Ca2+ signaling network that is involved in the growth and adaptation of all organisms. The Arabidopsis H+/Ca2+ antiporter, CAX1, is a high capacity and low affinity Ca2+ transporter and several CAX1-like transporters are found in Arabidopsis. When heterologously expressed in yeast, CAX1 is unable to suppress the Ca2+ hypersensitivity of yeast vacuolar Ca2+ transporter mutants due to an N-terminal autoinhibition mechanism that prevents Ca2+ transport. Using a yeast screen, we have identified CAX nteracting Protein 4 (CXIP4) that activated full-length CAX1, but not full-length CAX2, CAX3 or CAX4. CXIP4 encodes a novel plant protein with no bacterial, fungal, animal, or mammalian homologs. Expression of a GFP-CXIP4 fusion in yeast and plant cells suggests that CXIP4 is targeted predominantly to the nucleus. Using a yeast growth assay, CXIP4 activated a chimeric CAX construct that contained specific portions of the N-terminus of CAX1. Together with other recent studies, these results suggest that CAX1 is regulated by several signaling molecules that converge on the N-terminus of CAX1 to regulate H+/Ca2+ antiport.  相似文献   

2.
Duan W  Sun B  Li TW  Tan BJ  Lee MK  Teo TS 《Gene》2000,256(1-2):113-121
We describe the cloning and expression of cDNAs encoding a novel human protein of 208 amino acid residues with a predicted molecular mass of 22.6kDa and its mouse homologue. We name this protein as AWP1 (associated with PRK1). AWP1 is a ubiquitously expressed protein, and the Awp1 gene is switched on during early human and mouse development. When expressed in COS-1 cells, the Myc-tagged AWP1 has an apparent molecular mass higher than that deduced from its amino acid sequence. AWP1 possesses a conserved zf-A20 zinc finger domain at its N-terminal and a zf-AN1 zinc finger domain at its C-terminal. Co-immunoprecipitation experiments revealed that mouse AWP1 specifically interacts with a rat serine/threonine protein kinase PRK1 in vivo. Hence, AWP1 may play a regulatory role in mammalian signal transduction pathways.  相似文献   

3.
Bax is a proapoptotic member of the Bcl-2 protein family that commits the cell to undergo programmed cell death in response to apoptotic stimuli. To gain further insights into Bax mechanisms, we have identified a novel Bax-binding protein, termed Bif-1, by using a yeast two-hybrid cloning technique. Bif-1 is an evolutionarily conserved cytoplasmic protein that contains a predicted Src homology 3 (SH3) domain located near its C terminus but shares no significant homology with members of the Bcl-2 family. A Northern blot analysis indicates that Bif-1 is expressed in most tissues with abundant expression in heart and skeletal muscle. Bif-1 is capable of interacting with Bax as demonstrated by yeast two-hybrid, coimmunoprecipitation, and immunofluorescence studies. Induction of apoptosis in murine pre-B hematopoietic cells FL5.12 by interleukin-3 withdrawal results in increased association of Bax with Bif-1, which is accompanied by a conformational change in the Bax protein. Overexpression of Bif-1 promotes Bax conformational change, caspase activation, and apoptotic cell death in FL5.12 cells following interleukin-3 deprivation. Bif-1 thus represents a new type of regulator of Bax-mediated signaling pathways for apoptosis.  相似文献   

4.
Human Brox is a newly identified 46 kDa protein that has a Bro1 domain-like sequence and a C-terminal thioester-linkage site of isoprenoid lipid (CAAX motif) (C standing for cysteine, A for generally aliphatic amino acid, and X for any amino acid). Mammalian Alix and its yeast ortholog, Bro1, are known to associate with charged multivesicular body protein 4 (CHMP4), a component of endosomal sorting complex required for transport III, via their Bro1 domains and to play roles in sorting of ubiquitinated cargoes. We investigated whether Brox has an authentic Bro1 domain on the basis of its capacity for interacting with CHMP4s. Both Strep Tactin binding sequence (Strep)-tagged wild-type Brox (Strep-Brox(WT)) and Strep-tagged farnesylation-defective mutant (Cys-->Ser mutation; Strep-Brox(C408S)) pulled down FLAG-tagged CHMP4b that was coexpressed in HEK293 cells. Treatment of cells with a farnesyltransferase inhibitor, FTI-277, caused an electrophoretic mobility shift of Strep-Brox(WT), and the mobility coincided with that of Strep-Brox(C408S). The inhibitor also caused a mobility shift of endogenous Brox detected by western blotting using polyclonal antibodies to Brox, suggesting farnesylation of Brox in vivo. Fluorescence microscopic analyses revealed that Strep-Brox(WT) exhibited accumulation in the perinuclear area and caused a punctate pattern of FLAG-CHMP4b that was constitutively expressed in HEK293 cells. On the other hand, Strep-Brox(C408S) showed a diffuse pattern throughout the cell, including the nucleus, and did not cause accumulation of FLAG-CHMP4b. Fluorescent signals of monomeric green fluorescent protein (mGFP)-fused Brox(WT) merged partly with those of Golgi markers and with those of abnormal endosomes induced by overexpression of a dominant negative mutant of AAA type ATPase SKD1/Vps4B in HeLa cells, but such colocalization was less efficient for mGFP-Brox(C408S). These results suggest a physiological significance of farnesylation of Brox in its subcellular distribution and efficient interaction with CHMP4s in vivo.  相似文献   

5.
6.
The catalytic subunits of protein kinase CK2, CK2alpha and CK2alpha', are closely related to each other but exhibit functional specialization. To test the hypothesis that specific functions of CK2alpha and CK2alpha' are mediated by specific interaction partners, we used the yeast two-hybrid system to identify CK2alpha- or CK2alpha'-binding proteins. We report the identification and characterization of a novel CK2-interacting protein, designated CKIP-1, that interacts with CK2alpha, but not CK2alpha', in the yeast two-hybrid system. CKIP-1 also interacts with CK2alpha in vitro and is co-immunoprecipitated from cell extracts with epitope-tagged CK2alpha and an enhanced green fluorescent protein fusion protein encoding CKIP-1 (i.e. EGFP-CKIP-1) when they are co-expressed. CK2 activity is detected in anti-CKIP-1 immunoprecipitates performed with extracts from non-transfected cells indicating that CKIP-1 and CK2 interact under physiological conditions. The CKIP-1 cDNA is broadly expressed and encodes a protein with a predicted molecular weight of 46,000. EGFP-CKIP-1 is localized within the nucleus and at the plasma membrane. The plasma membrane localization is dependent on the presence of an amino-terminal pleckstrin homology domain. We postulate that CKIP-1 is a non-enzymatic regulator of one isoform of CK2 (i.e. CK2alpha) with a potential role in targeting CK2alpha to a particular cellular location.  相似文献   

7.
HORMA domain-containing proteins regulate interactions between homologous chromosomes (homologs) during meiosis in a wide range of eukaryotes. We have identified a mouse HORMA domain-containing protein, HORMAD1, and biochemically and cytologically shown it to be associated with the meiotic chromosome axis. HORMAD1 first accumulates on the chromosomes during the leptotene to zygotene stages of meiotic prophase I. As germ cells progress into the pachytene stage, HORMAD1 disappears from the synapsed chromosomal regions. However, once the chromosomes desynapse during the diplotene stage, HORMAD1 again accumulates on the chromosome axis of the desynapsed homologs. HORMAD1 thus preferentially localizes to unsynapsed or desynapsed chromosomal regions during the prophase I stage of meiosis. Analysis of mutant strains lacking different components of the synaptonemal complex (SC) revealed that establishment of the SC is required for the displacement of HORMAD1 from the chromosome axis. Our results therefore strongly suggest that also mammalian cells use a HORMA domain-containing protein as part of a surveillance system that monitors synapsis or other interactions between homologs.  相似文献   

8.
hsp27 is involved in development of tolerance to stress, possibly by its involvement in molecular chaperoning, maintenance of glutathione status, and/or modulation of microfilament structure and function. We hypothesize that hsp27 function depends on specific association with other proteins. To discover proteins that associate with hsp27, we made a differentiated rat Sertoli cell cDNA expression library and screened it using the yeast two-hybrid system. We obtained a cDNA coding for a novel protein of 428 amino acids that we have named PASS1 (protein associated with small stress proteins 1). BLAST searches did not reveal major similarity of PASS1 to any known protein, but the cDNA sequence matched several mouse EST clones and shares 34% homology with a Caenorhabditis elegans genomic sequence. In vitro, bacterially expressed glutathione S-transferase-PASS1 fusion protein bound to hsp27, and hsp27 was co-immunoprecipitated with c-Myc-tagged PASS1 overexpressed in several cell lines. The region of PASS1 responsible for association with hsp27 was identified as existing predominantly between amino acids 108 and 208 of PASS1. Northern hybridization and Western blot analysis demonstrated that PASS1 is expressed in several tissues, with the highest expression occurring in testis, primarily in Sertoli cells. The presence of a 1.4-kilobase PASS1 mRNA in kidney as well as the 1. 8-kilobase mRNA seen in other tissues suggests that alternate splicing may occur in this organ. Ectopic expression of PASS1 in two cultured cell lines was observed to inhibit the ability of hsp27 to protect cells against heat shock, indicating that PASS1 does interact with hsp27 in the live cell.  相似文献   

9.
The c-Cbl protooncogene product is a prominent substrate of protein tyrosine kinases and is rapidly tyrosine-phosphorylated upon stimulation of a wide variety of cell-surface receptors. We have identified a novel c-Cbl-interacting protein termed CIN85 with a molecular mass of 85 kDa which shows similarity to adaptor proteins, CMS and CD2AP. CIN85 mRNA is expressed ubiquitously in normal human tissues and cancer cell lines analyzed. CIN85 was basally associated with c-Cbl. For interaction of CIN85 with c-Cbl, the second SH3 domain of CIN85 was shown to serve as a central player. The CIN85-c-Cbl association was enhanced shortly after stimulation of 293 cells with epidermal growth factor (EGF) and gradually diminished to a basal level, which correlated with a tyrosine phosphorylation level of c-Cbl. Our results suggest that CIN85 may play a specific role in the EGF receptor-mediated signaling cascade via its interaction with c-Cbl.  相似文献   

10.
11.
The carboxyl-terminal cytoplasmic domain of the angiotensin II type 1 (AT1) receptor has recently been shown to interact with several classes of cytoplasmic proteins that regulate different aspects of AT1 receptor physiology. Employing yeast two-hybrid screening of a mouse kidney cDNA library with the carboxyl-terminal cytoplasmic domain of the murine AT1a receptor as a bait, we have isolated a novel protein with a predicted molecular mass of 18 kDa, which we have named ATRAP (for AT1 receptor-associated protein). ATRAP interacts specifically with the carboxyl-terminal domain of the AT1a receptor but not with those of angiotensin II type 2 (AT2), m3 muscarinic acetylcholine, bradykinin B2, endothelin B, and beta2-adrenergic receptors. The mRNA of ATRAP was abundantly expressed in kidney, heart, and testis but was poorly expressed in lung, liver, spleen, and brain. The ATRAP-AT1a receptor association was confirmed by affinity chromatography, by specific co-immunoprecipitation of the two proteins, and by fluorescence microscopy, showing co-localization of these proteins in intact cells. Overexpression of ATRAP in COS-7 cells caused a marked inhibition of AT1a receptor-mediated activation of phospholipase C without affecting m3 receptor-mediated activation. In conclusion, we have isolated a novel protein that interacts specifically with the carboxyl-terminal cytoplasmic domain of the AT1a receptor and affects AT1a receptor signaling.  相似文献   

12.
Glycerophosphodiester phosphodiesterase (GDPD) catalyzes the hydrolysis of deacylated glycerophospholipids to glycerol phosphate and alcohol. GDPD5 has been reported in Mus musculus and Gallus gallus, but not in Homo sapiens. Here we report the cloning and characterization of a novel human GDPD domain-containing gene, GDPD5, isolated from human testis cDNA library, and mapped to 11q13.4-13.5 by searching the UCSC genomic database. The GDPD5 cDNA sequence of 3442 base pairs contains an open reading frame encoding 605 amino acids. The GDPD5 gene consists of 17 exons and encodes a putative protein with six transmembrane regions and a GDPD motif. Subcellular localization of GDPD5 demonstrated that the protein was localized in the cytoplasm when overexpressed in COS-7 cells. RT-PCR analysis showed that GDPD5 was widely expressed in human tissues and the expression levels in kidney and prostate were relatively low.  相似文献   

13.
We report here the cloning and characterization of a novel human SPRYD4 gene which encodes a SPRY domain containing protein. The SPRYD4 gene is isolated from the human brain cDNA library, and mapped to 12q13.2 by searching the UCSC genomic database. The SPRYD4 cDNA is 1201 base pairs in length and contains an open reading frame encoding 207 amino acids. The SPRYD4 gene consists of two exons and encodes a putative protein with a SPRY domain ranging from 86 to 203 amino acids. The RT-PCR analysis reveals that SPRYD4 is ubiquitously expressed in 18 human tissues. However, it is strongly expressed in kidney, bladder, brain, thymus and stomach, while weakly expressed liver, testis, uterus, spleen and lung. Subcellular localization demonstrates that SPRYD4 protein is localized in the nuclear when overexpressed in COS-7 cell.  相似文献   

14.
15.
16.
GABA(B) receptors are heterodimeric G protein-coupled receptors that mediate slow synaptic inhibition in the central nervous system. Whereas heterodimerization between GABA(B) receptor GABA(B)R1 and GABA(B)R2 subunits is essential for functional expression, how neurons coordinate the assembly of these critical receptors remains to be established. Here we have identified Marlin-1, a novel GABA(B) receptor-binding protein that associates specifically with the GABA(B)R1 subunit in yeast, tissue culture cells, and neurons. Marlin-1 is expressed in the brain and exhibits a granular distribution in cultured hippocampal neurons. Marlin-1 binds different RNA species including the 3'-untranslated regions of both the GABA(B)R1 and GABA(B)R2 mRNAs in vitro and also associates with RNA in cultured neurons. Inhibition of Marlin-1 expression via small RNA interference technology results in enhanced intracellular levels of the GABA(B)R2 receptor subunit without affecting the level of GABA(B)R1. Together our results suggest that Marlin-1 functions to regulate the cellular levels of GABA(B) R2 subunits, which may have significant effects on the production of functional GABA(B) receptor heterodimers. Therefore, our observations provide an added level of regulation for the control of GABA(B) receptor expression and for the efficacy of inhibitory synaptic transmission.  相似文献   

17.
Using human cyclin D1 as the "bait" in a yeast two-hybrid system, together with a HL60 cDNA library, we identified a novel human nuclear protein designated DIP1. This protein is expressed in a variety of cell types, and in fibroblasts its level remains constant throughout the cell cycle. However, the level of this protein increases severalfold during the differentiation of HL60 cells. The DIP1 protein can be phosphorylated in vitro by a cellular kinase and this activity reaches its maximum in extracts obtained from cells in the G1 phase of the cell cycle. DIP1 contains a helix-loop-helix motif but lacks an adjacent basic DNA-binding domain, thus resembling the Id family of proteins. The dip1 gene is located on human chromosome 16p11.2-12, a locus that is amplified in several types of human cancer. These results suggest that DIP1 may be involved in the control of gene expression and differentiation, but its precise function remains to be determined.  相似文献   

18.
Although a subpopulation of mRNAs has been identified as translocated to the dendrites or the synaptic regions of neurons, the translocational mechanism has not been elucidated. To find mRNAs enriched in synapses, we compared the synaptosomal mRNAs with those from whole forebrain using differential display (DD). We cloned one of these mRNAs, which encoded a novel 31 kDa protein (PMES-2). PMES-2 mRNA was specifically transcribed in the brain and was present in the dendrites of the hippocampal neurons. PMES-2 protein was partly localized in the postsynaptic density. Although this protein is very similar to human NABC1 protein, its function is still unknown.  相似文献   

19.
We have identified a novel protein (BERP) that is a specific partner for the tail domain of myosin V. Class V myosins are a family of molecular motors thought to interact via their unique C-terminal tails with specific proteins for the targeted transport of organelles. BERP is highly expressed in brain and contains an N-terminal RING finger, followed by a B-box zinc finger, a coiled-coil (RBCC domain), and a unique C-terminal beta-propeller domain. A yeast two-hybrid screening indicated that the C-terminal beta-propeller domain mediates binding to the tail of the class V myosin myr6 (myosin Vb). This interaction was confirmed by immunoprecipitation, which also demonstrated that BERP could associate with myosin Va, the product of the dilute gene. Like myosin Va, BERP is expressed in a punctate pattern in the cytoplasm as well as in the neurites and growth cones of PC12 cells. We also found that the RBCC domain of BERP is involved in protein dimerization. Stable expression of a mutant form of BERP lacking the myosin-binding domain but containing the dimerization domain resulted in defective PC12 cell spreading and prevented neurite outgrowth in response to nerve growth factor. Our studies present a novel interaction for the beta-propeller domain and provide evidence for a role for BERP in myosin V-mediated cargo transport.  相似文献   

20.
We previously identified a novel protein kinase, Hunk, by means of a degenerate PCR screen designed to isolate kinases expressed in the murine mammary gland. We now describe the molecular cloning, chromosomal localization, and activity of this kinase and characterize its spatial and temporal pattern of expression in the mouse. We have isolated a 5.0-kb full-length cDNA clone that contains the 714-amino-acid open reading frame encoding Hunk. Analysis of this cDNA reveals that Hunk is most closely related to the SNF1 family of serine/threonine kinases and contains a newly described SNF1 homology domain. Accordingly, antisera specific for Hunk detect an 80-kDa polypeptide with associated phosphotransferase activity. Hunk is located on distal mouse chromosome 16 in a region of conserved synteny with human chromosome 21q22. During fetal development and in the adult mouse, Hunk mRNA expression is developmentally regulated and tissue-specific. Moreover, in situ hybridization analysis reveals that Hunk expression is restricted to subsets of cells within a variety of organs in the adult mouse. These findings suggest a role for Hunk in murine development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号