首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Numerous studies have revealed that gamma-linolenic acid (GLA) possesses effective tumoricidal properties while not inducing damage to normal cells or creating harmful systemic side effects. It can exert anti-tumor efficacy against a variety of cancers including leukemia. However, little is known about the effects of GLA on leukemia resistant to chemotherapy, emerging as a serious clinical problem. The present study tested GLA-induced apoptosis in K562/ADM multidrug-resistant (MDR) leukemic cells and investigated its possible mechanisms. Using cell viability, fluorescent staining of nuclei, flow cytometric Annexin V/PI double staining and lactate dehydrogenase (LDH) release, we found that GLA could inhibit cell growth and induce apoptosis and secondary necrosis. The results showed that incubation with GLA concentrations of 10-60 microg/ml caused a dose- and time-dependent decrease of K562/ADM cell viability, and the IC50 value was 50.5 microg/ml at 24 h and 31.5 microg/ml at 48 h. Flow cytometry using Annexin V/PI double staining assessed apoptosis, necrosis and viability. Typical apoptotic nuclei were shown by staining of K562/ADM cells with DNA-binding fluorochrome Hoechst 33342, characterized by chromatin condensation and nuclear fragmentation. On the other hand, after treated K562/ADM cells with 20 microg/ml GLA for 48 h and with 40 microg/ml GLA for 12 h, the LDH release significantly increased, indicated losses of plasma membrane integrity and presence of necrosis. Further, the inhibition of GLA-induced apoptosis by a pan-caspase inhibitor (z-VAD-fmk) suggested the involvement of caspases. The increase of caspase-3 activity with GLA concentration confirmed its role in the process. The results also showed that the malondialdehyde (MDA) content was also significantly elevated, and antioxidant BHT could block GLA cytotoxity, indicating the cytotoxity induced by GLA may be due to lipid peroxidation.  相似文献   

2.
The present study brings out the preventive role of (?)-epigallocatechin-gallate (EGCG) on cardiac mitochondrial metabolism and apoptosis in cigarette smoke (CS)-exposed rats. The CS-exposed rats showed significantly decreased activities of TCA cycle enzymes and mitochondrial enzymatic antioxidants, on the other hand, mitochondrial lipid peroxidation was increased and GSH level was decreased. Further, CS exposure was found to induce cardiac apoptosis through release of cytochrome c into the cytosol, cleavage of pro-caspase-3 to active caspase-3, up-regulation of pro-apoptotic (Bax) and down-regulation of antiapoptotic (Bcl-2) molecules. The CS-induced apoptosis was further confirmed by mitochondrial and nuclear ultra structural apoptotic features as evaluated by electron microscopic studies. EGCG supplementation shelters the activities of TCA cycle enzymes and antioxidant enzymes, with concomitant decrease in lipid peroxidation and increase in GSH level. EGCG administration inhibited apoptosis through the inhibition of cytochrome c release into cytosol, activation of pro-caspase-3, down regulation of Bax and significant up regulation of Bcl-2. EGCG reversed the ultra structural apoptotic alterations of mitochondria and nucleus. The present study has provided experimental evidences that the EGCG treatment enduring to cardio protection at mitochondrial level.  相似文献   

3.
Yang SH  Lu MC  Chien CM  Tsai CH  Lu YJ  Hour TC  Lin SR 《Life sciences》2005,76(21):2513-2522
Cardiotoxin III (CTX III), a basic polypeptide with 60 amino acid residues isolated from Naja naja atra venom, has been reported to have anticancer activity. CTX III was found to inhibit the growth of K562 cells in a time-and dose-dependent manner with IC50 value of 1.7 microg/ml, and it displayed several features of apoptosis including apoptotic body formation, increase of sub G1 population, DNA fragmentation and poly (ADP-ribose) polymerase (PARP) cleavage. Investigation of the mechanism of CTXIII--induced apoptosis revealed that the treatment of K562 cells with CTX III resulted in the activation of caspase-9, caspase-3 and subsequent cleavage of its substrate PARP and that CTXIII was also associated with an early release of cytochrome c from the mitochondria. These results suggest that CTX III may induce apoptosis through a mitochondria- and caspase-dependent mechanism.  相似文献   

4.
The polyunsaturated fatty acids gamma-linolenic acid (GLA) and eicosapentaenoic acid (EPA) are cytotoxic to tumour cells. GLA inhibits Walker 256 tumour growth in vivo, causing alterations in mitochondrial ultrastructure and cellular metabolism. The objective of the present study was to investigate the mechanisms behind fatty acid inhibition of Walker 256 tumour growth under controlled in vitro conditions. At a concentration of 150 microM, both GLA and EPA caused a decrease in cell proliferation and an increase in apoptotic index. Increases in reactive oxygen species (ROS) and lipid peroxide production were identified, as well as alterations in energy metabolism and the deposition of large amounts of triacylglycerol in the form of lipid droplets. Mitochondrial respiratory chain complexes I+III and IV had significantly decreased activity and mitochondrial membrane potential was greatly diminished. Intracellular ATP concentrations were maintained at 70-80% of control values despite the decreased mitochondrial function, which may be in part due to increased utilisation of glucose for ATP generation. Cytochrome c release from mitochondria was found, as was caspase-3-like activation. DNA fragmentation in situ revealed many apoptotic events within the cell population. The mechanism(s) by which ROS and lipid peroxides induce apoptosis remains unclear, but the effects of GLA and EPA appear to involve the mitochondrial pathway of apoptosis induction leading to cytochrome c release, caspase activation, loss of mitochondrial membrane potential and DNA fragmentation.  相似文献   

5.
This work shows that 25 μM quercetin caused a marked inhibition of K562 cells growth together with a mild cytotoxicity, while HSB-2 cells were practically unaffected. Moreover, quercetin induced caspase-3 and cytochrome c-dependent apoptosis almost exclusively in the former cell line. Exposure of K562 cells to quercetin caused also a significant increase of cells in G2/M phase that reached the maximum peak at 24 h (4-fold with respect to the basal value). The major sensitivity exhibited by K562 cells was only in part imputable to their higher glutathione content, as compared to HSB-2 cells, thus confirming previous reports describing the formation of intracellular quercetin–thiol toxic adducts in cells exposed to the flavonoid. In fact, after induction of intracellular glutathione increase we detected in both cell lines a significant rise of apoptotic cells, again more marked in K562 cells. By contrast, glutathione-depleted cells, failed to show a decrease of apoptosis in both cell lines, thus contradicting our previous findings and literature data. Since the yet unresolved question about the anti-oxidant or the pro-oxidant capacity of quercetin, we investigated which of these two properties worked in our experimental model. Interestingly, not only quercetin did not produce reactive oxygen species but also prevented their formation, as observed in cells exposed to the oxidizing agent ter-butylhydroperoxide, acting as an efficient oxygen radicals scavenger. This result indicates that quercetin exhibited, in these cell lines, anti-oxidant more than pro-oxidant ability.  相似文献   

6.
Cathepsin D (cat D) reportedly plays an important role in certain apoptotic processes, the downstream pathways of which involve release of cytochrome c (cyt c) from mitochondria and activation of the caspase cascade. Previous studies revealed that the B-cell lymphoma 2 (Bcl-2) family members Bax or Bid play important roles in apoptotic signal transduction between cat D and mitochondria. Here, we show that glucosamine sulfate (GS) inhibits the proliferation and induces apoptosis of human chronic myelogenous leukemia K562 cells in vitro. GS interfered with the maturation of cat D. Activation of caspase-3, cleavage of poly-(ADP-ribose)-polymerase, release of cyt c, and downregulation of Bcl-xL accompanied GS-induced apoptosis, and these processes were inhibited by the cat D inhibitor pepstatin A. However, we did not detect any altered gene expression of Bcl-2, Bax, or Bid during apoptosis. Translocation of cat D from the lysosome to the cytosol was observed in GS-treated K562 cells. These findings suggest that GS-induced K562 cell apoptosis involves the translocation of cat D from the lysosome to the cytosol. Furthermore, our findings suggest that downregulation of Bcl-xL (but not Bcl-2, Bax, or Bid) connects cat D and the mitochondrial pathway, which causes the release of cyt c and activation of the caspase cascade during GS-induced apoptosis of K562 cells.  相似文献   

7.
TNF-related apoptosis-inducing ligand (TRAIL) is a pro-apoptotic cytokine that is capable of inducing apoptosis in a wide variety of cancer cells but not in normal cells. Although many cancer cells are sensitive to TRAIL-induced apoptosis, chronic myeloid leukemia (CML) develops resistance to TRAIL. In this study, we investigated whether apicidin, a novel histone deacetylase inhibitor, could overcome the TRAIL resistance in CML-derived K562 cells. Compared to treatment with apicidin or TRAIL alone, cotreatment with apicidin and TRAIL-induced apoptosis synergistically in K562 cells. This combination led to activation of caspase-8 and Bcl-2 interacting domain (Bid), resulting in the cytosolic accumulation of cytochrome c from mitochondria as well as an activation of caspase-3. Treatment with apicidin resulted in down-regulation of Bcr-Abl and inhibition of its downstream target, PI3K/AKT-NF-κB pathway. In addition, apicidin decreased the level of NF-κB-dependent Bcl-xL, leading to caspase activation and Bid cleavage. These results suggest that apicidin may sensitize K562 cells to TRAIL-induced apoptosis through caspase-dependent mitochondrial pathway by regulating expression of Bcr-Abl and its related anti-apoptotic proteins. Therefore, the present study suggests that combination of apicidin and TRAIL may be an effective strategy for treating TRAIL-resistant Bcr-Abl expressing CML cells.  相似文献   

8.
Treatment of human promyelocytic leukemia HL-60 cells with apigeninidin could induce cytotoxicity (IC50 = ~80 μM), along with apoptotic sub-G1 cells, TUNEL-positive apoptotic DNA fragmentation, activation of the multidomain pro-apoptotic Bcl-2 proteins (Bak and Bax), mitochondrial membrane potential (Δψm) loss, release of mitochondrial cytochrome c and AIF into the cytoplasm, activation of caspase-9, -3, -8, and -7, and cleavage of PARP and lamin B. These induced apoptotic events were accompanied by decrease of Bcl-2 level and increase of Bak and Bax levels. Apigeninidin-induced sub-G1 cells and activation of Bak and Bax were also detected in human acute leukemia Jurkat T cells, but not in Jurkat T cells overexpressing Bcl-2. Pretreatment of HL-60 cells with the pan-caspase inhibitor z-VAD-fmk reduced significantly apigeninidin-induced sub-G1 cells and caspase cascade activation, whereas it failed to suppress Bak and Bax activations, Δψm loss, and release of mitochondrial cytochrome c and AIF. None of FADD and caspase-8 deficiencies affected the sensitivity of Jurkat T cells to apigeninidin-induced cytotoxicity. These results demonstrated that apigeninidin-induced apoptosis was mediated by activation of Bak and Bax, mitochondrial damage and resultant release of not only cytochrome c, causing caspase cascade activation, but also caspase-independent death effector AIF in HL-60 cells.  相似文献   

9.
Eicosapentaenoic acid (EPA) is one of the major dietary polyunsaturated fatty acids and induces apoptosis in several cancer cells. In this study, the EPA induced lipid peroxidation and response of antioxidative enzymes have been investigated in rat pheochromocytoma PC12 cells to elucidate the mechanisms of apoptosis induced by the polyunsaturated fatty acid EPA. We have analyzed superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX) activities and glutathione (GSH) contents in PC12 cells after exposure to different concentrations of EPA. Lipid peroxidation was shown to increase in the presence of EPA as an indication of the oxidative damage. Lipid peroxidation was enhanced by EPA in a dose-dependent manner, and the loss of cell viability was partially reversed by vitamin E. In the case of antioxidant enzyme activities, SOD and GPX activities and GSH contents increased significantly at 50 μmol/L EPA and were respectively 2.41-fold (p < 0.01), 3.49-fold (p < 0.05), and 1.43-fold (p < 0.05) higher than controls. The CAT activity at 10 μmol/L had the highest value and was increased by 25.83% (p < 0.05) compared to control. The results suggest that in PC12 cells the mechanism of apoptosis induced by EPA may be partly due to lipid peroxidation.  相似文献   

10.
Scorpion venom possesses protein toxins having numerous biological activities, some of which are potentially anticancerous. Previously we had reported antiproliferative activity of the venom of Indian black scorpion, Heterometrus bengalensis Koch. Here we have isolated and purified a novel protein named Bengalin (72 kDa) from the venom, responsible for antiproliferative and apoptogenic activities against human leukemic cells U937 (histiocytic lymphoma) and K562 (chronic myelogenous leukemia). N-terminal sequence of first 20 amino acids of Bengalin was G-P-L-T-I-L-H-I-N-D-V-H-A-A/R-F-E-Q/G-F/G-N-T. Bengalin induced cell growth inhibition at IC50 values of 3.7 and 4.1 μg/ml for U937 and K562 cells respectively did not significantly affect normal human lymphocytes. Inhibition of U937 and K562 cell proliferation occurred by apoptosis as evidenced from damaged nuclei, cell cycle arrest at sub G1 phase, increase of early apoptotic cells, augmentation of DNA fragmentation and also a reduction of telomerase activity. Further insights revealed that Bax:Bcl2 ratio was elevated after Bengalin treatment. Moreover Bengalin elicited loss of mitochondrial membrane potential (MMP) which commenced cytochrome c release in cytosol, decreased heat shock protein (HSP) 70 and 90 expression, activated caspase-9, caspase-3 and induced poly(ADP-ribose) polymerase (PARP) cleavage. We have also determined that HSP70 and 90 inhibitions correlated with Bengalin induced antiproliferation, caspase-3 upregulation, apoptogenesis and increased DNA fragmentation. These results hypothesize that Bengalin might provide a putative molecular mechanism for their anticancer effect on human leukemic cells which might be mediated by mitochondrial death cascade. Inhibition of HSPs might also play a crucial role in induction of apoptosis.  相似文献   

11.
We investigated the effect of intracellular glutathione (GSH) levels on Natural Killer-mediated apoptosis in cisplatin-resistant K562 cells. K562/B6 and K562/C9 are cisplatin-resistant K562 cells less susceptible to lysis by natural killer cells. Cisplatin-resistant K562 cells did not present the apoptotic pattern of DNA fragmentation as it was observed for their maternal counterparts. K562/B6 and K562/C9 cell lines produce 1.6- and 1.9-times more GSH than K562 cells. Treatment of both cell lines with D,L-buthionine-(S,R)-sulfoximine (BSO, a gamma-glutamyl cysteine synthetase inhibitor) decreased GSH levels and augmented cell death induced by NK cells via a necrotic rather than an apoptotic process. Proliferating cell nuclear antigen (PCNA) expression was elevated in cisplatin-resistant K562 subclones, and the reduction of GSH levels after treatment with BSO decreased the expression of PCNA. These results suggest that the GSH level affects the NK cell-mediated cell death of cisplatin-resistant K562 cells by inducing necrosis rather than apoptosis.  相似文献   

12.
Some studies have shown that dietary intake of polyunsaturated fatty acids of the n-3 series may have inhibitory effect on the growth of tumor cells both in vivo and in vitro. However, the cellular and molecular mechanisms by which n-3 fatty acids reduce the growth of tumor cells remain poorly understood. In the present studies, we compared the potency of a variety of n-3 and n-6 fatty acids in modulating the apoptotic cell death in HT-29 colon cancer cells. Of all fatty acids examined, we found that docosahexaenoic acid (22:6n-3; DHA) is a potent inducer of apoptosis in a time- and dose-dependent manner. Indomethacin, a cyclooxygenase inhibitor, is ineffective in blocking the apoptosis induced by DHA, suggesting that DHA-induced apoptosis in HT-29 cells is not mediated through the cyclooxygenase pathway. In contrast, the DHA-induced apoptosis is partially reversed by a synthetic antioxidant, butylated hydroxytoluene, indicating that lipid peroxidation may be involved in apoptotic signaling pathway induced by DHA. DHA treatment decreased bcl-2 levels in association with apoptosis, whereas bax levels remained unchanged. These results suggest that decreased expression of bcl-2 by DHA might increase the sensitivity of cells to lipid peroxidation and to programmed cell death.  相似文献   

13.
Walker 256 tumour-bearing rats were fed pelleted chow containing low-gamma-linolenic acid (GLA) (2.98%) or high-GLA (5.55%) during the twelve-day period after subcutaneous implantation of the tumour. The presence of n-6, polyunsaturated GLA in the diet caused a concentration-dependent decrease in tumour growth, reaching an almost 50% reduction in final tumour weight in the high-GLA group. The eicosatrienoic acid content of the whole tumour homogenate and of the Percoll-purified mitochondrial fraction was increased by the GLA-rich diets. Changes in the fatty acid composition of the cytoplasmic acyl CoA pool were also found, with increases in GLA content in both the low- and high-GLA groups. Additionally, increases in eicosatrienoic acid and arachidonic acid were found in the high-GLA group. Both the cytoplasmic acyl CoA content and the mitochondrial acyl CoA synthetase activity were increased by GLA in the diet and lipid peroxidation was also increased as determined by an increase in TBARS content. Changes in mitochondrial fatty acid composition were accompanied by a decrease in the mitochondrial membrane potential in the high-GLA group. Tumours from the control and GLA groups were examined by transmission electron microscopy. This revealed an increase in mitochondrial area and volume in the high-GLA group, in comparison with the control group, as well as a change in general cell ultrastructure, with many cells found in an apoptotic state or in a necrotic state, possibly secondary to apoptosis. The data presented show that the addition of GLA to the diet of Walker 256 tumour-bearing rats can greatly decrease the rate of development of the tumour burden. This may be, in part, due to the accumulation of poorly metabolised acyl CoA's within the tumour cell cytoplasm which, when coupled with altered mitochondrial composition, membrane potential and ultrastructure, may be a signal for cell death.  相似文献   

14.
Oleanolic acid (OA) derivatives exhibit numerous pleiotropic effects in many cancers. The present study aimed to investigate the molecular mechanisms of 5′-amino-oleana-2,12-dieno[3,2-d]pyrimidin-28-oic acid (compound 4) and oleana-2,12-dieno[2,3-d]isoxazol-28-oic acid (compound 5) inducing apoptosis in human leukemia K562 cell. We investigated the effects of the compounds on K562 cell growth, apoptosis and cell cycle. The compounds showed strong inhibitory effects on K562 cell viability in a dose-dependent manner determined by the 3-(4,5-dimethylthiazoyl)-2,5-diphenyltetrazolium bromide assay and significantly increased chromatin condensation and apoptotic bodies in K562 cells. Flow cytometry assay suggested that the compounds induced inhibition of K562 cell proliferation associated with G1 phase arrest. In addition, the compounds inhibited Akt1 recruiting to membrane in CHO cells which express Akt1-EGFP constitutively and down-regulated the expression of pAkt1 in K562 cell. These results suggested that the compounds can efficiently inhibit proliferation and induce apoptosis perhaps involved in inactivation of Akt1. The OA derivatives may be potential chemotherapeutic agents for the treatment of human cancer.  相似文献   

15.
We have recently shown that nitric-oxide (NO)-induced apoptosis in Jurkat human leukemia cells requires degradation of mitochondria phospholipid cardiolipin, cytochrome c release, and activation of caspase-9 and caspase-3. Moreover, an inhibitor of lipid peroxidation, Trolox, suppressed apoptosis in Jurkat cells induced by NO donor glycerol trinitrate. Here we demonstrate that this antiapoptotic effect of Trolox occurred despite massive release of the mitochondrial protein cytochrome c into the cytosol and mitochondrial damage. Incubation with Trolox caused a profound reduction of intracellular ATP concentration in Jurkat cells treated by NO. Trolox prevented cardiolipin degradation and caused its accumulation in Jurkat cells. Furthermore, Trolox markedly downregulated the NO-mediated activation of caspase-9 and caspase-3. Caspase-9 is known to be activated by released cytochrome c and together with caspase-3 is considered the most proximal to mitochondria. Our results suggest that the targets of the antiapoptotic effect of Trolox are located downstream of the mitochondria and that caspase activation and subsequent apoptosis could be blocked even in the presence of cytochrome c released from the mitochondria.  相似文献   

16.
The accumulation of hydrophobic bile acids plays a role in the induction of apoptosis and necrosis of hepatocytes during cholestasis. Glycochenodeoxycholate acid (GCDC) triggers a rapid oxidative stress response as an event of glutathione (GSH) depletion and nuclear factor kappa B (NF-κB) activation. We therefore investigated whether the bioactivity of the antioxidant capillarisin (Cap) prevents GCDC-induced hepatocyte damage. Isolated rat hepatocytes were co-incubated with 100 μM GCDC and 0.5 mg/ml Cap for 4 h. GSH depletion and thiobarbituric acid-reactive substances (TBARS, measure of lipid peroxidation) increased after GCDC exposure, but were markedly suppressed by Cap treatment. Cap protected hepatocytes from a GCDC-induced increase in reactive oxygen species (ROS) generation and mitochondrial membrane potential induction, as measured by flow cytometry analysis. In addition, Cap was shown to inhibit GCDC-mediated NF-κB activation by using electrophoretic mobility shift assays (EMSA). In contrast to GCDC, Cap not only significantly decreased cytochrome c release and caspase-3 enzyme activity, but also suppressed heme oxygenase-1 protein and mRNA expression in hepatocytes. These results demonstrate that Cap function as an antioxidant reduced hepatocyte injury caused by hydrophobic bile acids, perhaps by preventing generation of ROS and release of cytochrome c, thereby minimizing hepatocytes apoptosis.  相似文献   

17.
Expression of HSV-1 genes leads to the induction of apoptosis in human epithelial HEp-2 cells but the subsequent synthesis of infected cell protein prevents the process from killing the cells. Thus, viruses unable to produce appropriate prevention factors are apoptotic. We now report that the addition of either a pancaspase inhibitor or caspase-9-specific inhibitor prevented cells infected with an apoptotic HSV-1 virus from undergoing cell death. This result indicated that HSV-1-dependent apoptosis proceeds through the mitochondrial apoptotic pathway. However, the pancaspase inhibitor did not prevent the release of cytochrome c from mitochondria, implying that caspase activation is not required for this induction of cytochrome c release by HSV-1. The release of cytochrome c was first detected at 9 hpi while caspase-9, caspase-3 and PARP processing were detected at 12 hpi. Finally, Bax accumulated at mitochondria during apoptotic, but not wild type HSV-1 infection. Together, these findings indicate that HSV-1 blocks apoptosis by precluding mitochondrial cytochrome c release in a caspase-independent manner and suggest Bax as a target in infected human epithelial cells.  相似文献   

18.
Ormeloxifen is a nonsteroidal selective estrogen receptor modulator (SERM) and has been shown to possess anticancer activities in breast and uterine cancer. Here, we show that ormeloxifen induces apoptosis in dose-dependent manner in a variety of leukemia cells, more strikingly in K562. 2-DE-gel electrophoresis of K562 cells induced with ormeloxifen showed that 57 and 30% of proteins belong to apoptosis and cell-cycle pathways, respectively. Our data demonstrate that ormeloxifen-induced apoptosis in K562 cells involves activation of extracellular signal-regulated kinases (ERKs) and subsequent cytochrome c release, leading to mitochondria-mediated caspase-3 activation. Ormeloxifen-induced apoptosis via ERK activation was drastically inhibited by prior treatment of K562 cells with ERK inhibitor PD98059. Ormeloxifen also inhibits proliferation of K562 cells by blocking them in G0-G1 phase by inhibiting c-myc promoter via ormeloxifen-induced MBP-1 (c-myc promoter-binding protein) and upregulation of p21 expression. We further show that ormeloxifen-induced apoptosis in K562 is translatable to mononuclear cells isolated from chronic myeloid leukemia (CML) patients. Thus, ormeloxifen induces apoptosis in K562 cells via phosphorylation of ERK and arrests them in G0-G1 phase by reciprocal regulation of p21 and c-myc. Therefore, inclusion of ormeloxifen in the therapy of chronic myeloid leukemia can be of potential utility.  相似文献   

19.
Overexpression of SIRT1, a NAD+-dependent class III histone deacetylases (HDACs), is implicated in many cancers and therefore could become a promising antitumor target. Here we demonstrate a small molecule SIRT1 inhibitor, ILS-JGB-1741(JGB1741) with potent inhibitory effects on the proliferation of human metastatic breast cancer cells, MDA-MB 231. The molecule has been designed using medicinal chemistry approach based on known SIRT1 inhibitor, sirtinol. The molecule showed a significant inhibition of SIRT1 activity compared to sirtinol. Studies on the antitumor effects of JGB on three different cancer cell lines, K562, HepG2 and MDA-MB 231 showed an IC50 of 1, 10 and 0.5 μM, respectively. Further studies on MDA-MB 231 cells showed a dose-dependent increase in K9 and K382 acetylation of H3 and p53, respectively. Results also demonstrated that JGB1741-induced apoptosis is associated with increase in cytochrome c release, modulation in Bax/Bcl2 ratio and cleavage of PARP. Flowcytometric analysis showed increased percentage of apoptotic cells, decrease in mitochondrial membrane potential and increase in multicaspase activation. In conclusion, the present study indicates the potent apoptotic effects of JGB1741 in MDA-MB 231 cells.  相似文献   

20.
Ferulic acid plays a chemopreventive role in cancer by inducing tumor cells apoptosis. As mitochondria play a key role in the induction of apoptosis in many cells types, here we investigate the mitochondrial permeability transition (MPT) and the release of cytochrome c induced by ferulic acid and its esters in rat testes mitochondria, in TM-3 and MLTC-1 cells. While ferulic acid, but not its esters, induced MPT and cytochrome c release in rat testes isolated mitochondria, in TM-3 cells we found that both ferulic acid and its esters induced cytochrome c release from mitochondria in a dose-dependent manner, suggesting a potential target of these compounds in the induction of cell apoptosis. The apoptosis induced by ferulic acid is therefore associated with the mitochondrial pathway involving cytochrome c release and caspase-3 activation. Cione and Tucci have equally contributed to this article.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号