首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Abstract.  Misinformation erodes the legitimacy of any public debate. Since the start of human embryonic stem cell research deliberations in the USA, misinformation concerning the nature of human embryos, their availability for research, and the potential for using them to develop new medical therapies have been widespread and persistent. Basic facts, well understood by physicians and biologists, have been so misstated and misrepresented in the news media and political speeches that the general public has been put in a state of constant uncertainty. The solution to the present troubling condition is better education in the form of diligent, honest, and complete scientific disclosure by responsible scientists and physicians; and more care given to accurate reporting by news media. Several key aspects of newly emerging embryonic and non-embryonic stem cell technologies are defined and discussed as they relate to the debate over the use of human embryos for medical research. An important topic for consideration is how to disclose with clarity the scientific basis for human embryonic life. Thereafter, failings in proposed technologies for developing new therapies with human embryonic stem cells, that have been grossly under-reported, are examined. Finally, properties of adult stem cells are presented in contradistinction to embryonic stem cells, both in terms of adult stem cells as a scientifically better alternative to embryonic stem cells and in terms of the technological challenges that must be overcome to realize the potential of adult stem cells for new medical therapies.  相似文献   

2.
Mammalian embryonic stem cells have the potential to differentiate into all cell types of an adult individual. The culturing of human embryonic stem cells renders possible studies that were previously only available in animal models. Embryonic stem cells constitute a particularly attractive tool for studies of self-renewal, commitment, differentiation, maturation and cell-cell interaction. There is currently considerable hope that studies of embryonic stem cells will lead to new therapies; either by themselves, through cell replacement strategies, or by generating results assisting other fields of research to reach clinical results. There are, however, considerable challenges to be met before embryonic stem cells can be used in large-scale clinical trials.Stem cell research is an area that has given rise to much debate internationally, within science, law and politics as well as within philosophy and ethics. The ethical attitudes expressed in the public debate over stem cell research notably divide over three important distinctions: (1) Reproductive versus therapeutic cloning; (2) Using already existing embryos versus producing new embryos for research purposes; (3) Production of embryos from eggs and sperm versus through somatic-cell nuclear transfer. The potential medical benefits that may result from embryonic stem cell research arguably support a continued development in this area. However, some opponents argue that this research offends the (relative or absolute) moral status of an unborn human. Furthermore, the research would probably prove to be a both time-consuming and very expensive method for treating disease. Thus, the questions arise whom the new technique wouldbenefit and at what cost, if ever developed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
Human stem cell ethics: beyond the embryo   总被引:1,自引:0,他引:1  
Sugarman J 《Cell Stem Cell》2008,2(6):529-533
Human embryonic stem cell research has elicited powerful debates about the morality of destroying human embryos. However, there are important ethical issues related to stem cell research that are unrelated to embryo destruction. These include particular issues involving different types of cells used, the procurement of such cells, in vivo use of stem cells, intellectual property, and conflicts of interest.  相似文献   

4.
5.
Potential of embryonic and adult stem cells in vitro   总被引:3,自引:0,他引:3  
Recent developments in the field of stem cell research indicate their enormous potential as a source of tissue for regenerative therapies. The success of such applications will depend on the precise properties and potentials of stem cells isolated either from embryonic, fetal or adult tissues. Embryonic stem cells established from the inner cell mass of early mouse embryos are characterized by nearly unlimited proliferation, and the capacity to differentiate into derivatives of essentially all lineages. The recent isolation and culture of human embryonic stem cell lines presents new opportunities for reconstructive medicine. However, important problems remain; first, the derivation of human embryonic stem cells from in vitro fertilized blastocysts creates ethical problems, and second, the current techniques for the directed differentiation into somatic cell populations yield impure products with tumorigenic potential. Recent studies have also suggested an unexpectedly wide developmental potential of adult tissue-specific stem cells. Here too, many questions remain concerning the nature and status of adult stem cells both in vivo and in vitro and their proliferation and differentiation/transdifferentiation capacity. This review focuses on those issues of embryonic and adult stem cell biology most relevant to their in vitro propagation and differentiation. Questions and problems related to the use of human embryonic and adult stem cells in tissue regeneration and transplantation are discussed.  相似文献   

6.
The ability of human embryonic stem cells to self-renew and differentiate into all cell types of the body suggests that they hold great promise for both medical applications and as a research tool for addressing fundamental questions in development and disease. Here, we provide a concise, step-by-step protocol for the derivation of human embryonic stem cells from embryos by immunosurgical isolation of the inner cell mass.  相似文献   

7.
8.
Chen D  Lewis RL  Kaufman DS 《BioTechniques》2003,35(6):1253-1261
Human embryonic stem (ES) cells provide a unique model and an important resource to analyze early hematopoietic development. Other systems to study mammalian hematopoiesis include mouse ES cells, dissection of timed mouse embryos, or use of human postnatal hematopoietic tissue typically isolated from bone marrow or umbilical cord blood. All these models have particular strengths and weaknesses. The extensive studies on murine hematopoiesis provide a basis for work on the human developmental system. Since there are likely some important species differences, use of human ES cells now provides an optimal means to evaluate basic cellular and molecular mechanisms that regulate the beginning stages of human blood development, prior to derivation of hematopoietic stem cells (HSCs). Eventually, research on human ES cells may provide an alternative source of HSCs and other blood products for hematopoietic cell transplantation or other cellular therapies.  相似文献   

9.
Pluripotent human stem cells isolated from early embryos represent a potentially unlimited source of many different cell types for cell-based gene and tissue therapies [1-3]. Nevertheless, if the full potential of cell lines derived from donor embryos is to be realised, the problem of donor-recipient tissue matching needs to be overcome. One approach, which avoids the problem of transplant rejection, would be to establish stem cell lines from the patient's own cells through therapeutic cloning [3,4]. Recent studies have shown that it is possible to transfer the nucleus from an adult somatic cell to an unfertilised oocyte that is devoid of maternal chromosomes, and achieve embryonic development under the control of the transferred nucleus [5-7]. Stem cells isolated from such a cloned embryo would be genetically identical to the patient and pose no risk of immune rejection. Here, we report the isolation of pluripotent murine stem cells from reprogrammed adult somatic cell nuclei. Embryos were generated by direct injection of mechanically isolated cumulus cell nuclei into mature oocytes. Embryonic stem (ES) cells isolated from cumulus-cell-derived blastocysts displayed the characteristic morphology and marker expression of conventional ES cells and underwent extensive differentiation into all three embryonic germ layers (endoderm, mesoderm and ectoderm) in tumours and in chimaeric foetuses and pups. The ES cells were also shown to differentiate readily into neurons and muscle in culture. This study shows that pluripotent stem cells can be derived from nuclei of terminally differentiated adult somatic cells and offers a model system for the development of therapies that rely on autologous, human pluripotent stem cells.  相似文献   

10.
Riaz A  Zhao X  Dai X  Li W  Liu L  Wan H  Yu Y  Wang L  Zhou Q 《Cell research》2011,21(5):770-778
Mouse cloning from fertilized eggs can assist development of approaches for the production of "genetically tailored" human embryonic stem (ES) cell lines that are not constrained by the limitations of oocyte availability. However, to date only zygotes have been successfully used as recipients of nuclei from terminally differentiated somatic cell donors leading to ES cell lines. In fertility clinics, embryos of advanced embryonic stages are usually stored for future use, but their ability to support the derivation of ES cell lines via somatic nuclear transfer has not yet been proved. Here, we report that two-cell stage electrofused mouse embryos, arrested in mitosis, can support developmental reprogramming of nuclei from donor cells ranging from blastomeres to somatic cells. Live, full-term cloned pups from embryonic donors, as well as pluripotent ES cell lines from embryonic or somatic donors, were successfully generated from these reconstructed embryos. Advanced stage pre-implantation embryos were unable to develop normally to term after electrofusion and transfer of a somatic cell nucleus, indicating that discarded pre-implantation human embryos could be an important resource for research that minimizes the ethical concerns for human therapeutic cloning. Our approach provides an attractive and practical alternative to therapeutic cloning using donated oocytes for the generation of patient-specific human ES cell lines.  相似文献   

11.
Human embryonic stem cells have unique value for regenerative medicine, as they are capable of differentiating into a broad variety of cell types. Therefore, defining the signalling pathways that control early cell fate decisions of pluripotent stem cells represents a major task. Moreover, modelling the early steps of embryonic development in vitro may provide the best approach to produce cell types with native properties. Here, we analysed the function of key developmental growth factors such as Activin, FGF and BMP in the control of early cell fate decisions of human pluripotent stem cells. This analysis resulted in the development and validation of chemically defined culture conditions for achieving specification of human embryonic stem cells into neuroectoderm, mesendoderm and into extra-embryonic tissues. Importantly, these defined culture conditions are devoid of factors that could obscure analysis of developmental mechanisms or render the resulting tissues incompatible with future clinical applications. Importantly, the growth factor roles defined using these culture conditions similarly drove differentiation of mouse epiblast stem cells derived from post implantation embryos, thereby reinforcing the hypothesis that epiblast stem cells share a common embryonic identity with human pluripotent stem cells. Therefore the defined growth factor conditions described here represent an essential step toward the production of mature cell types from pluripotent stem cells in conditions fully compatible with clinical use ant also provide a general approach for modelling the early steps of mammalian embryonic development.  相似文献   

12.
Leite M 《Cell》2006,124(6):1107-1109
It has been one year since Brazil passed a law enabling scientists to work with human embryonic stem cells and to derive new stem cell lines from human embryos. But several major hurdles have put human embryonic stem cell research on hold.  相似文献   

13.
Human embryonic stem cells are derived from the inner cell mass of pre-implantation embryos. The cells have unlimited proliferation potential and capacity to differentiate into the cells of the three germ layers. Human embryonic stem cells are used to study human embryogenesis and disease modeling and may in the future serve as cells for cell therapy and drug screening. Human embryonic stem cells are usually isolated from surplus normal frozen embryos and were suggested to be isolated from diseased embryos detected by pre-implantation genetic diagnosis. Here we report the isolation of 12 human embryonic stem cell lines and their thorough characterization. The lines were derived from embryos detected to have aneuploidy by pre-implantation genetic screening. Karyotype analysis of these cell lines showed that they are euploid, having 46 chromosomes. Our interpretation is that the euploid cells originated from mosaic embryos, and in vitro selection favored the euploid cells. The undifferentiated cells exhibited long-term proliferation and expressed markers typical for embryonic stem cells such as OCT4, NANOG, and TRA-1-60. The cells manifested pluripotent differentiation both in vivo and in vitro. To further characterize the different lines, we have analyzed their ethnic origin and the family relatedness among them. The above results led us to conclude that the aneuploid mosaic embryos that are destined to be discarded can serve as source for normal euploid human embryonic stem cell lines. These lines represent various ethnic groups; more lines are needed to represent all populations.  相似文献   

14.
Legislative bodies in the international arena and in individual countries are actively engaged in developing policies regarding the establishment, distribution and use of human embryonic stem cells. Present and anticipated policies concerning research on human adult and embryonic stem cells of possible medical importance reflect the wide spectrum of popular views that range from complete rejection to enthusiastic support. Since the public debate concerning the use of human gametes or embryos for research purposes is not likely to abate anytime soon, all the more urgent becomes the quest for alternative approaches toward generating stem cells that are not embryonic and yet are pluripotent.  相似文献   

15.
Fadel HE 《Bioethics》2012,26(3):128-135
Stem cell research is very promising. The use of human embryos has been confronted with objections based on ethical and religious positions. The recent production of reprogrammed adult (induced pluripotent) cells does not - in the opinion of scientists - reduce the need to continue human embryonic stem cell research. So the debate continues. Islam always encouraged scientific research, particularly research directed toward finding cures for human disease. Based on the expectation of potential benefits, Islamic teachings permit and support human embryonic stem cell research. The majority of Muslim scholars also support therapeutic cloning. This permissibility is conditional on the use of supernumerary early pre-embryos which are obtained during infertility treatment in vitro fertilization (IVF) clinics. The early pre-embryos are considered in Islamic jurisprudence as worthy of respect but do not have the full sanctity offered to the embryo after implantation in the uterus and especially after ensoulment. In this paper the Islamic positions regarding human embryonic stem cell research and therapeutic cloning are reviewed in some detail, whereas positions in other religious traditions are mentioned only briefly. The status of human embryonic stem cell research and therapeutic cloning in different countries, including the USA and especially in Muslim countries, is discussed.  相似文献   

16.
Embryonic stem (ES) cell lines, derived from the inner cell mass (ICM) of blastocyst-stage embryos, are pluripotent and have a virtually unlimited capacity for self-renewal and differentiation into all cell types of an embryoproper. Both human and mouse ES cell lines are the subject of intensive investigation for potential applications in developmental biology and medicine. ES cells from both sources differentiate in vitro into cells of ecto-, endoand meso-dermal lineages, and robust cardiomyogenic differentiation is readily observed in spontaneously differentiating ES cells when cultured under appropriate conditions. Molecular, cellular and physiologic analyses demonstrate that ES cell-derived cardiomyocytes are functionally viable and that these cell derivatives exhibit characteristics typical of heart cells in early stages of cardiac development. Because terminal heart failure is characterized by a significant loss of cardiomyocytes, the use of human ES cell-derived progeny represents one possible source for cell transplantation therapies. With these issues in mind, this review will focus on the differentiation of pluripotent embryonic stem cells into cardiomyocytes as a developmental model, and the possible use of ES cell-derived cardiomyocytes as source of donor cells.  相似文献   

17.
The transplantation of islets isolated from donor pancreas has renewed the interest in cell therapy for the treatment of diabetes. In addition, the capacity that stem cells have to differentiate into a wide variety of cell types makes their use ideal to generate beta-cells for transplantation therapies. Several studies have reported the generation of insulin-secreting cells from embryonic and adult stem cells that normalized blood glucose values when transplanted into diabetic animal models. Finally, although much work remains to be done, there is sufficient evidence to warrant continued efforts on stem cell research to cure diabetes.  相似文献   

18.
Human embryonic stem cells (hESC) are undifferentiated cells derived from an early embryo that can grow in vitro indefinitely, while retaining their capability to differentiate into specialized somatic cell types. Over the last decade there has been great interest in derivation and culture of these cells, as they can potentially provide a supply of readily available differentiated cells and tissues of all types to be used for therapeutic purposes in cell transplantation in humans, as well as for other medical uses such as drug discovery. The source of hESC lines is usually excess human embryos from in vitro fertilization treatments, although novel ways of producing hESCs have been suggested recently. The actual methods of hESC derivation have not changed greatly since the first report by Thomson et al. in 1998 . However, the main emphasis over the last several years has been in finding defined conditions for derivation and culture of hESCs, because to enable the clinical use of hESC for cell transplantation, the use of animal derived biological components is no longer acceptable. For basic research, the aim is to replace even human derived materials with completely defined systems. In this paper we describe methods utilized in our laboratory for hESC derivation and describe two studies conducted in an attempt to improve derivation efficiency and to enable research outcomes to be achieved using fewer embryos.  相似文献   

19.
Devolder K 《Bioethics》2005,19(2):167-186
Discussions about the use and derivation of pluripotent human embryonic stem cells are a stumbling block in developing public policy on stem cell research. On the one hand there is a broad consensus on the benefits of these cells for science and biomedicine; on the other hand there is the controversial issue of killing human embryos. I will focus on the compromise position that accepts research on spare embryos, but not on research embryos ('discarded-created-distinction', from now on d-c-d). I will point out that this viewpoint is hard to maintain. The main focus is that the 'revealed beliefs' of its defenders are inconsistent with their 'professed beliefs', more specifically with their main argument, i.e. the potentiality argument. I will point out that (1) the defenders of d-c-d actually grant a relative moral status to the human embryo, (2) this moral status is dependent on internal and external criteria of potentiality, (3) potentiality seen as a variable value that also depends on external criteria cannot justify d-c-d, and (4) an approach to human embryonic stem cell-research that would also allow the use of research embryos is more compatible with the feelings, attitudes and values of those who currently defend d-c-d and, therefore, could lead to a broader consensus and to actions that alleviate individual human suffering.  相似文献   

20.
How has the development of human induced pluripotent stem cells (hiPSCs) modified the trajectory of stem cell research? Here, coauthorship networks of stem cell research articles and analysis of cell lines used in stem cell research indicate that hiPSCs are not replacing human embryonic stem cells, but instead, the two cell types are complementary, interdependent research tools. Thus, we conclude that a ban on funding for embryonic stem cell research could have unexpected negative ramifications on the nascent field of hiPSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号