首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Rapid, specific techniques are essential to monitor the quality of inoculant plant growth‐promoting strains at all stages of manufacture from starter culture to the final product in its carrier medium. In this study, colony immunoblotting was evaluated for the specific detection and enumeration of Citrobacter freundii, one component of a Vietnamese commercial inoculant plant growth‐promoting product used to improve the yield and nutrient efficiency of paddy rice. For quality control of either sterilised or unsterilised carrier media in commercial products colony immunoblotting proved to be a promising tool. Furthermore, it was possible using this technique to measure the survival of this strain in soil and the rhizosphere.  相似文献   

2.
We have examined the survival of four cowpea rhizobia strains in Jamaican peat to determine its suitability as inoculant carrier. All strains survived well since more than 107 cells of rhizobia per gram of peat were recovered from the inoculant after storage for 6 months at 30C. Survival of cowpea rhizobia was better when inoculants were stored at 4 than 30C. The native strains JRC29 and JRW3 (isolated in Jamaica) survived much better than the introduced strains MI-50A and IRC291 (isolated in West Africa). Survival of cowpea rhizobia was not significantly increased when peat was mixed with 1% sucrose. Our results suggest that Jamaican peat may be used as a carrier for inoculant production.  相似文献   

3.
The growth and survival of two strains of rhizobia ( Rhizobium leguminosarum bv. trifolii strain WU95 and R. spp. strain CB3060) injected into finely milled, sterile peat contained in packets of various packaging films were compared after 2, 4 and 8 weeks storage at 26°C. The films were 50 μm and 100 μm low density polyethylene (LDPE), 50 μm high density polyethylene (HDPE) and polyethylene laminated foil and were chosen to provide a range of gas transmission and water permeability properties. Survival of both strains varied directly with the transmission and permeability properties of the film, under controlled storage conditions. These findings provide further evidence that a degree of aeration is necessary for survival of rhizobia in peat-based legume inoculants. The choice of the most suitable film needs consideration of the moisture characteristic curve of the carrier.  相似文献   

4.
One of the proposed mechanisms by which rhizobacteria enhance plant growth is through the production of plant growth regulators. Five plant growth promoting rhizobacterial (PGPR) strains produced the cytokinin dihydrozeatin riboside (DHZR) in pure culture. Cytokinin production by Pseudomonas fluorescens G20-18, a rifampicin-resistant mutant (RIF), and two TnphoA-derived mutants (CNT1, CNT2), with reduced capacity to synthesize cytokinins, was further characterized in pure culture using immunoassay and thin layer chromatography. G20-18 produced higher amounts of three cytokinins, isopentenyl adenosine (IPA), trans-zeatin ribose (ZR), and DHZR than the three mutants during stationary phase. IPA was the major metabolite produced, but the proportion of ZR and DHZR accumulated by CNT1 and CNT2 increased with time. No differences were observed between strain G20-18 and the mutants in the amounts of indole acetic acid synthesized, nor were gibberellins detected in supernatants of any of the strains. Addition of 10(-5) M adenine increased cytokinin production in 96- and 168-h cultures of strain G20-18 by approximately 67%. G20-18 and the mutants CNT1 and CNT2 may be useful for determination of the role of cytokinin production in plant growth promotion by PGPR.  相似文献   

5.
The study was designed to assess the effect of selected pesticides (metribuzin, glyphosate, imidacloprid, thiamethoxam, hexaconazole, metalaxyl and kitazin) at the recommended and higher rates on plant growth promoting activities of Pseudomonas aeruginosa strain PS1 isolated from mustard (Brassica compestris) rhizosphere. The strain PS1 was specifically chosen owing to its substantial tolerance against pesticides, phosphate solubilization and considerable production of indole acetic acid, siderophores, exo-polysaccharides, HCN and ammonia. Plant growth promoting traits of the strain PS1 decreased consistently as the concentrations of each pesticide was increased from the recommended dose to the higher ones. Generally, the maximum toxicity to plant growth promoting traits was displayed by pesticides at three times the recommended field rate. However, the effect on the plant growth promoting activities of the P. aeruginosa strain PS1 at the recommended dose of each pesticide was less hazardous. This study revealed an additional aspect of the toxicological mechanisms of the pesticides through which they suppress the plant growth.  相似文献   

6.
The influence of plant growth promoting (PGP) activity of bacterial communities recovered from each of six weed species (barnyard grass (Echinochloa crusfalli (L.) Beauv.), corn spurrey (Spergula arvensis L.), goldenrod (Sonchus sp.), Italian ryegrass (Lolium multiflorum L.), lamb's-quarters (Chenopodium album L.), and quack grass (Agropyron repens (L.) Beauv.)) was examined in relation to the effect it had on the growth of the potato cultivar Russet Burbank. Bacterial species composition and community structure were compared, species-abundance relationships were determined, and those members conferring positive benefits for potato growth and development were identified. Of the genera identified, Bacillus, Arthrobacter, Stenotrophomonas, Acinetobacter, and Pseudomonas were the most common, and Stenotrophomonas maltophilia was the most frequent species recovered across all sources. Significantly higher population densities were found in the root zones of quack grass, compared with Italian ryegrass and lamb's-quarters. There were no significant differences in species richness among the root zones; however, evenness indices (species distribution) were significantly lower in corn spurrey (P = 0.05). Significantly higher diversity indices (Hill-1 and Hill-2 numbers) (P = 0.05) were found in the root zone soil communities of potato and goldenrod, indicating a decrease in the proportional abundance of common and very abundant species, respectively, while in barnyard grass, corn spurrey, and Italian ryegrass the reverse was the case. In both years of the study, Italian ryegrass and corn spurrey were consistently better sources of PGP rhizobacteria for potatoes, significantly (P < 0.001) increasing the mean wet weight of shoots and roots in in vitro bacterization studies. Barnyard grass was a consistently poor source of such isolates. Species-abundance measures of root zone bacterial biodiversity were not found, in this instance, to be a particularly good predictor of the presence or absence of PGP rhizobacteria. We consider that the study of complementary crops and soil-conditioning treatments should not preclude the examination of weed species as possible beneficials, as alterations in rhizobacterial biodiversity and functional versatility can influence the numbers and types of PGP bacterial strains, and consequently may serve to improve soil quality.  相似文献   

7.
The rhizosphere is a complex environment where roots interact with physical, chemical and biological properties of soil. Structural and functional characteristics of roots contribute to rhizosphere processes and both have significant influence on the capacity of roots to acquire nutrients. Roots also interact extensively with soil microorganisms which further impact on plant nutrition either directly, by influencing nutrient availability and uptake, or indirectly through plant (root) growth promotion. In this paper, features of the rhizosphere that are important for nutrient acquisition from soil are reviewed, with specific emphasis on the characteristics of roots that influence the availability and uptake of phosphorus and nitrogen. The interaction of roots with soil microorganisms, in particular with mycorrhizal fungi and non-symbiotic plant growth promoting rhizobacteria, is also considered in relation to nutrient availability and through the mechanisms that are associated with plant growth promotion.  相似文献   

8.
This study was undertaken to determine the effect of aromatic hydrocarbons on growth and plant growth promoting activities of Azotobacter chroococcum strain JL104. The organism was grown on Jensen’s media without sucrose, supplemented with different concentrations of aromatic hydrocarbons. Azotobacter chroococcum strain JL104 was able to grow in the presence of benzene, toluene, aniline and benzoic acid and was able to utilize these as sole carbon source as well. The culture showed the highest growth in presence of 0.5% concentrations of aniline and benzoic acid and 0.01% concentrations of benzene and toluene. Maximum indole acetic acid (IAA) production and acetylene reduction activity (ARA) were recorded with benzene and benzoic acid, respectively. Among other substituted benzene derivatives such as xylene, p-hydroxybenzoic acid, di-nitrophenol and di-chlorophenol, xylene was observed to be the least toxic and di-nitrophenol the most toxic hydrocarbon. The highest soil survival was found in soil amended with 1% sucrose however, the population of A. chroococccum strain JL104 declined continuously in unamended soil. Amongst various hydrocarbons, 0.1% toluene amended soil supported the maximum survival, indicating it to be least toxic aromatic hydrocarbon carbon in soil.  相似文献   

9.
A bench study was carried out to characterize the kinetics of two plant growth promoting rhizobacteria (PGPR) Azotobacter chroococcum and Bacillus megaterium to adsorb heavy metals from solution. Adsorption of Pb2+ and Cd2+ by bacterial cells was processed quickly with an equilibration achieved within 5 min. The adsorptions were fitted well with Freundlich and Langmuir isotherm models. The comparison of isotherm parameters indicated that A. chroococcum had a stronger capacity to bind metal ions than B. megaterium, with an average increase of 59.8% for Pb2+ and 75.6% for Cd2+, respectively. Both bacteria had a stronger affinity to Pb2+ than Cd2+ since Pb2+ was more easily bound with the phosphoryl groups on the cell surface than Cd2+. This demonstrated that the presence of bacteria in the rhizosphere may result in the reduction of mobile ions in soil solution.  相似文献   

10.
Abstract

Eighteen isolates of fluorescent pseudomonads and Bacillus spp. were isolated from Alternaria triticina suppressive soils of wheat fields. These isolates were evaluated in the laboratory and greenhouse for the biocontrol of A. triticina. Six isolates were considered to have potential for the biocontrol of A. triticina on the basis of antibiotic sensitivity, fluorescence produced by Pseudomonas, inhibitory effect on A. triticina and root colonization of wheat roots by these isolates. These six isolates (Pa22, Pf27, Pa28, B25, B28, and B30) were further tested for their biocontrol potential against A. triticina on wheat in a pot test. Out of six isolates, isolate B28 was best in improving wheat growth of A. triticina inoculated plants. Isolate B28 also caused higher reduction in percentage infected leaf area caused by A. triticina while isolate Pa22 was found best in improving growth of plants without A. triticina.  相似文献   

11.
The survival of silage inoculant lactic acid bacteria in rumen fluid   总被引:3,自引:0,他引:3  
AIMS: To determine whether lactic acid bacteria (LAB) used in inoculants for silage can survive in rumen fluid (RF), and to identify those that survive best. METHODS AND RESULTS: Twelve commercial silage inoculants were added at 107 CFU ml-1 to strained RF (SRF) taken from dairy cows, with and without 5 g l-1 glucose and incubated in vitro at 39 degrees C. Changes in pH, LAB numbers and fermentation products were monitored for 72 h. In the inoculated RF with glucose, the pH decreased and numbers of LAB increased. The inoculants varied with regard to their effect on pH change and growth. In the SRF, both with and without glucose, the pH values of the inoculated samples were generally higher than those of the uninoculated controls throughout most of the incubation period. This may suggest a positive effect on the rumen environment. CONCLUSIONS: LAB used in silage inoculants can survive in RF in vitro. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first step in studying the probiotic potential of silage LAB inoculants for dairy cattle. The survival of these LAB in RF may enable them to interact with rumen microorganisms and to affect rumen functionality.  相似文献   

12.
13.
Summary The effect of P nutrition on the growth of tomato plants in peat was examined. Initially, plants received an adequate supply of P and then received either nil, 0.78 or 2.34 kg superphosphate per m3 in combination with either 50 g N/ml (N1) or 300 g N/ml (N2) as ammonium nitrate in a liquid feed. Vegetative growth was restricted in the lower P treatmentsi.e. inhibited shoot growth, reduced duration of leaf expansion phase, thinner stems and reduced vegetative dry wt. Plants receiving N2 showed a greater restriction in growth compared with N1 plants when the P supply was limiting. P deficiency disrupted protein metabolism in the leaves, in that soluble leaf protein was reduced and trichloroacetic acid-soluble N accumulated. Flower development was accelerated by low P applications but the final numbers of flowers and the fruit-setting efficiency were reduced. Lowering the N supply reduced the fruit yield by 36 per cent while an intermediate P level reduced yields by about 15 per cent. Maximum fruit yields and good vegetative growth occurred when plants contained 0.4 per cent P or above in the mature leaves, and this value was achieved by adding the highest level (2.34 kg/m3) of superphosphate to the peat.  相似文献   

14.
15.
16.
Comment on: van Leeuwen IMM, et al. Cell Cycle 2012; 11:1851-61.  相似文献   

17.
Summary A model of the way the rate of growth of a plant may be affected by the level of supply of a nutrient is presented. Growth rate is linked to the nutrient level of the photosynthetic tissues, which is assumed to control changes in the net assimilation rate, the leaf area per unit shoot weight, the shoot: root ratio, the root surface area, and the distribution of nutrient between root and shoot. The uptake of nutrient depends on the concentration of nutrient at the root surface, the root surface area and its absorbing power. All these relationships may be determined in stirred solution culture. A method of applying this information to soil grown plants is suggested.Soil Science Laboratory, Department of Agricultural Science, University of Oxford  相似文献   

18.
Summary The growth and nitrogen uptake response of rape plants to nitrate concentration at the root surface were studied in solution culture in a controlled environment cabinet over a period of 24 days. NO3 was supplied at the rates of 10–5 M, 5×10–5 M, 10–4 M, 10–3 M and 10–2 M in solution and was maintained near these levels.With increasing mean N concentration in the tissues, the relative growth rate and leaf area ratio increased and unit leaf rate decreased slightly. Values of all three growth parameters decreased with plant age.The shoot: root dry weight ratios and their N content ratios increased with increasing mean per cent N in the plant. The length or surface area per unit dry weight of roots was correlated negatively with per cent N and positively with age.The maximum mean inflow of nitrate to rape roots decreased sharply with age. The concentration at which half maximal mean inflow was attained was 3.44×10–5 M NO3 .  相似文献   

19.
Brewster  J. L.  Bhat  K. K. S.  Nye  P. H. 《Plant and Soil》1976,44(2):295-328
Summary Rape plants were grown in solutions of 10-6, 10-5, 10-4 and 10-3 M phosphate in a controlled environment that gave near optimum climatic conditions for growth. Uptake and growth were followed by replicate harvests taken every five days. The relation between the mean root absorbing power, and the concentration of P in solution was derived. The relations between the % P in the shoot dry matter and the other parameters of the growth model described in paper I were also determined. Growth rates were exceptionally high, with RGR values above 0.5 g/g/d in solutions of concentration 10-5 M and more during the early stages of growth. RGR was reduced to about half this value in 10-6 M P. The range of response to solution concentration in these conditions therefore lay between 10-6 and 10-5 M P. In solutions of 10-6 and 10-5 M P root hairs were abundant but in solutions of 10-4 and 10-3 M P, they were absent. Rape had a high UAR for P as a result of its high RGR, but it had a correspondingly large root surface area per unit plant weight. Onions (see Paper II of this series) had an inherently lower RGR and UAR for P, but had a comparatively low root surface area per unit plant weight. It appears that these contrasting features of rape and onions broadly compensated for each other so that the P concentration range over which the two species responded was much the same.Soil Science Labaratory, Department of Agricultural Science, University of Oxford  相似文献   

20.
The impact of conventional agrichemicals commonly used in New Zealand apple production on non-target, culturable phyllosphere microbial populations was studied in the laboratory (agar, leaf, and seedling assays) and field (apple orchard). Morphologically distinct bacteria (three), yeasts (five), and filamentous microfungi (two) were used as indicator species. The agar assay showed that agrichemical toxicity to microorganisms was dependent on product type, product rate, and organism studied. While the fungicides metiram and captan stopped or severely reduced growth of nearly all microorganisms studied, the insecticides tebufenozide and lufenuron and the fungicide nitrothal-isopropyl showed the least amount of microbial toxicity, each affecting 2 of the 10 indicator organisms studied. In the leaf assay a single agrichemical application at field rate either reduced or increased microbial population counts, again depending on product and microorganism. Repeated agrichemical applications, however, reduced microbial population numbers from 10- to 10,000-fold in planta. Further field research validated these findings, although differences in microbial numbers before and after agrichemical applications were less dramatic. In the orchard, total organism numbers recovered within 2-6 days, but species richness (sum of recognizable taxonomic units) declined. Agrichemicals clearly affected non-target, culturable surface microorganisms. The importance of diversity and stability of microbial populations for disease control still needs to be established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号