首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Salt marshes exist at the interface of the marine and the terrestrial system. Shore height differences and associated variations in inundation frequency result in altered abiotic conditions, plant communities, and resource input into the belowground system. These factors result in three unique zones, the upper salt marsh (USM), the lower salt marsh (LSM), and the pioneer zone (PZ). Marine detritus, such as micro‐ and macroalgae, is typically flushed into the PZ daily, with storm surges moving both salt marsh detritus and marine detritus into higher salt marsh zones. Microbial assemblages are essential for the decomposition of organic matter and have been shown to sensitively respond to changes in abiotic conditions such as oxygen supply and salinity. However, temporal and spatial dynamics of microbial communities of Wadden Sea salt marshes received little attention. We investigated the dynamics of soil microbial communities across horizontal (USM, LSM, and PZ), vertical (0–5 and 5–10‐cm sediment depth), and temporal (spring, summer, and autumn) scales in the Wadden Sea salt marsh of the European North Atlantic coast using phospholipid fatty acid (PLFA) analysis. Our results show strong spatial dynamics both among salt marsh zones and between sediment depths, but temporal dynamics to be only minor. Despite varying in space and time, PLFA markers indicated that bacteria generally were the dominant microbial group across salt marsh zones and seasons, however, their dominance was most pronounced in the USM, whereas fungal biomass peaked in the LSM and algal biomass in the PZ. Only algal markers and the stress marker monounsaturated to saturated fatty acid ratio responded to seasonality. Overall, therefore, the results indicate remarkable temporal stability of salt marsh microbial communities despite strong variability in abiotic factors.  相似文献   

2.
刘吉平  马长迪 《生态学报》2017,37(4):1261-1269
湿地稳定性对湿地生态系统的结构和功能起着至关重要的作用。为了研究湿地斑块稳定性的区域分异规律及时空动态变化,采用专家打分法,在斑块尺度上构建了湿地斑块稳定性模型,并以遥感影像为数据源,对1985-2015年的向海自然保护区及其周边地区沼泽湿地斑块稳定性的时空变化进行研究。结果表明:1985年与2015年的沼泽湿地斑块稳定性呈现中部最强、东部最弱、西部较强的特点;1985-2015年间研究区沼泽湿地斑块稳定性总体向东偏移,空间集聚性增强;1985-2015年研究区沼泽湿地斑块稳定性呈上升趋势,空间结构性变弱,离散程度增强;1985年沼泽湿地斑块稳定性由核心区向外逐渐递减,而2015年实验区的沼泽湿地斑块稳定性大于缓冲区。研究结果向海自然保护区及其周边地区沼泽湿地的规划与管理提供合理性建议。  相似文献   

3.
Summary Tidal flooding is widely believed to be an important determinant of marsh plant distributions but has rarely been tested in the field. In New England the marsh elder Iva frutescens often dominates the terrestrial border of salt marshes and we examined its flood tolerance and distribution patterns. Marsh elders only occur at elevations where their roots are not subject to prolonged water table flooding. Consequently they are found on the terrestrial border of marshes and at lower elevations associated with drainage ditches and locally elevated surfaces. Marsh elders transplanted to elevations lower than they normally occur died within a year with or without neighbors and greenhouse tests revealed that I. frutescens is much less tolerant of flooded soil conditions than plants found at lower marsh elevations. We also manipulated the water table level of field plots and found that increasing or decreasing water table drainage led to enhanced and diminished I. frutescens performance, respectively. Our results demonstrate the importance of water table dynamics in generating spatial patterns in marsh plant communities and provide further evidence that supports the hypothesis that the seaward distributional limits of marsh plant populations are generally dictated by physical processes.  相似文献   

4.
Milton W. Weller 《Ibis》1967,109(3):391-411
During an 11-month study of the Black-headed Duck in eastern Argentina, observations were made on the marsh birds of Cape San Antonio, Province of Buenos Aires. These observations supplement the distributional and life history obtained by Gibson (1879–1920), Wetmore (1926) and others. The deep, fresh-water marshes characteristically are dominated by one of three plants: tules, cutgrass or cat-tails. There were surprisingly few marshes with mixtures of these plants and few marshes which showed a gradual transition from marsh to uplands. Marsh birds showed considerable adaptation in chronology of nesting and nest-site selection for the seasonal water cycle of wet springs and dry periods in the late summer and fall. Some marsh birds were involved in nesting over a longer period than is usual in Northern Hemisphere marshes. As seems characteristic of all marsh birds, cover-water edges were usual sites for nests. There were only a few species with restricted nest-site selection, and competition between closely related species was noted only among the three species of coots. A list of the marsh birds of the area is given, and comments are presented on the ecology and behaviour of selected species.  相似文献   

5.
Seawalls are often built along naturally dynamic coastlines, including the upland edge of salt marshes, in order to prevent erosion or to extend properties seaward. The impacts of seawalls on fringing salt marshes were studied at five pairs of walled and natural marshes in the Great Bay Estuary of New Hampshire, USA. Marsh plant species and communities showed no difference in front of walls when compared with similar elevations at paired controls. However, seawalls eliminated the vegetative transition zone at the upper border. Not only did the plant community of the transition zone have high plant diversity relative to the low marsh, but it varied greatly from site to site in the estuary. The effects of seawall presence on other marsh processes, including sediment movement, wrack accumulation, groundwater flow, and vegetation distribution and growth, were examined. Although no statistically significant effects of seawalls were found, variation in the indicators of these processes were largely controlled by wave exposure, site-specific geomorphology and land use, and distance of the sampling station from the upland. Trends indicated there was more sediment movement close to seawalls at high energy sites and less fine grain sediment near seawalls. Both trends are consistent with an increase in energy from wave reflection. The distribution of seawalls bordering salt marshes was mapped for Great and Little Bays and their rivers. Throughout the study area, 3.54% of the marshes were bounded by shoreline armoring (5876 m of seawalls along 165.8 km of marsh shoreline). Localized areas with high population densities had up to 43% of marshes bounded by seawalls. Coastal managers should consider limiting seawall construction to preserve plant diversity at the upper borders of salt marshes and prevent marsh habitat loss due to transgression associated with sea level rise.  相似文献   

6.
Salt marshes exhibit striking vegetation zonation corresponding to spatially variable elevation gradients which dictate their frequency of inundation by the tides. The salt marshes in the upper Bay of Fundy, a dynamic hypertidal system, are of considerable interest due to increasing recognition of salt marsh ecosystem values and the extent of prior conversion of salt marshes to agricultural lands, much of which are no longer in use. To determine the suitability of two potential restoration sites at Beausejour Marsh in New Brunswick, Canada, geomatics technologies and techniques were used to assess vegetation and elevation patterns in an adjacent reference salt marsh and the proposed restoration sites. Light detection and ranging digital elevation models (DEMs) were created for the reference marsh and the restoration sites in both the spring (leaf-off) and late summer (leaf-on, maximum biomass) periods. Aerial photographs and Quickbird multispectral imagery were used to visually interpret vegetation zones on the reference marsh and were field validated using vegetation characteristics from quadrats referenced with differential GPS. Elevation limits of the salt marsh vegetation zones were extracted from the DEM of the reference marsh and applied to the DEM of the restoration sites to determine the percentage area of each site that would be immediately suitable for new salt marsh growth. Of the two restoration sites assessed, one had experienced significant subsidence since dyking; only about 40 % of the site area was determined to be of sufficient elevation for immediate vegetation colonization. The second site, while more than 88 % suitable, would require the installation of a large dyke on the landward side of the restoration site to prevent flooding of adjacent lands. This study provides essential high resolution elevation and vegetation zonation data for use in restoration site assessments, and highlights the usefulness of applied geomatics in the salt marsh restoration planning process.  相似文献   

7.
The dispersal of seeds through hydrochory can be an important driver of community dynamics and play an integral role in the colonization of restored wetlands. We assessed sources of seeds on the shoreline and in adjacent waters of the Potomac River to Dyke Marsh in Virginia. Drift-line samples were taken at 40 random points four times during 2005–2006, and water surface net trawling took place on the Potomac River from 2003–2005 using six, 200-m transects around the perimeter of the marsh. Seed supply through hydrochory and species richness was low at Dyke Marsh when compared to other regional tidal freshwater marshes. We discovered distinct temporal patterns, where high species richness and seed density were found in the fall for the water trawl samples but in the spring for the drift-line samples. High fall dispersal in the water trawls may exist owing to peak plant senescence and seed release, while high seed germination in the spring along shorelines may arise due to sufficient cold stratification of marsh seeds.  相似文献   

8.
Reports of sudden marsh browning, or even dieback, suggest that the many heretofore “healthy” coastal marshes have reached some tipping point with respect to sea level rise, necessitating better and more widespread monitoring. In this paper, we examine spatial and temporal variations in marsh vegetation cover, substrate wetness, and sediment exposure for mesohaline to oligohaline marshes in Delaware Bay over a 15-year period (1993–2008) using three spectral indices (the Normalized Difference Vegetation Index, the Normalized Difference Water Index, and the Normalized Difference Soil Index) based on Landsat Thematic Mapper and Enhanced Thematic Mapper + imagery. In general, degrading marsh areas show low percentages of vegetation cover compared to bare marsh substrate, and substrate wetness tends to be high. But this characterization is not consistent from one year to the next, and in marshes that are in incipient stages of degradation, apparent vegetation health can improve substantially for a few years. Detailed transect data collected from July to September in an area of Bombay Hook National Wildlife Refuge, where little marsh loss was evident, document considerable variability in vegetation dynamics. The marshes along the transect kept pace with the major transgressive pulse of the 1990s, but as the rate of sea level rise decreased after 2000, vegetation vigor fell, especially in 2004, the year after Hurricane Isabel. The years of maximum vegetation cover, 2003 and 2005, coincided with short-term, sea level high stands and/or very wet and cooler summers. We theorize that after keeping up with the dramatic rise in sea level during the 1990s, marsh surface elevations in these microtidal systems are now too high to allow adequate flushing of sulfides and low dissolved oxygen waters except for high precipitation events or short-term sea level rises. If this situation were to continue, it could affect the “health” of marshes that otherwise were accommodating high rates of sea level rise well.  相似文献   

9.
Efforts are underway to restore tidal flow in New England salt marshes that were negatively impacted by tidal restrictions. We evaluated a planned tidal restoration at Mill Brook Marsh (New Hampshire) and at Drakes Island Marsh (Maine) where partial tidal restoration inadvertently occurred. Salt marsh functions were evaluated in both marshes to determine the impacts from tidal restriction and the responses following restoration. Physical and biological indicators of salt marsh functions (tidal range, surface elevations, soil water levels and salinities, plant cover, and fish use) were measured and compared to those from nonimpounded reference sites. Common impacts from tidal restrictions at both sites were: loss of tidal flooding, declines in surface elevation, reduced soil salinity, replacement of salt marsh vegetation by fresh and brackish plants, and loss of fish use of the marsh.Water levels, soil salinities and fish use increased immediately following tidal restoration. Salt-intolerant vegetation was killed within months. After two years, mildly salt-tolerant vegetation had been largely replaced in Mill Brook Marsh by several species characteristic of both high and low salt marshes. Eight years after the unplanned, partial tidal restoration at Drakes Island Marsh, the vegetation was dominated bySpartina alterniflora, a characteristic species of low marsh habitat.Hydrologic restoration that allowed for unrestricted saltwater exchange at Mill Brook restored salt marsh functions relatively quickly in comparison to the partial tidal restoration at Drakes Island, where full tidal exchange was not achieved. The irregular tidal regime at Drakes Island resulted in vegetation cover and patterns dissimilar to those of the high marsh used as a reference. The proper hydrologic regime (flooding height, duration and frequency) is essential to promote the rapid recovery of salt marsh functions. We predict that functional recovery will be relatively quick at Mill Brook, but believe that the habitat at Drakes Island will not become equivalent to that of the reference marsh unless the hydrology is further modified.Corresponding Editor: R.E. Turner Manuseript  相似文献   

10.
Efforts are underway to restore tidal flow in New England salt marshes that were negatively impacted by tidal restrictions. We evaluated a planned tidal restoration at Mill Brook Marsh (New Hampshire) and at Drakes Island Marsh (Maine) where partial tidal restoration inadvertently occurred. Salt marsh functions were evaluated in both marshes to determine the impacts from tidal restriction and the responses following restoration. Physical and biological indicators of salt marsh functions (tidal range, surface elevations, soil water levels and salinities, plant cover, and fish use) were measured and compared to those from nonimpounded reference sites. Common impacts from tidal restrictions at both sites were: loss of tidal flooding, declines in surface elevation, reduced soil salinity, replacement of salt marsh vegetation by fresh and brackish plants, and loss of fish use of the marsh. Water levels, soil salinities and fish use increased immediately following tidal restoration. Salt-intolerant vegetation was killed within months. After two years, mildly salt-tolerant vegetation had been largely replaced in Mill Brook Marsh by several species characteristic of both high and low salt marshes. Eight years after the unplanned, partial tidal restoration at Drakes Island Marsh, the vegetation was dominated bySpartina alterniflora, a characteristic species of low marsh habitat. Hydrologic restoration that allowed for unrestricted saltwater exchange at Mill Brook restored salt marsh functions relatively quickly in comparison to the partial tidal restoration at Drakes Island, where full tidal exchange was not achieved. The irregular tidal regime at Drakes Island resulted in vegetation cover and patterns dissimilar to those of the high marsh used as a reference. The proper hydrologic regime (flooding height, duration and frequency) is essential to promote the rapid recovery of salt marsh functions. We predict that functional recovery will be relatively quick at Mill Brook, but believe that the habitat at Drakes Island will not become equivalent to that of the reference marsh unless the hydrology is further modified.  相似文献   

11.
Densities of nekton and other fauna were measured inthree created salt marshes to examine habitatdevelopment rate. All three marshes were located onPelican Spit in Galveston Bay, Texas, USA and werecreated on dredged material from the Gulf IntracoastalWaterway. The youngest marsh was planted on 1-mcenters in July of 1992. At the time sampling wasinitiated in fall 1992, the marshes were 9, 5, andless than 1 year in age; sampling continued in thefall and spring through spring 1994. Animaldensities were measured within the vegetation at twoelevations using an enclosure sampler. In the fall of1992, 4 months following the planting of the 92Marsh,densities of most marsh organisms were lower in thismarsh compared with the older two marshes. Significantly lower densities were observed fordominant crustaceans (including three species of grassshrimps, two species of commercially-important penaeidshrimps, thinstripe hermit crabs Clibanarius vittatus,and juvenile blue crabs Callinectes sapidus), adominant fish (Gobionellus boleosoma), and thedominant mollusc (Littoraria irrorata). By the fallof 1993, however, densities of most nekton specieswere similar among the three created salt marshes. Incontrast, reduced densities of less mobile epifauna(C. vittatusand L. irrorata) persisted in the 92Marshthroughout the 2 years of sampling. The patterns ofnekton utilization exhibited in these marshes suggestthat the 92Marsh reached its maximum habitat supportfunction for these animals in less than 1 year. Comparisons of the older marshes with natural marshesin the bay system, however, suggest that all three ofthese created marshes are functioning at lower levelsthan natural marshes in terms of supporting productionof commercially important fishery species such aspenaeid shrimps and C. sapidus.  相似文献   

12.
Salt marsh management often embraces diverse goals, ranging from the restoration of degraded marshes through re-introduction of tidal flow to the control of salt marsh mosquito production by altering marsh surface topography through Open Water Marsh Management (OMWM). However, rarely have these goals been incorporated in one project. Here we present the concept of Integrated Marsh Management (IMM), which combines the best management practices of salt marsh restoration and OMWM. Although IMM offers a comprehensive approach to ecological restoration and mosquito control, research evaluating this concept??s practical implementations has been inadequate. A long-term IMM project at Wertheim National Wildlife Refuge located in a highly urbanized watershed on Long Island, New York, USA was designed to fill this knowledge gap. A combination of restoration and OMWM techniques was employed at two treatment marshes, the results monitored before and after alterations, and compared to two adjacent control marshes. The treatment marshes experienced decreased mosquito production, reduced cover of the invasive common reed (Phragmites australis), expansion of native marsh vegetation, increased killifish and estuarine nekton species abundance, as well as increased avian species diversity and waterbird abundance. This demonstration project validated the IMM conceptual approach and may serve as a case study for similar IMM projects in the future.  相似文献   

13.
Questions: What are the feedbacks among the seed bank, parent vegetation, and landscape structure that control plant species turnover in space and time in a tidal freshwater marsh? How can these feedbacks be used to better understand marsh community dynamics and to establish restoration practices that seek to restore vegetation diversity of this important and widely distributed ecosystem? Location: Potomac River, Virginia, United States (15 km south of Washington, DC). Methods: We sampled the seed bank and standing vegetation in a tidal freshwater marsh and explored similarities between seed bank and vegetation composition through space and time. We then investigated marsh surface elevation, distance to nearest tidal channels, and life history of component species as potential explanations for the observed vegetation patterns. Results: The composition of individual plots changed considerably from year to year; however, the composition at broader spatial (whole marsh) and temporal (4 years) scales was relatively stable. Species composition of the seed bank was dissimilar to both the previous and current year's standing vegetation, and similarity to standing vegetation was particularly low in plots dominated by annual species. Landscape structure and life history characteristics of individual species best explained the spatiotemporal variability in marsh vegetation. Conclusions: Restoration designs should be landscape‐dependent and explicitly incorporate spatially structured elements such as elevation gradients to maximize community diversity in reconstructed tidal freshwater marshes. Optimal designs include areas of high seed input, areas of high species turnover, as well as other areas of greater stability.  相似文献   

14.
Methane emissions from freshwater riverine wetlands   总被引:1,自引:0,他引:1  
To better understand methane emissions from freshwater riverine wetlands, seasonal and spatial patterns of methane emissions were measured over a 1-year period from created freshwater marshes and a river division oxbow, and at a river-floodplain edge (riverside) in central Ohio, USA. Plots were distributed from inflow to outflow and from shallow transition edges to deep water zones in the marshes and oxbow. Median values of CH4 emissions ranged from 0.33 to 85.7 mg-CH4-C m−2 h−1, at the riverside sites and 0.02-20.5 mg CH4-C m−2 h−1 in the created marshes. The naturally colonizing marsh had more methane emissions (p = 0.047) than did the planted marsh, probably due to a history of higher net primary productivity in the former. A significant dry period and lower productivity in the oxbow may explain its low range of methane emissions of −0.04 to 0.09 mg CH4-C m−2 h−1. There were significantly higher rates of methane emissions in deep water zones compared to transition zones in the created marshes. Overall CH4 emissions had significant relationships with organic carbon and soil temperature and appear to depend on the hydroperiod and vegetation development. Riparian wetlands can be designed to minimize greenhouse gas emissions while providing other ecosystem services.  相似文献   

15.
Sea level rise elicits short‐ and long‐term changes in coastal plant communities by altering the physical conditions that affect ecosystem processes and species distributions. While the effects of sea level rise on salt marshes and mangroves are well studied, we focus on its effects on coastal islands of freshwater forest in Florida's Big Bend region, extending a dataset initiated in 1992. In 2014–2015, we evaluated tree survival, regeneration, and understory composition in 13 previously established plots located along a tidal creek; 10 plots are on forest islands surrounded by salt marsh, and three are in continuous forest. Earlier studies found that salt stress from increased tidal flooding prevented tree regeneration in frequently flooded forest islands. Between 1992 and 2014, tidal flooding of forest islands increased by 22%–117%, corresponding with declines in tree species richness, regeneration, and survival of the dominant tree species, Sabal palmetto (cabbage palm) and Juniperus virginiana (southern red cedar). Rates of S. palmetto and J. virginiana mortality increased nonlinearly over time on the six most frequently flooded islands, while salt marsh herbs and shrubs replaced forest understory vegetation along a tidal flooding gradient. Frequencies of tidal flooding, rates of tree mortality, and understory composition in continuous forest stands remained relatively stable, but tree regeneration substantially declined. Long‐term trends identified in this study demonstrate the effect of sea level rise on spatial and temporal community reassembly trajectories that are dynamically re‐shaping the unique coastal landscape of the Big Bend.  相似文献   

16.
This study determined total number, biomass, taxa, and seasonal occurrence of adult aquatic insects emerging from four vegetation zones in one diked and one undiked freshwater coastal marsh on hypereutrophic lower Green Bay, Lake Michigan, USA during the summer of 1984. Floating box traps were placed in open water, sparse emergent, dense emergent, and wet meadow vegetation zones in each marsh. Insects were collected during 20 24-hour periods, each four days apart, from June 11 to August 26. Two-way ANOVA was used to test differences in number and biomass of insects between marshes and among vegetation zones. Polynomial regression was used to evaluate seasonal emergence patterns. More insects, insect biomass, and insect taxa were found in the diked marsh, especially during the first half of the sampling period. Damselflies were much more abundant in the diked marsh. Most insects and insect biomass were found in the sparse emergent vegetation zone of both marshes. The emerging insect community in the diked marsh appears enhanced by its separation from the hypereutrophic and turbid waters of lower Green Bay.  相似文献   

17.
Hund L  Chen JT  Krieger N  Coull BA 《Biometrics》2012,68(3):849-858
Summary Temporal boundary misalignment occurs when area boundaries shift across time (e.g., census tract boundaries change at each census year), complicating the modeling of temporal trends across space. Large area-level datasets with temporal boundary misalignment are becoming increasingly common in practice. The few existing approaches for temporally misaligned data do not account for correlation in spatial random effects over time. To overcome issues associated with temporal misalignment, we construct a geostatistical model for aggregate count data by assuming that an underlying continuous risk surface induces spatial correlation between areas. We implement the model within the framework of a generalized linear mixed model using radial basis splines. Using this approach, boundary misalignment becomes a nonissue. Additionally, this disease-mapping framework facilitates fast, easy model fitting by using a penalized quasilikelihood approximation to maximum likelihood estimation. We anticipate that the method will also be useful for large disease-mapping datasets for which fully Bayesian approaches are infeasible. We apply our method to assess socioeconomic trends in breast cancer incidence in Los Angeles between the periods 1988-1992 and 1998-2002.  相似文献   

18.
海三棱蔍草种群的物候与分布格局研究   总被引:2,自引:0,他引:2       下载免费PDF全文
海三棱藨草群落是生长在海岸带滩涂原生裸地上的原生植被,在上海地区分布面积达20多万亩。本项工作研究了上海市南汇县东海农场海堤外侧滩涂上海三棱藨草种群的物候和分布格局。根据滩涂高程以及海三棱藨草种群生长状况,可以划分成三个地带,即地带A,海三棱藨草与芦苇群落交错区;地带B,海三棱藨草种群生长最适的中潮位地带;地带C,海三棱藨草种群定居地带。由于三个地带内,生境条件不同,海三棱藨草种群的物候有明显差异。从地带A至C,海三棱藨草种群的分布格局依次为随机分布、均匀分布和随机分布或群聚分布。其空间分布格局在随时间变化的同时也在空间上改变其位置。  相似文献   

19.
海三棱藨草种群的物候与分布格局研究   总被引:2,自引:0,他引:2       下载免费PDF全文
海三棱藨草群落是生长在海岸带滩涂原生裸地上的原生植被,在上海地区分布面积达20多万亩。本项工作研究了上海市南汇县东海农场海堤外侧滩涂上海三棱藨草种群的物候和分布格局。根据滩涂高程以及海三棱藨草种群生长状况,可以划分成三个地带,即地带A,海三棱藨草与芦苇群落交错区;地带B,海三棱藨草种群生长最适的中潮位地带;地带C,梅三棱藨草种群定居地带。由于三个地带内,生境条件不同,海三棱藨草种群的物候有明显差异。从地带A至C,海三棱藨草种群的分布格局依次为随机分布、均匀分布和随机分布或群聚分布。其空间分布格局在随时间变化的同时也在空间上改变其位置。  相似文献   

20.
Benthic foraminiferal assemblages in subrecent deposits are commonly used to reconstruct past sea level. Interpretations are generally made by comparison with either modern dead or total (live plus dead) assemblages. In both cases there will have been post-mortem changes that have differentially affected preservation. It is therefore important to establish the primary ecological controls by analysis of the living assemblages. We have determined the spatial and temporal variability of intertidal benthic foraminifera in the surface (0–1 cm) sediments from a time series survey of 31 sampling stations at Cowpen Marsh, for a period of 12 months. We counted 112,067 live foraminifera assigned to 28 species. The fauna was dominated by two agglutinated species (Jadammina macrescens and Trochammina inflata) on the high and middle marshes, and three calcareous species (Elphidium williamsoni, Haynesina germanica and Quinqueloculina spp.) on the low marsh and tidal flat.The standing crop of the whole intertidal zone, including the high, middle, low marsh and tidal flat habitats, and the individual species varied both temporally and spatially. The standing crop of the intertidal zone as a whole was greatest in the summer months and showed a positive correlation with elevation. The standing crops of the high and middle marshes showed similar temporal variation with peaks in summer and autumn and a trough in winter. The low marsh showed numerous peaks and troughs of standing crop during the year, whereas the tidal flat showed a single peak in summer. The standing crops of Jadammina macrescens and Trochammina inflata on the high and middle marshes peaked from April to May and August to October with troughs in winter. These agglutinated species showed a strong correlation with elevation. Haynesina germanica peaked in May to August and November to January on the low marsh, whereas on the tidal flat there was a single peak in July. The standing crops of E. williamsoni on the low marsh and tidal flat were relatively high in June and May, and July, respectively. Quinqueloculina spp. peaked in May to July on the low marsh and July on the tidal flat. The species was also found in the middle marsh from July to May and high marsh from September to November. Haynesina germanica showed a strong negative correlation with elevation, whereas the other two dominant calcareous species demonstrated weak negative correlations with both elevation and salinity.Reconstructing former sea level depends primarily on the recognition of high and middle marsh assemblages and in this study these are shown to be strongly controlled by elevation rather than salinity. Caution may be needed in interpreting low marsh and tidal flat data as salinity plays a more important role here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号