首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
Abstract In Chlamydomonas reinhardtii there are three glutamate dehydrogenase isozymes which can use both NADH and NADPH as cofactors and respond differently to different nitrogen sources and several stress conditions. From data of induction of isozymes in different metabolic situations, we propose a possible physiological role for each of them in algal carbon and nitrogen metabolism.  相似文献   

2.
P J Kiley  A Varga    S Kaplan 《Journal of bacteriology》1988,170(3):1103-1115
Two mutants of Rhodobacter sphaeroides defective in formation of light-harvesting spectral complexes were examined in detail. Mutant RS103 lacked the B875 spectral complex despite the fact that substantial levels of the B875-alpha polypeptide (and presumably the beta polypeptide) were present. The B800-850 spectral complex was derepressed in RS103, even at high light intensities, and the growth rate was near normal at high light intensity but decreased relative to the wild type as the light intensity used for growth decreased. Mutant RS104 lacked colored carotenoids and the B800-850 spectral complex, as well as the cognate apoproteins. This strain grew normally at high light intensity and, as with RS103, the growth rate decreased as the light intensity used for growth decreased. At very low light intensities, however, RS104 would grow, whereas RS103 would not. Structural analysis of these mutants as well as others revealed that the morphology of the intracytoplasmic membrane invaginations is associated with the presence or absence of the B800-850 complex as well as of carotenoids. A low-molecular-weight intracytoplasmic membrane polypeptide, which may play a role in B800-850 complex formation, is described, as is a 62,000-dalton polypeptide whose abundance is directly related to light intensity as well as the absence of either of the light-harvesting spectral complexes. These data, obtained from studies of mutant strains and the wild type, are discussed in light of photosynthetic membrane formation and the abundance of spectral complexes per unit area of membrane. Finally, a method for the bulk preparation of the B875 complex from wild-type strain 2.4.1 is reported.  相似文献   

3.
Picosecond transient circular dichroism spectra are reported for the primary intermediates in the photocycle of reaction centers isolated from Rhodobacter sphaeroides. The time-resolved circular dichroism spectra of the two electron transfer intermediates (BChl2) +BPh-LQA and (BChl2) +BPhLQ-A reveal a large, nonconservative, and fairly stationary CD band at 800 nm. These results suggests that mechanisms other than exciton interactions need to be included in order to explain the optical activity of this biological system.  相似文献   

4.
The genome of the photosynthetic eubacterium Rhodobacter sphaeroides 2.4.1 comprises two chromosomes and five endogenous plasmids and has a 65% G+C base composition. Because of these characteristics of genome architecture, as well as the physiological advantages that allow this organism to live in sunlight when in an anaerobic environment, the sensitivity of R. sphaeroides to UV radiation was compared with that of the more extensively studied bacterium Escherichia coli. R. sphaeroides was found to be more resistant, being killed at about 60% of the rate of E. coli. To begin to analyze the basis for this increased resistance, a derivative of R. sphaeroides, strain 2.4.1 delta S, which lacks the 42-kb plasmid, was mutagenized with a derivative of Tn5, and the transposon insertion mutants were screened for increased UV sensitivity (UVs). Eight UVs strains were isolated, and the insertion sites were determined by contour-clamped homogeneous electric field pulsed-field gel electrophoresis. These mapped to at least five different locations in chromosome I. Preliminary analysis suggested that these mutants were deficient in the repair of DNA damage. This was confirmed for three loci by DNA sequence analysis, which showed the insertions to be within genes homologous to uvrA, uvrB, and uvrC, the subunits of the nuclease responsible for excising UV damage.  相似文献   

5.
Many herbicides that inhibit photosynthesis in plants also inhibit photosynthesis in bacteria. We have isolated three mutants of the photosynthetic bacterium Rhodobacter sphaeroides that were selected for increased resistance to the herbicide terbutryne. All three mutants also showed increased resistance to the known electron transfer inhibitor o-phenanthroline. The primary structures of the mutants were determined by recombinant DNA techniques. All mutations were located on the gene coding for the L-subunit resulting in these changes Ile229 Met, Ser223 Pro and Tyr222 Gly. The mutations of Ser223 is analogous to the mutation of Ser264 in the D1 subunit of photosystem II in green plants, strengthening the functional analogy between D1 and the bacterial L-subunit. The changed amino acids of the mutant strains form part of the binding pocket for the secondary quinone, Q b . This is consistent with the idea that the herbicides are competitive inhibitors for the Q b binding site. The reaction centers of the mutants were characterized with respect to electron transfer rates, inhibition constants of terbutryne and o-phenanthroline, and binding constants of the quinone UQ0 and the inhibitors. By correlating these results with the three-dimensional structure obtained from x-ray analysis by Allen et al. (1987a, 1987b), the likely positions of o-phenanthroline and terbutryne were deduced. These correspond to the positions deduced by Michel et al. (1986a) for Rhodopseudomonas viridis.Abbreviations ATP adenosine 5-triphosphate - Bchl bacteriochlorophyll - Bphe bacteriopheophytin - bp basepair - cyt c2+ reduced form of cytochrome c - DEAE diethylami-noethyl - EDTA ethylenediamine tetraacetic acid - Fe2+ non-heme iron atom - LDAO lauryl dimethylamine oxide - Pipes piperazine-N,N-bis-2-ethane-sulfonic acid - PSII photosystem II - RC reaction center - SDS sodium dodecylsulfate - Tris tris(hydroxy-methyl)aminomethane - UQ0 2,3-dimethoxy-5-methyl benzoquinone - UQ10 ubiquinone 50  相似文献   

6.
Electron transfer rates were measured in RCs from three herbicide-resistant mutants with known amino acid changes to elucidate the structural requirements for last electron transfer. The three herbicide resistant mutants were IM(L229) (Ile-L229 Met), SP(L223) (Ser-L223 Pro) and YG(L222) (Tyr-L222 Gly). The electron transfer rate D+QA -QBD+QAQB (k AB) is slowed 3 fold in the IM(L229) and YG(L222) RCs (pH 8). The stabilization of D+QAQB - with respect to D+QAQB - (pH 8) was found to be eliminated in the IM(L229) mutant RCs (G0 0 meV), was partially reduced in the SP(L223) mutant RCs (G0=–30 meV), and was unaltered in the YG(L222) mutant RCs (G0=–60 meV), compared to that observed in the native RCs (G0=–60 meV). The pH dependences of the charge recombination rate D+QAQB -DQAQB (k BD) and the electron transfer from QA - (k QA -QA) suggest that the mutations do not affect the protonation state of Glu-L212 nor the electrostatic interactions of QB and QB - with Glu-L212. The binding affinities of UQ10 for the QB site were found in order of decreasing values to be native IM(L229) > YG(L222) SP(L223). The altered properties of the mutant RCs are used to deduce possible structural changes caused by the mutations and are dicscussed in terms of photosynthetic efficiency of the herbicide resistant strains.Abbreviations Bchl bacteriochlorophyll - Bphe bacteriopheophytin - cholate 3,7,12-trihydroxycholanic acid - D donor (bacteriochlorophyll dimer) - EDTA ethylenediamine tetraacetic acid - Fe2+ non-heme iron atom - LDAO lauryl dimethylamine oxide - PS II photosystem II - QA and QB primary and secondary quinone acceptors - RC bacterial reaction center - Tris tris(hydroxymethyl)aminomethane - UQ0 2,3-dimethoxy-5-methyl benzoquinone - UQ10 ubiquinone 50  相似文献   

7.
The light harvesting 1 antenna (LH1) complex from Rhodobacter sphaeroides funnels excitation energy to the photosynthetic reaction center. Our ultimate goal is to build up the structure of LH1 from structures of its individual subunits, much as the antenna can self-assemble from its components in membrane-mimicking detergent micelles. The beta subunit adopts a nativelike conformation in Zwittergent 3:12 micelles as demonstrated by its ability to take the first step of assembly, binding BChl a. Multidimensional NMR spectroscopy shows that the beta subunit folds as a helix((L12-S25))-hinge((G26-W28))-helix((L29-W44)) structure with the helical regions for the 10 lowest-energy structures having backbone rmsds of 0.26 and 0.24 A, respectively. Mn(2+) relaxation data and the protein-detergent NOE pattern show the C-terminal helix embedded in the micelle and the N-terminal helix lying along the detergent micelle surface with a 60 degrees angle between their long axes. (15)N relaxation data for residues L12-W44 are typical of a well-ordered protein with a correlation time of 8.25 +/- 2.1 ns. The presence of the hinge region placing the N-terminal helix along the membrane surface may be the structural feature responsible for the functional differences observed between the LH1 and LH2 beta subunits.  相似文献   

8.
The structural basis for the spectral red shift in the near-IR absorption band of the B875 light-harvesting complex was examined by treatment of membranes from Rhodobacter sphaeroides M21 with acid. This mutant strain lacks the overlapping spectral bands of the B800–850 light-harvesting antenna and gives rise to membrane fragments with both surfaces accessible to protons. At pH 2.2, about half the absorption at 876 nm was converted within 10 min to a free pigment band; the remaining absorption appeared at 880 nm and shifted to 845 nm over the next three hours. These spectral shifts could not be reversed by alkali. Approximately one-third of the characteristic near-IR CD signal of B875 was also lost initially and replaced by a broad trough centered near 854 nm. Thereafter, the CD spectrum was dominated by the strong conservative signal of the 845 nm absorbing component which was attributed to an oligomeric bacteriopheophytin a species, probably a dimer. A kinetic analysis of the acid-induced absorption changes suggested a multi-step model with rate constants of 0.37 min-1 for the initial rapid change and 0.05 and 0.11 min-1 for the respective subsequent steps. The non-conservative nature of the near-IR CD spectrum of the intact complex, together with the spectral changes observed after the initial loss of near-IR absorption and CD, suggest that pigment-pigment interactions are not solely responsible for the red shift in this complex.Abbreviations BChl bacteriochlorophyll a - BPheo bacteriopheophytin a  相似文献   

9.
Time-resolved fluorescence of chromatophores isolated from strains of Rhodobacter sphaeroides containing light harvesting complex I (LHI) and reaction center (RC) (no light harvesting complex II) was measured at several temperatures between 295 K and 10 K. Measurements were performed to investigate energy trapping from LHI to the RC in RC mutants that have a P/P(+) midpoint potential either above or below wild-type (WT). Six different strains were investigated: WT + LHI, four mutants with altered RC P/P(+) midpoint potentials, and an LHI-only strain. In the mutants with the highest P/P(+) midpoint potentials, the electron transfer rate decreases significantly, and at low temperatures it is possible to directly observe energy transfer from LHI to the RC by detecting the fluorescence kinetics from both complexes. In all mutants, fluorescence kinetics are multiexponential. To explain this, RC + LHI fluorescence kinetics were analyzed using target analysis in which specific kinetic models were compared. The kinetics at all temperatures can be well described with a model which accounts for the energy transfer between LHI and the RC and also includes the relaxation of the charge separated state P(+)H(A)(-), created in the RC as a result of the primary charge separation.  相似文献   

10.
Abstract Two chlorate resistant mutants of Rhodobacter sphaeroides were isolated which were deficient in dimethylsulfoxide reductase activity. Immunoblotting experiments showed that the phenotype of these mutants and that of Rhodobacter capsulatus strain DK9, a mutant unable to reduce dimethylsulfoxide, was correlated with low or undetectable levels of the dimethylsulfoxide reductase apoprotein. All three mutants were complemented by a cosmid from a library of Rhodobacter sphaeroides genomic DNA. Further genetic complementation analysis revealed that functions required for restoration of dimethylsulfoxide reductase activity in the Rhodobacter sphaeroides mutants were encoded on an 9 kb EcoR1 DNA fragment derived from this cosmid. Expression of this 9 kb DNA fragment in Escherichia coli showed that it encoded the dimethylsulfoxide reductase structural gene of Rhodobacter sphaeroides .  相似文献   

11.
Purified B875 light-harvesting complex, chromatophores, and spheroplast-derived vesicles from wild-type Rhodobacter sphaeroides were treated with proteinase K or trypsin, and the alpha and beta polypeptides were analyzed by electrophoretic, immunochemical, and protein-sequencing methods. With the purified complex, proteinase K digested both polypeptides and completely eliminated the A875 peak. Trypsin digested the alpha polypeptide and reduced the A875 by 50%. Proteinase K cleaved the beta polypeptide of chromatophores and the alpha polypeptide of spheroplast-derived vesicles. Sequence analyses of polypeptides extracted from proteinase K-treated chromatophores revealed that the beta polypeptide was cleaved between amino acids 4 and 5 from the N terminus. The N terminus of the alpha polypeptide was intact. We concluded that the N terminus of the beta polypeptide is exposed on the cytoplasmic membrane surface, and the difference in the digestion patterns between the spheroplast-derived vesicles and chromatophores suggested that the C terminus of the alpha polypeptide is exposed on the periplasmic surface.  相似文献   

12.
The LH1 and LH2 complexes of Rhodobacter sphaeroides form ring structures of 16 and 9 protomers, respectively, comprising alpha and beta polypeptides, bacteriochlorophylls (Bchl), and carotenoids. Using the LH2 complex as a starting point, two chimeric LH complexes were constructed incorporating the alphaC-terminal domain of either the Rb. sphaeroides LH1 complex or the Rhodospirillum molischianum LH2 complex. The LH1 domain swap produced a new red-shifted component that comprised approximately 30% of the total absorbance. In the LH1alpha C-terminal mutant this new red-shifted species acts as the terminal emitter, with the new emission maximum located 10 nm further to the red than for the WT. Raman spectroscopy indicates that a fraction of the B850 Bchls is involved in relatively weak H-bonds, possibly involving the alphaTrp(+11) residue within the new alphaC-terminus, consistent with a more LH1-like character for one of the Bchls. The CD data indicate that the domain swaps have perturbed the native arrangement of the B850 Bchls, including the site energy difference between the alpha- and beta-bound Bchls. Thus, the normal energetic structure of the ring system has been disrupted, with one component blue shifted due to the presumed loss of an H-bond donor and the other red shifted by the influence of the new alphaC-terminal domain. The dichotomous response of the mutants to the carotenoids incorporated, spheroidenone or neurosporene, strongly suggests that the C-terminal region of the alpha polypeptide is involved in binding a carotenoid. The projection map of the LH1alpha C-terminal mutant complex was determined in negative stain at 25 A resolution, and it shows a diameter of 53 A, compared to 50 A for the WT. Hence these new spectral properties have not been accompanied by an alteration in ring size.  相似文献   

13.
The light-harvesting complex I (LH-I) of Rhodobacter sphaeroides has been modeled computationally as a hexadecamer of alphabeta-heterodimers, based on a close homology of the heterodimer to that of light-harvesting complex II (LH-II) of Rhodospirillum molischianum. The resulting LH-I structure yields an electron density projection map that is in agreement with an 8.5-A resolution electron microscopic projection map for the highly homologous LH-I of Rs. rubrum. A complex of the modeled LH-I with the photosynthetic reaction center of the same species has been obtained by a constrained conformational search. This complex and the available structures of LH-II from Rs. molischianum and Rhodopseudomonas acidophila furnish a complete model of the pigment organization in the photosynthetic membrane of purple bacteria.  相似文献   

14.
The B800-to-B850 energy transfer time in the purified B800-850 light-harvesting complex of Rhodobacter sphaeroides 2.4.1 is determined to be 0.7 ps at room temperature. The electronic state dynamics of the principal carotenoid of this species, spheroidene, are examined, both in vivo and in vitro, by direct femtosecond time-resolved experiments and by fluorescence emission yield studies. Evidence is presented which suggests that carotenoid-to-bacteriochlorophyll energy transfer may occur directly from the initially excited carotenoid S2 state, as well as from the carotenoid S1 state. Further support for this conjecture is obtained from calculations of energy transfer rates from the carotenoid S2 state. Previous measurements of in vivo carotenoid and B800 dynamics are discussed in light of the new results, and currently unresolved issues are described.  相似文献   

15.
P Braun  A Scherz 《Biochemistry》1991,30(21):5177-5184
The light-harvesting complex (LHC) B850 from Rhodobacter sphaeroides was dissociated into several fragments by treatment with sodium dodecyl sulfate. The molecular weight of each fragment was determined by using transverse polyacrylamide gel electrophoresis under nondenaturing conditions and gel filtration techniques. Four B850 LHCs were observed, having molecular weights of 60,000, 72,000-75,000, 105,000, and 125,000-145,000, and two small bacteriochlorophyll (Bchl)-polypeptide complexes having molecular weights of 6000-8000 and 12,000-14,000. Each of the B850 complexes contains ca. one Bchl a for each 6.5-kDa protein. The optical absorption and circular dichroism of the B850 LHCs recorded directly from the gels are similar to those measured previously for a 22-24-kDa B850 LHCs by Sauer and Austin [(1978) Biochemistry 17, 2011-2019]. These data, combined with studies of other groups, indicate that the smallest LHC in LH1 and LH2 is a Bchl-polypeptide tetramer. Each tetramer contains two Bchl dimers that probably have the structure of P-860, the primary electron donor in Rhodobacter sphaeroides, and two alpha-beta-polypeptide pairs. Interactions among the paired Bchls shift their individual Qy transitions from 780-800 to 850-860 nm, and interactions among two such pairs induce the circular dichroism signal of the LHCs. Three Bchl-polypeptide tetramers probably form a dodecamer having C3 symmetry, and six such dodecamers organize into a large hexagon that can accommodate one or two reaction center complexes.  相似文献   

16.
Pashchenko VZ 《Biofizika》2000,45(3):461-468
The effect of deuteration, and the addition of glycerol and dimethylsulfoxide on the redox midpoint potential Em of bacteriochlorophyll of the special pair ?PMPL?, the rate of energy migration from bacteriopheophytin HM to ?PMPL?, and electron transfer from ?PMPL? to HL and from HL to quinone QA in reaction centers of Rhodobacter sphaeroides was studied. It was shown that H2O-->D2O substitution did not change Em of the special pair, while the addition of 70% glycerol and 35% dimethylsulfoxide (v/v) increased the Em value by 30 and 45 mV, correspondingly. The rate constants of energy migration [formula: see text], charge separation [formula: see text], electron transfer to QA kQ remained unchanged upon the addition of glycerol. The isotopic substitution of water and addition of dimethylsulfoxide led to a 2-3-fold increase in km, ke and kQ values. The dependence of the potential of redox center on the dielectric constant epsilon was analyzed. It was shown that replacement of H2O by dimethylsulfoxide can increase Em by tens of millivolt. There was no correlation between changes in Em and the values of km, ke and kQ upon deuteration and addition of cryoprotectors. It was concluded that the processes of energy migration, charge separation, and electron transfer to the quinone acceptor are preceded by the solvation of states H*M, ?P+MP-L?* and [formula: see text].  相似文献   

17.
18.
Rhodobacter sphaeroides: complexity in chemotactic signalling   总被引:1,自引:0,他引:1  
Most bacteria have much more complex chemosensory systems than those of the extensively studied Escherichia coli. Rhodobacter sphaeroides, for example, has multiple homologues of the E. coli chemosensory proteins. The roles of these homologues have been extensively investigated using a combination of deletion, subcellular localization and phosphorylation assays. These studies have shown that the homologues have specific roles in the sensory pathway, and they differ in their cellular localization and interactions with other components of the pathway. The presence of multiple chemosensory pathways might enable bacteria to tune their tactic responses to different environmental conditions.  相似文献   

19.
20.
Geyer T 《Biophysical journal》2007,93(12):4374-4381
Some species of purple bacteria as, e.g., Rhodobacter sphaeroides contain the protein PufX. Concurrently, the light harvesting complexes 1 (LH1) form dimers of open rings. In mutants without PufX, the LH1s are closed rings and photosynthesis breaks down, because the ubiquinone exchange at the reaction center is blocked. However, the main purpose of the LH1 is light harvesting. We therefore investigate the effects that the PufX-induced dimerization has on the absorption properties of the core complexes. Calculations with a dipole model, which compare the photosynthetic efficiency of various configurations of monomeric and dimeric core complexes, show that the dimer can absorb photons directly into the reaction centers more efficiently, but that the performance of the more sophisticated dimeric LH1 antenna degrades faster with structural perturbations. The calculations predict an optimal orientation of the reaction centers relative to the LH1 dimer, which agrees well with the experimentally found configuration. Based on experimental observations indicating that the dimeric core complexes are indeed rather rigid, we hypothesize that in PufX+ species the association between the LH1 and the reaction centers is enhanced. This mechanical stabilization of the core complexes would lead to the observed quinone blockage, when PufX is missing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号