首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Organisms in polluted areas can be exposed to complex mixtures of chemicals; however, exposure to genotoxic contaminants can be particularly devastating. DNA damage can lead to necrosis, apoptosis, or heritable mutations, and therefore has the potential to impact populations as well as individuals. Single cell gel electrophoresis (the comet assay) is a simple and sensitive technique used to examine DNA damage in single cells. The lesion-specific DNA repair enzyme formamidopyrimidine glycoslyase (Fpg) can be used in conjunction with the comet assay to detect 8-oxoguanine and other damaged bases, which are products of oxidative damage. Fpg was used to detect oxidative DNA damage in experiments where isolated oyster (Crassostrea virginica) and clam (Mercenaria mercenaria) hemocytes were exposed to hydrogen peroxide. Standard enzyme buffers used with Fpg and the comet assay produced unacceptably high amounts of DNA damage in the marine bivalve hemocytes used in this study necessitating a modification of existing methods. A sodium chloride based reaction buffer was successfully used. Oxidative DNA damage can be detected in isolated oyster and clam hemocytes using Fpg and the comet assay when the sodium chloride reaction buffer and protocols outlined here are employed. The use of DNA repair enzymes, such as Fpg, in conjunction with the comet assay expands the usefulness and sensitivity of this assay, and provides important insights into the mechanisms of DNA damage.  相似文献   

2.
DNA damage of peripheral lymphocytes in 60 workers occupationally exposed to trivalent chromium [Cr(III)] in a tannery was studied using comet assay. The urinary and blood chromium levels were detected as a biomarker of internal exposure. The 90 subjects were divided into three groups: (i) exposure group I included 30 tannery workers highly exposed to chromium from tanning department; (ii) exposure group II included 30 tannery workers with moderate chromium exposure from finishing department; (iii) control group included 30 individuals without exposure to physical or chemical genotoxic agents. No significant difference was found among the three groups for age and smoking. The results showed that the medians of blood and urinary Cr of two exposure groups were significantly higher than those of control group (P < 0.01). And the medians of blood and urinary Cr of exposure group I were significantly higher than those of exposure group II (P < 0.05 or P < 0.01). The medians of mean tail length (MTL) of the three groups were 5.33 (2.90–8.50), 3.43 (2.31–8.29) and 2.04 (0.09–3.83) μm, respectively; The medians of mean tail moment (MTM) of the three groups were 6.28 (2.14–11.81), 3.41 (1.25–11.07) and 0.53 (0.13–3.29), respectively. The MTL and MTM of two exposure groups were significantly higher than those of control group (P < 0.01). The MTL and MTM of exposure group I were significantly higher than those of exposure group II (P < 0.01). The results of the present investigation suggest that occupational exposure to trivalent chromium can lead to a detectable DNA damage of human peripheral lymphocytes. Moreover, DNA damage was associated with chromium levels in blood. DNA damage may serve as a valuable effective biomarker and total chromium in blood may serve as a useful internal exposure biomarker in the population occupationally exposed to trivalent chromium.  相似文献   

3.
Genistein-8-C-glucoside (G8CG) belongs to isoflavones, which are a subclass of flavonoids, a large group of polyphenolic compounds widely distributed in plants. A number of studies on flavonoids show their cardioprotective and antiosteoporosis properties in in vitro and in vivo models. As a phytoestrogen, genistein has recently generated interest as a potential anticancer and antiatherogenic agent. Several flavonoids are known as antioxidants and scavengers of free oxygen radicals. In the current investigation we used glycosylated genistein (genistein-8-C-glucoside) from flowers of lupine (Lupinus luteus L.). Many authors have found that the action of genistein is not so simple, although many reports conducted in vitro have demonstrated that it is cytotoxic and genotoxic. Therefore, the cytotoxic and genotoxic effects of this compound in Chinese hamster ovary cells (line CHO) were studied. A colorimetric MTT assay to assess cytotoxicity and a Comet assay for the detection of DNA damage were used. Apoptosis was determined by the Hoechst 33258/propidium iodide staining technique. We have also demonstrated antioxidant properties of G8CG. The level of reactive oxygen species generated by G8CG alone and/or H2O2 was evaluated with fluorescence probes: dichlorofluorescein-diacetate (DCFDA) by flow cytometry. The cells were exposed to various concentrations of genistein-8-C-glucoside (1-290 microM) and hydrogen peroxide (10-130 microM) and the effect of G8CG alone or in combination with H2O2 was determined. The results reveal that G8CG at concentrations higher than 10 microM significantly reduced cell viability, induced apoptosis and DNA damage. However at lower concentrations (5 and 7.5 microM), G8CG showed antioxidant properties, but had no cytotoxic or genotoxic activity.  相似文献   

4.
The comet assay for DNA damage and repair   总被引:9,自引:0,他引:9  
The comet assay (single-cell gel electrophoresis) is a simple method for measuring deoxyribonucleic acid (DNA) strand breaks in eukaryotic cells. Cells embedded in agarose on a microscope slide are lysed with detergent and high salt to form nucleoids containing supercoiled loops of DNA linked to the nuclear matrix. Electrophoresis at high pH results in structures resembling comets, observed by fluorescence microscopy; the intensity of the comet tail relative to the head reflects the number of DNA breaks. The likely basis for this is that loops containing a break lose their supercoiling and become free to extend toward the anode. The assay has applications in testing novel chemicals for genotoxicity, monitoring environmental contamination with genotoxins, human biomonitoring and molecular epidemiology, and fundamental research in DNA damage and repair. The sensitivity and specificity of the assay are greatly enhanced if the nucleoids are incubated with bacterial repair endonucleases that recognize specific kinds of damage in the DNA and convert lesions to DNA breaks, increasing the amount of DNA in the comet tail. DNA repair can be monitored by incubating cells after treatment with damaging agent and measuring the damage remaining at intervals. Alternatively, the repair activity in a cell extract can be measured by incubating it with nucleoids containing specific damage.  相似文献   

5.

Background

Single cell gel electrophoresis, or the comet assay, was devised as a sensitive method for detecting DNA strand breaks, at the level of individual cells. A simple modification, incorporating a digestion of DNA with a lesion-specific endonuclease, makes it possible to measure oxidised bases.

Scope of review

With the inclusion of formamidopyrimidine DNA glycosylase to recognise oxidised purines, or Nth (endonuclease III) to detect oxidised pyrimidines, the comet assay has been used extensively in human biomonitoring to monitor oxidative stress, usually in peripheral blood mononuclear cells.

Major conclusions

There is evidence to suggest that the enzymic approach is more accurate than chromatographic methods, when applied to low background levels of base oxidation. However, there are potential problems of over-estimation (because the enzymes are not completely specific) or under-estimation (failure to detect lesions that are close together). Attempts have been made to improve the inter-laboratory reproducibility of the comet assay.

General significance

In addition to measuring DNA damage, the assay can be used to monitor the cellular or in vitro repair of strand breaks or oxidised bases. It also has applications in assessing the antioxidant status of cells. In its various forms, the comet assay is now an invaluable tool in human biomonitoring and genotoxicity testing. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.  相似文献   

6.
Cattle hypocuprosis is a well-known endemic disease in several parts of the world. In a previous paper, the clastogenic effect of copper deficiency in cattle has been described although the occurrence of DNA damage was not directly tested. For this reason, the relation between DNA damage assessed by the Comet assay and Cu plasma concentration was studied in Aberdeen Angus cattle.Blood samples were obtained in heparinized Vacutainer® tubes from 28 female Aberdeen Angus cows during pregnancy or immediately after to give birth. Each sample was divided into two aliquots for Comet assay and Cu plasma determination, respectively. From the 28 cattle sampled, 17 were normocupremic and 11 were hypocupremic.Results obtained showed that whereas the average plasma Cu level in normocupremic cattle was 67.6 μg/dl, in hypocupremic cattle it was 32.1 μg/dl. The increase of DNA damage was mostly evidenced by the decrease of comet degree 1 cells and an increase of comet degree 2 cells. Correlation analysis comparing plasma Cu levels and degree 1 cells showed a correlation coefficient 0.72 (P<0.01). The comparison between plasma Cu levels and comet degree 2 cells was −0.65 (P<0.01). The comparison between plasma Cu levels and the comet length-head diameter medians determined in 23 out of 28 animals showed a correlation coefficient of −0.54 (P<0.01).The induction of DNA damage was clearly supported by the fact that the decrease of plasma Cu levels was correlated with the increase of comet length-head diameter. These findings could be considered as a contribution to the hypothesis that DNA and chromosome damage are a consequence of the higher oxidative stress suffered by hypocupremic animals.  相似文献   

7.
The comet assay was performed to elucidate the linearity of calibration curves and detection limits for DNA damage in multiple organs of whole body X-irradiated mice, and rates of reduction in DNA damage by DNA repair during the irradiation period were estimated in the respective organs by comparing the rates of increase in DNA damage at different absorbed dose rates of X-rays. Of the assay parameters, tail length and the percentage DNA in the tail showed a higher sensitivity to DNA damage in most organs than Olive tail moment. Data at the higher absorbed dose rates (2.22 or 1.44 Gy/min) showed good correlations between absorbed doses and these two parameters, with correlation coefficients of more than 0.7 in many organs. However, this assay had difficulty detecting DNA damage at the lower absorption dose rate (0.72 Gy/min). The estimated rates of increase in DNA damage and those of DNA repair during the irradiation period in the respective organs suggested differences in the radiosensitivity of nuclear DNA and DNA repair capacity among organs. Our results indicated that absorbed dose rates of 1.0–1.3 Gy/min or greater were needed to induce detectable DNA damages by the comet assay in many organs.  相似文献   

8.
It has been suggested that extended-term cultures of human lymphocytes could be used as a complement to cell lines based on transformed cells when testing the genotoxicity of chemicals. To investigate whether the pattern of induced DNA damage and its subsequent repair differs significantly between cultures based on different blood donors, hydrogen peroxide (H2O2)-induced DNA damage was measured in cultures from four different subjects using the comet assay. The DNA damage was significantly increased in all cultures after 10 min exposure to 0.25 mmol/L H2O2, and there was a significant decrease in the H2O2-induced DNA damage in all cultures after 30 min of DNA repair. The level of damage varied between the different donors, especially after the repair. Using PCR and DNA sequencing, exon 5 of the p53 gene was sequenced in the lymphocytes from the donors with the lowest and highest residual damage. No such mutation was found. Mouse lymphoma L5178Y cells carrying the p53 mutation in exon 5 were included as a reference. These cells were found to be less sensitive toward the H2O2-induced DNA damage, and they were also found to have a rather low DNA repair capacity. The demonstrated variation in H2O2-induced DNA damage and DNA repair capacity between the cultures from the different subjects may be important from a risk assessment perspective, but is obviously not of decisive importance when it comes to the development of a routine assay for genotoxicity.  相似文献   

9.
Assessment of DNA repair capacity (DRC) upon ex vivo challenge of peripheral blood mononuclear cells (PBMC) with oxidative damage inducing agents, as evaluated by the comet assay, is widely used as biomarker to assess the antioxidant status in human studies. Here, the alkaline comet assay was now optimized for easy and time saving detection of repair capacity upon oxidative stress-induced DNA damage using the DNA polymerase inhibitor aphidicolin (APC) to block repair of hydrogen peroxide (H2O2) induced DNA damage. Addition of a DMSO-containing DNA damage stop solution was found suitable to replace washing steps for H2O2 removal before APC block. Cell treatment with APC at 6 μM did not impact baseline DNA damage but could reliably block DNA repair after H2O2 challenge in both fresh and cryopreserved samples thus omitting the use of a starting time point control. Under the conditions used, frozen cells, with or without an additional 4 h rest, showed the same repair capacity as their fresh counterpart. The intra assay coefficient of variation (CV) was 3.3%. To provide proof of principle, the modified assay was applied to cryopreserved PBMC from 19 participants of a short-term Brassica diet intervention study investigating potential health promoting effects of the food intervention. Then, a 33% increase in DRC (p ≤ 0.01) could be shown in samples after intervention (mean ± SD: 5.82 ± 1) as compared to baseline (mean ± SD: 4.38 ± 1.21). Individual samples from baseline and intervention showed an inter-individual CV of 27.65% (baseline) and 17.26% (intervention). Taken together this modified comet assay protocol allows the facilitated detection of DNA repair in fresh or cryopreserved human PBMC samples with a good sensitivity and reliability and could be useful in human studies addressing the antioxidant status and repair capacity of PBMC.  相似文献   

10.
Four newly synthesized salts of ethoxyquin (EQ: 1,2-dihydro-6-ethoxy-2,2,4-trimethylquinoline), an antioxidant used in animal feeds, were evaluated with the use of the comet assay performed on human lymphocytes: ethoxyquin ascorbate, ethoxyquin hexanoate, ethoxyquin salicylate and ethoxyquin salt of Trolox C (6-hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid). In the study the abilities of these compounds to cause DNA fragmentation and to protect against H2O2-induced DNA damage were analysed. The obtained results were compared with those noted earlier for EQ. After EQ salts treatments (1-25 microM) the genotoxic effects were observed, but the genotoxic potentials of the compounds studied were lower than that of EQ. On the other hand, EQ salts, similarly to EQ, effectively protected the cells from oxidative effect of H2O2. EQ hexanoate was the most effective and its antioxidant activity was even slightly higher than that of EQ. We suggest that it is worth further detailed studies to estimate its usefulness as a preservative.  相似文献   

11.
Single-cell gel electrophoresis (comet assay) is one of the most common methods used to measure oxidatively damaged DNA in peripheral blood mononuclear cells (PBMC), as a biomarker of oxidative stress in vivo. However, storage, extraction, and assay workup of blood samples are associated with a risk of artifactual formation of damage. Previous reports using this approach to study DNA damage in PBMC have, for the most part, required the isolation of PBMC before immediate analysis or freezing in cryopreservative. This is very time-consuming and a significant drain on human resources. Here, we report the successful storage of whole blood in ~ 250 μl volumes, at − 80 °C, without cryopreservative, for up to 1 month without artifactual formation of DNA damage. Furthermore, this blood is amenable for direct use in both the alkaline and the enzyme-modified comet assay, without the need for prior isolation of PBMC. In contrast, storage of larger volumes (e.g., 5 ml) of whole blood leads to an increase in damage with longer term storage even at − 80 °C, unless a cryopreservative is present. Our “small volume” approach may be suitable for archived blood samples, facilitating analysis of biobanks when prior isolation of PBMC has not been performed.  相似文献   

12.
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common inherited disease, which causes neonatal hemolytic anemia and jaundice. Recent studies of our group showed that the Mediterranean variant of this enzyme (Gd-Md) is the predominant G6PD in Iranian male infants suffering from jaundice; this variant is classified as severe G6PD deficiency. Considering the importance of G6PD reaction and its products NADPH and glutathione (GSH) against oxidative stress, we hypothesized the failure of detoxification of H(2)O(2) in G6PD-deficient white blood cells that could probably induce primary DNA damage. For the evaluation of DNA damage, we analyzed mononuclear leukocytes of 36 males suffering from the Gd-Md deficiency using alkaline single cell gel electrophoresis (SCGE) or comet assay. The level of DNA damage was compared with the level of basal DNA damage in control group represented by healthy male infant donors (of the same age group). Visual scoring was used for the evaluation of DNA damages. The results showed that the mean level of the DNA strand breakage in mononuclear leukocytes of 36 male G6PD-deficient (Gd-Md) infants was significantly higher (P < 0.001) than those observed in the normal lymphocytes. In conclusion, this investigation indicates that the mononuclear leukocytes of the Gd-Md samples may be exposed to DNA damage due to oxidative stress. This is the first report using comet assay for evaluation of DNA damage in severe G6PD deficiency samples.  相似文献   

13.
We investigated levels of DNA damage in blood cells of barn swallows (Hirundo rustica) inhabiting the Chernobyl region to evaluate whether chronic exposure to low-level radioactive contamination continues to induce genetic damage in free-living populations of animals. Blood samples were obtained from barn swallows collected at sites with different background levels of radiation, including a relatively uncontaminated area. The extent of DNA damage was evaluated using the alkaline (pH = 12.1) comet assay, a robust and sensitive electrophoresis-based technique widely employed in research ranging from biomonitoring to clinical studies. We found that levels of DNA damage, as indexed by the extent of DNA migration, were increased in barn swallows living in areas surrounding Chernobyl when compared to swallows sampled at low-level sites. The results we obtained are consistent with previous findings on this same species, which showed that swallows breeding in areas heavily contaminated with radionuclides have increased mutation rates, higher oxidative stress and incidence of morphological aberrations and tumors. Overall, these results indicate that chronic exposure to radioactive contaminants, even 20 years after the accident at the Chernobyl nuclear power plant, continues to induce DNA damage in cells of free-living animals.  相似文献   

14.
We have investigated the normal variations in basal DNA damage detected by Comet assay in leukocytes and micronucleated erythrocytes (MNE) using the Micronucleus test (MN) in peripheral blood cells from 45 female and male mice from different age groups (newborns, 3.5, 12, and 104 weeks) to clarify age and sex-related changes. Comparison of basal DNA damage detected by Comet assay showed significantly increased values in 104 weeks old mice in relation to the other ages (P < or = 0.01), and newborn mice showed higher values in MNE frequency when compared to all the other groups (P < or = 0.01). A positive correlation was observed between Damage Frequency (r =0.382, P = 0.010) and Damage Index (r = 0.640, P < 0.001) and age. Age was also correlated with the ratio of polychromatic erythrocytes/normachromatic erythrocytes (PCE/NCE) (r = -0.473, P = 0.001), and the MNE frequency was positively correlated with the ratio of PCE/NCE (r = 0.454, P = 0.002). These results suggest an age-related slow down of DNA repair efficiency of DNA damage and/or DNA damage accumulation. Furthermore, data on the spontaneous MNE frequency indicate that the reticuloendothelial system matures with age, and there is a close relationship between erythropoiesis and micronucleus induction in erythrocytes. The influence of sex in the parameters analyzed was less clear. In conclusion, age seems to influence in basal DNA damage and should be considered in genotoxicity studies using mice. Finally, comparisons between assays must be made with care when different cells are compared (e.g. leukocytes and erythrocytes), as found with the Comet assay and MN test.  相似文献   

15.
We used X-rays from a linear accelerator and from a low energy therapeutic source to calibrate the single cell gel electrophoresis (comet assay), a widely used method to measure DNA damage. γ-Rays from 60Co, with known efficiency in inducing DNA breakage, were used as reference. Human lymphocytes and one murine tumour cell line, F10-M3 cells, were irradiated under different experimental conditions. A similar relationship between radiation dose and induced DNA damage was obtained with γ- and X-rays. A calibration curve was constructed to convert the comet assay raw data into break frequency. The median levels of DNA breaks and oxidative damage in circulating lymphocytes from healthy volunteers were calculated to be 0.76 and 0.80 breaks/109 Da, respectively, (0.50 and 0.52 breaks/106 bp). The values of oxidative DNA damage were in the same order of magnitude as those found by others with HPLC methods.  相似文献   

16.
We used X-rays from a linear accelerator and from a low energy therapeutic source to calibrate the single cell gel electrophoresis (comet assay), a widely used method to measure DNA damage. γ-Rays from 60Co, with known efficiency in inducing DNA breakage, were used as reference. Human lymphocytes and one murine tumour cell line, F10-M3 cells, were irradiated under different experimental conditions. A similar relationship between radiation dose and induced DNA damage was obtained with γ- and X-rays. A calibration curve was constructed to convert the comet assay raw data into break frequency. The median levels of DNA breaks and oxidative damage in circulating lymphocytes from healthy volunteers were calculated to be 0.76 and 0.80 breaks/109 Da, respectively, (0.50 and 0.52 breaks/106 bp). The values of oxidative DNA damage were in the same order of magnitude as those found by others with HPLC methods.  相似文献   

17.
The comet assay is one of the most versatile and popular tools for evaluating DNA damage. Its sensitivity to low dose radiation has been tested in vitro, but there are limited data showing its application and sensitivity in chronic exposure situations. The influence of the internal contamination caused by the Chernobyl accident on the level of DNA damage was evaluated by the comet assay on lymphocytes of 56 Ukrainian children. The study was performed during 2003 on children with demonstrable 137Cs internal contamination caused by food consumption. The children were selected for the study immediately after a 137Cs whole body counter measurement of internal contamination. The minimal detectable amount of 137Cs was 75 Bq. The control group included 29 children without detectable internal contamination, while in the exposed group 27 children with measured activity between 80 and 4037 Bq and committed effective dose between 54 and 3155 μSv were included. Blood samples were taken by a finger prick. The alkaline version of the comet assay was used, in combination with silver stained comets and arbitrary units (AU), for comet measurement. Factors such as disease, medical treatment, surface contamination of children's living location, etc., were considered in the study. Non-significant differences (p > 0.05) in DNA damage in control (9.0 ± 5.7 AU) versus exposed (8.5 ± 4.8 AU) groups were found. These results suggest that low doses of 137Cs internal contamination are not able to produce detectable DNA damage under the conditions used for the comet assay in this study. Further studies considering effects of high exposure should be performed on chronically exposed people using this assay.  相似文献   

18.
Diabetes patients often show increased production of reactive oxidative species (ROS) together with vascular complications. The presence of these ROS may lead to increased DNA damage in peripheral blood lymphocytes that may be revealed by the comet assay. To test whether DNA is damaged in diabetes, peripheral blood samples were taken from 30 control individuals and 63 diabetic patients (15 insulin dependent (IDDM) and 48 non-insulin dependent (NIDDM)) and the alkaline comet assay was used to evaluate background levels of DNA damage. Significant differences were detected between control and diabetic patients in terms of frequencies of damaged cells. The extend of DNA migration was greater in NIDDM patients by comparison with IDDM patients which might indicate that IDDM patients are handling more oxidative damage on a regular basis. Smoker individuals had higher frequencies of cells with migration by comparison with the non-smokers in both groups. Also, clear differences between patients on placebo and on Vitamin E supplementation for 12 weeks were observed on the basis of the extend of DNA migration during single cell gel electrophoresis.  相似文献   

19.
DNA damage was assessed in smoker lymphocytes by subjecting them to the single cell gel electrophoresis (SCGE) assay. In addition to the appearance of comet tails, smoker cells exhibited enlarged nuclei when analysed by the comet assay. On comparing basal DNA damage among smokers and a non-smoking control group, smoker lymphocytes showed higher basal DNA damage (smokers, 36.25±8.45 μm; non-smokers, 21.6±2.06 μm). A significant difference in DNA migration lengths was observed between the two groups at 10 min after UV exposure (smokers, 65.5±20.34 μm; non-smokers, 79.2±11.59 μm), but no significant differences were seen at 30 min after UV exposure (smokers, 21.13±10.73 μm; non-smokers, (27.2±4.13 μm). The study thus implies that cigarette smoking perhaps interferes with the incision steps of the nucleotide excision repair (NER) process. There appeared be no correlation between the frequency of smoking and DNA damage or the capacity of the cells to repair UV-induced DNA damage that suggests inherited host factors may be responsible for the inter-individual differences in DNA repair capacities. The study also suggests monitoring NER following UV insult using the SCGE assay is a sensitive and simple method to assess DNA damage and integrity of DNA repair in human cells exposed to chemical mutagens.  相似文献   

20.
The Comet assay, a sensitive, rapid and non-invasive technique, measures DNA damage in individual cells and has found wide acceptance in epidemiological and biomonitoring studies to determine the DNA damage resulting from lifestyle, occupational and environmental exposure. The present study was undertaken to measure the basal level of DNA damage in a normal, healthy Indian male and female population. Out of the 230 volunteers included in this study, 124 were male and 106 were female. All the individuals belonged to a comparable socio-economic background and aged between 20 and 30 years. They were also matched for their smoking and dietary habits. The period of sample collection was also matched. The results revealed a statistically significant higher level of DNA damage in males when compared to females as evident by an increase in the Olive tail moment [3.76±1.21 (arbitrary units) for males as compared to 3.37±1.47 for females (P<0.05)], tail DNA (%) [10.2±2.96 for males as compared to 9.40±2.83 for females (P<0.05)] and tail length (μm) [59.65±9.23 for males and 49.57±14.68 for females (P<0.001)]. To our knowledge, this report has, for the first time demonstrated significant differences in the basal level of DNA damage between males and females in a normal healthy Indian population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号