共查询到20条相似文献,搜索用时 0 毫秒
1.
J Harel N Hanania H Tapiero L Harel 《Biochemical and biophysical research communications》1968,33(4):696-701
2.
The DNase I digestion kinetics of DNA in isolated nuclei (from HeLa or murine mammary carcinoma, 67 cells) were assayed flow cytometrically by measuring the changes in ethidium bromide (EtBr) fluorescence following various digestion time intervals. The DNase I digestion curve was characterized by an initial 25-30% increase in fluorescence upon addition of the enzyme, a rapid reduction in fluorescence to approximately 50-55% in 30 minutes, and a limit digest of 45-50% beyond 45 minutes. Throughout digestion, the DNA histogram retained its characteristic bimodal shape, showing that histogram rearrangement was not responsible for the changes in EtBr fluorescence. Irradiation with 5 X 10(6) rads (137Cs-gamma-rays) or exposure to 50 mM EDTA caused an increase in EtBr fluorescence similar to that caused by DNase I, suggesting that DNA nicking and/or chromatin loosening were responsible for this increase. Residual DNA assayed by the solubilization of 14C-TdR (thymidine)-labeled DNA indicated a similar kinetic pattern without the initial increase. However, at the limit digest, the fraction of DNA remaining trichloroacetic acid (TCA) insoluble (10%) was smaller than that measured by loss of EtBr fluorescence (50% of initial, 40% of maximum). Part of this difference was due to the presence of TCA soluble DNA trapped within the nuclear matrix (15-20%). This trapped DNA was released when the digested nuclei were exposed to 0.5-1.0 M NaCl just prior to EtBr staining. Exposure of HeLa cells to three agents that are believed to cause changes in chromatin structure resulted in alterations in the DNase I digestion kinetics measured flow cytometrically.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
3.
Jack Van't Hof 《American journal of botany》1999,86(6):776-779
The nuclear DNA content of developing cotton fiber cells (Gossypium hirsutum, cv. MD51ne) increases ∼24% after 2 d postanthesis (dpa). The amount of nuclear DNA at 2 dpa is 5.4 ± 0.27 pg. At 3–4 dpa it increases to 6.7 ± 0.24 pg and by 5 dpa it is 6.8 ± 0.70 pg. These values were obtained by nuclear fluorescence after staining with Hoechst 33258. Human oral squamous cell nuclei were used as a DNA standard. Nuclear DNA content increases in fibers growing on either fertilized or unfertilized ovules. The increase also is detectable in Feulgen stained nuclei using two-wavelength cytospectrophotometry. All measurements were made on isolated fiber cell nuclei using a newly developed method tailored to cotton fiber cells. The results imply that during the early stages of development fiber cell nuclei either selectively amplify certain sequences or enter S-phase replicating a portion of their genome. 相似文献
4.
S1 nuclease hydrolysis and hydroxyapatite chromatography were used to study the effect of silicic acid on DNA. Native calf thymus DNA was incubated with increasing concentrations of silicic acid (DNA nucleotide/silicic acid molar ratios of 1:0.25, 1:0.5 and 1:1) and subjected to S1 nuclease hydrolysis. An increasing degree of DNA degradation was seen suggesting a destabilization of the secondary structure. A decrease in melting temperature was also observed. Hydroxyapatite chromatography indicated that incubation at the molar ratio of 1:1 resulted in denaturation and degradation of DNA. 相似文献
5.
Mitochondrial DNA synthesis in mouse L cells temperature sensitive in nuclear DNA replication 总被引:3,自引:0,他引:3
Temperature-sensitive (ts) A 1S9 mouse L cells continue to synthesize double-stranded covalently closed mitochondrial (mt) DNA at a temperature (38.5 degrees C) which is nonpermissive for chromosomal DNA replication. The amount of mt DNA made appears to be quantitatively linked to nuclear DNA synthesis. Nuclear DNA replication proceeds normally for 6-8 h after the cells are shifted to 38.5 degrees C, and then declines to reach a minimum at 20-24 h. The level of mt DNA synthesis remains high during this period and decreases once the ts lesion has been established. 相似文献
6.
Previous studies from our laboratory have led us to conclude that lens cell elongation is caused by an increase in cell volume. This volume increase results from an increase in the potassium content of the cells due to decreased potassium efflux. In contrast, an increase in the volume of most cells triggers a regulatory volume decrease (RVD) that is usually mediated by increased potassium efflux. For this reason, chicken embryo lens epithelial cells were tested to see whether they were capable of typical cell volume regulation. Changes in cell volume during lens fiber differentiation were first estimated by 3H2O water uptake. Cell water increased in proportion to cell length in elongating lens cells. Treatment of epithelial cells cultured in basal medium with dilute or concentrated medium, or with medium containing 50 mM sucrose, resulted in typical volume regulatory responses. Cells lost or gained volume in response to osmotic stress, then returned to their previous volume. In addition, the elongation and increase in cell volume that accompanies lens fiber cell differentiation occurred normally in either hypo- or hypertonic media. This observation showed that the activation of mechanisms to compensate for osmotic stress did not interfere with the increase in volume that accompanies elongation. The ability of elongating cells to volume regulate was also tested. Lens epithelial cells were stimulated to elongate by exposure to embryonic vitreous humor, then challenged with hypotonic medium. These elongating cells regulated their volume as effectively as unstimulated cells. Therefore, cells that were increasing their volume due to reduced potassium efflux could adjust their volume in response to osmotic stress, presumably by increasing potassium efflux. This suggests that the changes in potassium efflux that occur during differentiation and RVD are regulated by distinct mechanisms. 相似文献
7.
DNA fragmentation is one of the most characteristic features of apoptotic cells and caspase-activated DNase (CAD) is considered to be a major nuclease responsible for DNA fragmentation. CAD forms a complex with its inhibitor (ICAD), which is also required for the functional folding of CAD, leading to CAD stabilization in cells. In this paper, we investigated the involvement of the ubiquitin-proteasome system in CAD stability. The expression and ubiquitination of CAD was remarkably increased by MG132 treatment in the absence of ICAD. These results suggest that CAD protein may be preferentially degraded by the ubiquitin-proteasome system in the absence of ICAD to maintain protein quality control. 相似文献
8.
Isolation and protein pattern of eye lens fiber junctions 总被引:13,自引:0,他引:13
9.
Yuki Sugiyama Anke Nguyen Yongjuan Chen Jennifer N. Murdoch John W. McAvoy 《Developmental biology》2010,338(2):193-177
Planar cell polarity (PCP) signaling polarises cells along tissue axes. Although pathways involved are becoming better understood, outstanding issues include; (i) existence/identity of cues that orchestrate global polarisation in tissues, and (ii) the generality of the link between polarisation of primary cilia and asymmetric localisation of PCP proteins. Mammalian lenses are mainly comprised of epithelial-derived fiber cells. Concentrically arranged fibers are precisely aligned as they elongate along the anterior-posterior axis and orientate towards lens poles where they meet fibers from other segments to form characteristic sutures. We show that lens exhibits PCP, with each fiber cell having an apically situated cilium and in most cases this is polarised towards the anterior pole. Frizzled and other PCP proteins are also asymmetrically localised along the equatorial-anterior axis. Mutations in core PCP genes Van Gogh-like 2 and Celsr1 perturb oriented fiber alignment and suture formation. Suppression of the PCP pathway by overexpressing Sfrp2 shows that whilst local groups of fibers are often similarly oriented, they lack global orientation; consequently when local groups of fibers with different orientations meet they form multiple, small, ectopic suture-like configurations. This indicates that this extracellular inhibitor disrupts a global polarising signal that utilises a PCP-mediated mechanism to coordinate the global alignment and orientation of fibers to lens poles. 相似文献
10.
11.
Norio Yagi Kazuhiro Satonaka Mitsuzo Horio Hiroyoshi Shimogaki Yoshio Tokuda Sakan Maeda 《Biotechnic & histochemistry》1996,71(3):123-129
Degradation and extraction of high molecular weight DNA from formaldehyde fixed tissues suitable for gene analysis are presented. We previously reported that DNase might play an important role in the degradation of DNA extracted from formaldehyde fixed tissues (Tokuda et al. 1990). In the present study, DNase activity of the supernatant from rat tissues fixed in buffered formaldehyde at room temperature was negligible within 3 hr. Analysis of DNA extracted from reconstituted chromatin revealed that the degradation increased in the absence of DNase depending on the duration of the formaldehyde fixation. Furthermore, high molecular weight DNA could be extracted from tissues devoid of DNase activity fixed in buffered formaldehyde containing EDTA. These results demonstrated that DNA degradation was due mainly to a mechanism other than DNAse which was inhibited by EDTA. For clinical application, v-H-ras gene was successfully detected by Southern blotting from rat spleen tissues fixed in buffered formaldehyde especially at 4 C. Fixation at low temperature is useful for gene analysis. 相似文献
12.
13.
14.
A DNase I-resistant DNA species has been isolated and purified from HeLa cells by gel electrophoresis. Our studies indicate that the DNase I-resistant DNA species was about 40-60 bp fragment sizes responding to double-strand DNA marker and has higher guanine content. The image of AFM showed that this species has been assumed to be tetraplex structure according to its apparent width and height. Its CD, UV spectrum also exhibited characteristics similar to some tetraplex structure, which was different from the standard duplex DNA. 32P-labeled probes (TTAGGG)4 and 5'-TGGGGAGGGTGGGGAGGGTGGGGAAGG-3' could be hybridized to purified DNase I-resistant species. All results suggest that the DNase I-resistant DNA species have at least two components, which adopt an intrastrand fold-back DNA tetraplex. Their sequences were similar to human telomere and human c-myc locus (NHE), respectively. 相似文献
15.
Controlled fragmentation of DNA by DNase I 总被引:7,自引:0,他引:7
16.
Dunia I Cibert C Gong X Xia CH Recouvreur M Levy E Kumar N Bloemendal H Benedetti EL 《European journal of cell biology》2006,85(8):729-752
In the current study we describe the changes of overall organization of lens fiber cells in connexin 46 (Cx46) and connexin 50 (Cx50) knockout mice. Morphometric analyses and the application of immunocytochemical techniques revealed that in Cx46 knockout lens (Cx46 -/-), where Cx50 is expressed alone, the postnatal differentiation of secondary fiber cells proceeds faster and is characterized by an increased number of smaller fiber cells. Conversely, in Cx50 knockout mice (Cx50 -/-), the lenticular mass is considerably reduced and characterized by a small number of fiber cells added during the postnatal period. The process of terminal differentiation was impaired and generated larger fiber cells still possessing cytoplasmic organelles. Freeze-fracture and fracture labeling revealed that the junctional assembly, packing organization and topographic interactions between connexons and MP26 differed when Cx46 and Cx50 were co-assembled in the wild-type or expressed separately in the two distinct knockout phenotypes. Filipin cytochemistry provided indirect evidence that Cx46 and Cx50 expressed alone are recruited into different lipid environments. Our results represent the structural proof that interaction of connexins and MP26 contributes to the overall organization of the fiber cells. 相似文献
17.
The present paper describes cloning and sequencing of the mouse cDNA encoding dihydroxyacetonephosphate acyltransferase (DAPAT), the peroxisomal key enzyme of plasmalogen (PM) biosynthesis. Using monospecific antibodies, we localized DAPAT and alkyl dihydroxyacetonephosphate synthase to peroxisomes of mouse lens epithelial cells (LECs) and determined their enzymatic activity. By electrospray ionization mass spectrometry of mouse lens lipid extracts, we identified phosphatidyl ethanolamine including plasmenyl ethanolamine species as major constituents. Our data demonstrate the capacity of LECs to synthesize PMs and the high coincidence between deficiency of PM and early manifestation of cataract in patients with peroxisomal disorders suggests that ether-bonded lipids may play an important role in maintaining lens transparency. 相似文献
18.
19.
Regulation of mouse lens fiber cell development and differentiation by the Maf gene 总被引:16,自引:0,他引:16
Maf is a basic domain/leucine zipper domain protein originally identified as a proto-oncogene whose consensus target site in vitro, the T-MARE, is an extended version of an AP-1 site normally recognized by Fos and Jun. Maf and the closely related family members Neural retina leucine zipper (Nrl), L-Maf, and Krml1/MafB have been implicated in a wide variety of developmental and physiologic roles; however, mutations in vivo have been described only for Krml1/MafB, in which a loss-of-function causes abnormalities in hindbrain development due to failure to activate the Hoxa3 and Hoxb3 genes. We have used gene targeting to replace Maf coding sequences with those of lacZ, and have carried out a comprehensive analysis of embryonic expression and the homozygous mutant phenotype in the eye. Maf is expressed in the lens vesicle after invagination, and becomes highly upregulated in the equatorial zone, the site at which self-renewing anterior epithelial cells withdraw from the cell cycle and terminally differentiate into posterior fiber cells. Posterior lens cells in Maf(lacZ) mutant mice exhibit failure of elongation at embryonic day 11.5, do not express (&agr;)A- and all of the (beta)-crystallin genes, and display inappropriately high levels of DNA synthesis. This phenotype partially overlaps with those reported for gene targeting of Prox1 and Sox1; however, expression of these genes is grossly normal, as is expression of Eya1, Eya2, Pax6, and Sox2. Recombinant Maf protein binds to T-MARE sites in the (alpha)A-, (beta)B2-, and (beta)A4-crystallin promoters but fails to bind to a point mutation in the (alpha)A-crystallin promoter that has been shown previously to be required for promoter function. Our results indicate that Maf directly activates many if not all of the (beta)-crystallin genes, and suggest a model for coordinating cell cycle withdrawal with terminal differentiation. 相似文献
20.
Quiescent cultured Nakano mouse lens cells incubated for 40 hours with sodium orthovanadate incorporated 3H-thymidine at an accelerated rate; the greatest response occurred at 20 microM vanadate, whereas by 2 microM an incorporation rate equivalent to unstimulated cells was noted. Microscopic examination of the cells revealed that those exposed to concentrations of vanadate greater than 100 microM had lysed by the end of the 40-hour incubation. Reduction in vanadate exposure time to 1 hour caused the cells to incorporate the greatest amount of 3H-thymidine at a vanadate concentration of 200 microM to 500 microM. Half-maximum incorporation of 3H-thymidine (after a 40-hour incubation) was induced by a 2-hour incubation with 20 microM vanadate. Studies with insulin showed that while 20 ng/ml insulin alone did not increase 3H-thymidine incorporation, 20 ng/ml insulin in combination with 20 microM vanadate resulted in a significant increase in 3H-thymidine uptake over cells exposed to only vanadate. Insulin alone will increase cell number and insulin with vanadate are synergistic in the stimulation of DNA synthesis, but the two together show no further increase in cell number over that produced by insulin alone. Thus, vanadate can increase progression from G1/G0 to S-phase, but cannot stimulate cells to divide. Studies designed to detect DNA damage and repair rather than S-phase DNA synthesis demonstrated that vanadate was not causing increased 3H-thymidine uptake by damaging DNA. Cell counts revealed that vanadate, while able to induce DNA synthesis, does not induce mitosis. Autoradiography and equilibrium sedimentation experiments demonstrated that gene amplification was not occurring. A known vanadate exchange inhibitor blocked the ability of vanadate to increase 3H-thymidine incorporation which is consistent with the idea that cellular internalization of vanadate is required for this effect to be seen. 86Rb+ uptake experiments demonstrate that the vanadate concentration inducing 50% inhibition of (Na+, K+)ATPase is nearly two orders of magnitude more concentrated that vanadate concentrations shown capable of inducing 3H-thymidine uptake. This strongly suggests that (Na+, K+)ATPase inhibition is not the central mechanism by which DNA synthesis is stimulated by vanadate. 相似文献