首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Communication between bacteria and the gastrointestinal tight junctions (TJs) and zonula adherens is examined. Bacteial-epithelial TJs "crosstalk" can be mediated by many virulence factors, mainly secreted toxins, or can be induced by direct contact of the pathogen with epithelial membrane. Moreover, there are several mechanisms by which bacteria may act on gastrointestinal TJs. First, bacteria can act indirectely at the TJs level by inducing cell transepithelial migration. More particularly, neutrophil or dendritic cells can cross the epithelium by a paracellular pathway. Secondly, bacteria and/or toxins can trigger actin cytoskeleton reorganization (depolymerization or hyperpolymerization). Thirdly, some enteric pathogens are susceptible to act on TJs by activation of cellular signal transduction. Finally, cleavage or modification of TJs proteins can be used by bacteria. New therapeutic strategies may result from a deeper knowledge of the cellular and molecular processes induced by bacteria at the TJ level. Moreover, studies of action of the different bacterial virulence factors on the molecules comprising the TJs and zonula adherens allow us an interesting approach on our understanding of TJ complex regulation.  相似文献   

2.
3.
Tight junctions (TJs) connect epithelial cells and form a semipermeable barrier that only allows selective passage of ions and solutes across epithelia. Here we show that mice lacking EpCAM, a putative cell adhesion protein frequently overexpressed in human cancers, manifest intestinal barrier defects and die shortly after birth as a result of intestinal erosion. EpCAM was found to be highly expressed in the developing intestinal epithelium of wild-type mice and to localize to cell-cell junctions including TJs. Claudin-7 colocalized with EpCAM at cell-cell junctions, and the two proteins were found to associate with each other. Claudins 2, 3, 7, and 15 were down-regulated in the intestine of EpCAM mutant mice, with claudin-7 being reduced to undetectable levels. TJs in the mutant intestinal epithelium were morphologically abnormal with the network of TJ strands scattered and dispersed. Finally, the barrier function of the intestinal epithelium was impaired in the mutant animals. These results suggest that EpCAM contributes to formation of intestinal barrier by recruiting claudins to cell-cell junctions.  相似文献   

4.
The impermeant nature of the intestinal barrier is maintained by tight junctions (TJs) formed between adjacent intestinal epithelial cells. Disruption of TJs and loss of barrier function are associated with a number of gastrointestinal diseases, including neonatal necrotizing enterocolitis (NEC), the leading cause of death from gastrointestinal diseases in preterm infants. Human milk is protective against NEC, and the human milk factor erythropoietin (Epo) has been shown to protect endothelial cell-cell and blood-brain barriers. We hypothesized that Epo may also protect intestinal epithelial barriers, thereby lowering the incidence of NEC. Our data demonstrate that Epo protects enterocyte barrier function by supporting expression of the TJ protein ZO-1. As immaturity is a key factor in NEC, Epo regulation of ZO-1 in the human fetal immature H4 intestinal epithelial cell line was examined and demonstrated Epo-stimulated ZO-1 expression in a dose-dependent manner through the PI3K/Akt pathway. In a rat NEC model, oral administration of Epo lowered the incidence of NEC from 45 to 23% with statistical significance. In addition, Epo treatment protected intestinal barrier function and prevented loss of ZO-1 at the TJs in vivo. These effects were associated with elevated Akt phosphorylation in the intestine. This study reveals a novel role of Epo in the regulation of intestinal epithelial TJs and barrier function and suggests the possible use of enteral Epo as a therapeutic agent for gut diseases.  相似文献   

5.
Tight junctions (TJs) are structures indispensable to epithelial cells and are responsible for regulation of paracellular diffusion and maintenance of cellular polarity. Although many interactions between TJ constituents have been identified, questions remain concerning how specific functions of TJs are established and regulated. Here we investigated the roles of Ral GTPases and their common effector exocyst complex in the formation of nascent TJs. Unexpectedly, RNA interference-mediated suppression of RalA or RalB caused opposing changes in TJ development. RalA reduction increased paracellular permeability and decreased incorporation of components into TJs, whereas RalB reduction decreased paracellular permeability and increased incorporation of components into TJs. Activities of both Ral GTPases were mediated through the exocyst. Finally, we show that TJ-mediated separation of apical-basal membrane domains is established prior to equilibration of barrier function and that it is unaffected by Ral knockdown or specific composition of TJs.  相似文献   

6.
Tight junctions (TJs) are sealing complexes between adjacent epithelial cells, functioning by controlling paracellular passage and maintaining cell polarity. These functions of TJs are primarily based on structural integrity as well as dynamic regulatory balance, indicating plasticity of TJ in response to external stimuli. An indispensable role of TJs involved in pathogen infection has been widely demonstrated since disruption of TJs leads to a distinct increase in paracellular permeability and polarity defects which facilitate viral or bacterial entry and spread. In addition to pathological changes in TJ integrity, TJ proteins such as occludin and claudins can either function as receptors for pathogen entry or interact with viral/bacterial effector molecules as an essential step for characterizing an infective stage. This suggests a more complicated role for TJ itself and especially specific TJ components. Thus, this review surveys the role of the epithelial TJs involved in various pathogen infections, and extends TJ targeted therapeutic and pharmacological application prospects.  相似文献   

7.
Claudin protein family members, of which there are at least 27 in humans and mice, polymerize to form tight junctions (TJs) between epithelial cells, in a tissue- and developmental stage-specific manner. Claudins have a paracellular barrier function. In addition, certain claudins function as paracellular channels for small ions and/or solutes by forming selective pores at the TJs, although the specific claudins involved and their functional mechanisms are still in question. Here we show for the first time that claudin-21, which is more highly expressed in the embryonic than the postnatal stages, acts as a paracellular channel for small cations, such as Na+, similar to the typical channel-type claudins claudin-2 and -15. Claudin-21 also allows the paracellular passage of larger solutes. Our findings suggest that claudin-21-based TJs allow the passage of small and larger solutes by both paracellular channel-based and some additional mechanisms.  相似文献   

8.
Tight junctions (TJs) serve as a barrier that prevents solutes and water from passing through the paracellular pathway, and as a fence between the apical and basolateral plasma membranes in epithelial cells. TJs consist of transmembrane proteins (claudin, occludin, and JAM) and many peripheral membrane proteins, including actin filament (F-actin)-binding scaffold proteins (ZO-1, -2, and -3), non-F-actin-binding scaffold proteins (MAGI-1), and cell polarity molecules (ASIP/PAR-3 and PAR-6). We identified here a novel peripheral membrane protein at TJs from a human cDNA library and named it Pilt (for protein incorporated later into TJs), because it was incorporated into TJs later after the claudin-based junctional strands were formed. Pilt consists of 547 amino acids with a calculated M(r) of 60,704. Pilt has a proline-rich domain. In cadherin-deficient L cells stably expressing claudin or JAM, Pilt was not recruited to claudin-based or JAM-based cell-cell contact sites, suggesting that Pilt does not directly interact with claudin or JAM. The present results indicate that Pilt is a novel component of TJs.  相似文献   

9.
Retinoids are critical for differentiation of columnar epithelial cells and for preventing metaplasia of these cells into stratified squamous epithelial cells, in which tight junctions (TJs) are essentially absent. This implies that retinoids might play important roles in regulating the structures and functions of TJs of columnar epithelium. F9 murine embryonal carcinoma cells differentiate into epithelial cells resembling visceral endoderm bearing TJs, when grown in suspension as aggregates in the presence of retinoic acid (RA). We show that RA induces the TJ structure and expression of several TJ-associated molecules, such as ZO-1, occludin, claudin-6, and claudin-7, as well as a barrier function in the genetically engineered cell line F9:rtTA:Cre-ER(T) L32T2, which allows sophisticated genetic manipulations simply by addition of ligands (H. Chiba et al., 2000, Exp. Cell Res. 260, 334-339). Interestingly, our data indicate that a barrier for small substances is generated after that for large ones during de novo formation of TJs. We also compared the RA-induced expression of TJ components and barrier function in RXRalpha(-/-)-RARgamma(-/-) F9 cells with those in wild-type cells and show that the retinoid signals for transduction of these events are mediated by specific RXR-RAR pairs.  相似文献   

10.
Tight-junction strands, which are organized into the beltlike cell-cell adhesive structure called the zonula occludens (TJ), create the paracellular permselective barrier in epithelial cells. The TJ is constructed on the basis of the zonula adherens (AJ) by polymerized claudins in a process mediated by ZO-1/2, but whether the 24 individual claudin family members play different roles at the TJ is unclear. Here we established a cell system for examining the polymerization of individual claudins in the presence of ZO-1/2 using an epithelial-like cell line, SF7, which lacked endogenous TJs and expressed no claudin but claudin-12 in immunofluorescence and real-time PCR assays. In stable SF7-derived lines, exogenous claudin-7, -14, or -19, but no other claudins, individually reconstituted TJs, each with a distinct TJ-strand pattern, as revealed by freeze-fracture analyses. Fluorescence recovery after photobleaching (FRAP) analyses of the claudin dynamics in these and other epithelial cells suggested that slow FRAP-recovery dynamics of claudins play a critical role in regulating their polymerization around AJs, which are loosely coupled with ZO-1/2, to form TJs. Furthermore, the distinct claudin stabilities in different cell types may help to understand how TJs regulate paracellular permeability by altering the paracellular flux and the paracellular ion permeability.  相似文献   

11.
Occludin is the only known integral membrane protein of tight junctions (TJs), and is now believed to be directly involved in the barrier and fence functions of TJs. Occludin-deficient embryonic stem (ES) cells were generated by targeted disruption of both alleles of the occludin gene. When these cells were subjected to suspension culture, they aggregated to form simple, and then cystic embryoid bodies (EBs) with the same time course as EB formation from wild-type ES cells. Immunofluorescence microscopy and ultrathin section electron microscopy revealed that polarized epithelial (visceral endoderm-like) cells were differentiated to delineate EBs not only from wild-type but also from occludin-deficient ES cells. Freeze fracture analyses indicated no significant differences in number or morphology of TJ strands between wild-type and occludin-deficient epithelial cells. Furthermore, zonula occludens (ZO)-1, a TJ-associated peripheral membrane protein, was still exclusively concentrated at TJ in occludin-deficient epithelial cells. In good agreement with these morphological observations, TJ in occludin-deficient epithelial cells functioned as a primary barrier to the diffusion of a low molecular mass tracer through the paracellular pathway. These findings indicate that there are as yet unidentified TJ integral membrane protein(s) which can form strand structures, recruit ZO-1, and function as a barrier without occludin.  相似文献   

12.
Tight junctions (TJs) regulate the passage of ions and molecules through the paracellular pathway in epithelial and endothelial cells. TJs are highly dynamic structures whose degree of sealing varies according to external stimuli, physiological and pathological conditions. In this review we analyze how the crosstalk of protein kinase C, protein kinase A, myosin light chain kinase, mitogen-activated protein kinases, phosphoinositide 3-kinase and Rho signaling pathways is involved in TJ regulation triggered by diverse stimuli. We also report how the phosphorylation of the main TJ components, claudins, occludin and ZO proteins, impacts epithelial and endothelial cell function.  相似文献   

13.
Crosstalk of tight junction components with signaling pathways   总被引:6,自引:0,他引:6  
Tight junctions (TJs) regulate the passage of ions and molecules through the paracellular pathway in epithelial and endothelial cells. TJs are highly dynamic structures whose degree of sealing varies according to external stimuli, physiological and pathological conditions. In this review we analyze how the crosstalk of protein kinase C, protein kinase A, myosin light chain kinase, mitogen-activated protein kinases, phosphoinositide 3-kinase and Rho signaling pathways is involved in TJ regulation triggered by diverse stimuli. We also report how the phosphorylation of the main TJ components, claudins, occludin and ZO proteins, impacts epithelial and endothelial cell function.  相似文献   

14.
Tight junctions (TJs) and adherens junctions (AJs) are key determinants of the structure and permeability of epithelial barriers. Although exocytic delivery to the cell surface is crucial for junctional assembly, little is known about the mechanisms controlling TJ and AJ exocytosis. This study was aimed at investigating whether a key mediator of exocytosis, soluble N-ethylmaleimide sensitive factor (NSF) attachment protein alpha (αSNAP), regulates epithelial junctions. αSNAP was enriched at apical junctions in SK-CO15 and T84 colonic epithelial cells and in normal human intestinal mucosa. siRNA-mediated knockdown of αSNAP inhibited AJ/TJ assembly and establishment of the paracellular barrier in SK-CO15 cells, which was accompanied by a significant down-regulation of p120-catenin and E-cadherin expression. A selective depletion of p120 catenin effectively disrupted AJ and TJ structure and compromised the epithelial barrier. However, overexpression of p120 catenin did not rescue the defects of junctional structure and permeability caused by αSNAP knockdown thereby suggesting the involvement of additional mechanisms. Such mechanisms did not depend on NSF functions or induction of cell death, but were associated with disruption of the Golgi complex and down-regulation of a Golgi-associated guanidine nucleotide exchange factor, GBF1. These findings suggest novel roles for αSNAP in promoting the formation of epithelial AJs and TJs by controlling Golgi-dependent expression and trafficking of junctional proteins.  相似文献   

15.
Tight junctions between epithelial cells are believed to control the paracellular diffusion of substances across epithelia. Epithelia in which tight junctions are poorly developed display a higher paracellular electrical conductance, while those with extensive tight junctions show lower conductance values. We described here a particular epithelium, that of the proximal tubules of the Necturus kidney, in which the development of the tight junctions varies in parallel with a change of paracellular electrical conductance. In control conditions, tight junctions between epithelial cells of the proximal tubules are more developed than in tubules undergoing saline diuresis, a situation which increases the conductance across the paracellular shunt pathway.  相似文献   

16.
Tight junctions (TJs), the most apical of the intercellular junctions, prevent the passage of ions and molecules through the paracellular pathway. Intracellular signalling molecules are likely to be involved in the regulation of TJ integrity. In order to specifically investigate the role of protein kinase A (PKA) in the maintenance of epithelial TJ integrity, calcium-switch experiments were performed, in which calcium was removed from EpH4 and MDCK culture medium, in the absence or presence of the PKA inhibitors H-89 or HA-1004. Removal of calcium from the culture media of the epithelial cells resulted in disruption of the TJs, characterised by a loss of membrane association of the TJ-associated proteins occludin, ZO-1 and ZO-2, by a loss of TJ strands, by a marked decrease in the transepithelial electrical resistance and by a dramatic increase in the transepithelial permeability to tracers. The association of occludin, ZO-1 and ZO-2 with the actin cytoskeleton is not affected. In contrast, when the removal of calcium was performed in the presence of either the PKA inhibitor H-89 or HA-1004, all barrier characteristics were preserved. Our data indicate that following the removal of calcium from the culture medium of epithelial cells in vitro, PKA is activated and subsequently is involved in the disruption of TJs.  相似文献   

17.
18.
Tight and adherens junctions (TJs, AJs) between neurons, epithelial and glial cells provide barrier and adhesion properties in the olfactory epithelium (OE), and subserve functions such as compartmentalization and axon growth in the fila olfactoria (FO). Immunofluorescence and immunoelectronmicroscopy were combined in sections of rat OE and FO to document the cellular and subcellular localization of TJ proteins occludin(Occl), claudins(Cl) 1-5 and zonula occludens(ZO) proteins 1-3, and of AJ proteins N-cadherin(cad), E-cad, and alpha-, beta- and p120-catenin(cat). With the exception of Cl2, all TJ proteins were colocalized in OE junctions. Differences in relative immunolabeling intensities were noted between neuronal and epithelial TJs. In the FO, Cl5-reactivity was localized in olfactory ensheathing cell (OEC) junctions, Cl1-reactivity in the FO periphery, with differential colocalization with ZOs. Supporting cells formed N-cad-immunoreactive (ir) AJs with olfactory sensory neurons, E-cad-ir junctions with microvillar and gland duct cells, and both N-cad and E-cad-ir junctions in homotypic contacts. Alpha, beta- and p120-cat were localized in all AJs of the OE. AJs were scarce in the globose basal cell layer. Immature and mature neurons formed numerous contacts. In the FO, AJs were documented between OECs, between OECs and axons, and between axons. Most AJs colocalized N-cad with catenins, occasionally E-cad-ir AJs were found in the FO periphery. Characteristics of molecular composition suggest differential properties of TJs formed by neuronal, epithelial and glial cells in the OE and FO. The presence and molecular composition of AJs are consistent with a role of AJ proteins in neuroplastic processes in the peripheral olfactory pathway.  相似文献   

19.
Cell-cell-interactions are important for the regulation of tissue integrity, the generation of barriers between different tissues and body compartments thereby providing an effective defence against toxic or pathogenic agents, as well as for the regulation of inflammatory cell recruitment. Intercellular interactions are regulated by adhesion receptors on adjacent cells which upon extracellular ligand binding mediate intracellular signals. In the vasculature, neighbouring endothelial cells interact with each other through various adhesion molecules leading to the generation of junctional complexes like tight junctions (TJs) and adherens junctions (AJs) which regulate both leukocyte endothelial interactions and paracellular permeability. In this context, emerging evidence points to the importance of the family of junctional adhesion molecules (JAMs), which are localized in tight junctions of endothelial and epithelial cells and are implicated in the regulation of both leukocyte extravasation as well as junction formation and permeability.  相似文献   

20.
Tight junctions (TJs) are composed of a claudin-based anastomosing network of TJ strands at which plasma membranes of adjacent epithelial cells are closely attached to regulate the paracellular permeability. Although the TJ proteins occludin and tricellulin have been known to be incorporated in the TJ strand network, their molecular functions remain unknown. Here, we established tricellulin/occludin-double knockout (dKO) MDCK II cells using a genome editing technique and evaluated the structure and barrier function of these cells. In freeze-fracture replica electron microscopy, the TJ strands of tricellulin/occludin-dKO cells had fewer branches and were less anastomosed compared with the controls. The paracellular permeability of ions and small tracers was increased in the dKO cells. A single KO of tricellulin or occludin had limited effects on the morphology and permeability of TJs. Mathematical simulation using a simplified TJ strand network model predicted that reduced cross-links in TJ strands lead to increased permeability of ions and small macromolecules. Furthermore, overexpression of occludin increased the complexity of TJ strand network and strengthened barrier function. Taken together, our data suggest that tricellulin and occludin mediate the formation and/or stabilization of TJ-strand branching points and contribute to the maintenance of epithelial barrier integrity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号