首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transplacental transfer of maternal fatty acids is critical for fetal growth and development. In the placenta, a preferential uptake of fatty acids toward long-chain polyunsaturated fatty acids (LCPUFAs) has been demonstrated. Adipose differentiation-related protein (ADRP) is a lipid droplet-associated protein that has been ascribed a role in cellular fatty acid uptake and storage. However, its role in placenta is not known. We demonstrate that ADRP mRNA and protein are regulated by fatty acids in a human placental choriocarcinoma cell line (BeWo) and in primary human trophoblasts. LCPUFAs of the n-3 and n-6 series [arachidonic acid (20:4n-6), docosahexaenoic acid (22:6n-3), and eicosapentaenoic acid (20:5n-3)] were more efficient than shorter fatty acids at stimulating ADRP mRNA expression. The fatty acid-mediated increase in ADRP mRNA expression was not related to the differentiation state of the cells. Synthetic peroxisome proliferator-activated receptor and retinoic X receptor agonists increased ADRP mRNA level but had no effect on ADRP protein level in undifferentiated BeWo cells. Furthermore, we show that incubation of BeWo cells with LCPUFAs, but not synthetic agonists, increased the cellular content of radiolabeled oleic acid, coinciding with the increase in ADRP mRNA and protein level. These studies provide new information on the regulation of ADRP in placental trophoblasts and suggest that LCPUFA-dependent regulation of ADRP could be involved in the metabolism of lipids in the placenta.  相似文献   

2.
Arachidonic acid at 100 nM stimulated internalisation of 125I-leptin in human placental choriocarcinoma (BeWo) cells by 3-fold compared with controls. In contrast, eicosapentaenoic acid at similar concentration decreased internalisation of leptin by 2-fold. Use of ibuprofen and indomethacin (inhibitors of prostaglandin synthesis) inhibited the stimulatory effect of arachidonic acid. Prostaglandin E(2), a cyclooxygenase metabolite of arachidonic acid, stimulated internalisation of leptin by these cells. All these data demonstrate that stimulation of leptin internalisation by arachidonic acid in placental trophoblasts may be mediated via prostaglandin E(2).  相似文献   

3.
Placental transport of long chain polyunsaturated fatty acids is important for fetal growth and development. In order to examine the effects of leptin and insulin on fatty acid uptake by the placenta, placental choriocarcinoma (BeWo) cells were used. BeWo cells were incubated for 5h at 37 degrees C in the absence or presence of different concentrations of insulin (0.6, 60, and 100 ng) or leptin (10 ng) with 200 microM of various radiolabeled fatty acids (docosahexaenoic acid, arachidonic acid, eicosapentaenoic acid, and oleic acid, mixed with 1:1 bovine serum albumin (fat free). After incubation, the uptake and distribution of these fatty acids into different cellular lipid fractions were determined. The uptakes of oleic, eicosapentaenoic, arachidonic, and docosahexaenoic acids were 15.36+/-4.1, 19.95+/-3.6, 28.56+/-8.1, and 62.25+/-9.5 nmol/mg of protein, respectively, in BeWo cells. Incubation of these cells with insulin (0.6 or 60 ng/ml) or leptin (10 ng/ml) did not significantly alter uptake of any of these fatty acids (P>0.5). Insulin or leptin also did not affect beta oxidation of fatty acids in these cells. In contrast, leptin (10 ng/ml) and insulin (0.60 ng/ml)) stimulated the uptake of oleic acid (7.4+/-2.3 nmol/mg protein) in human adipose cells, SGBS cells by 1.28- and 2.48-fold (P<0.05), respectively. The distribution of fatty acids in different cellular lipid fractions was also not affected by these hormones. Our data indicate that unlike adipose tissue, fatty acid uptake and metabolism in placental trophoblasts is not regulated by insulin or leptin.  相似文献   

4.
The time course of incorporation of [14C]arachidonic acid and [3H]docosahexaenoic acid into various lipid fractions in placental choriocarcinoma (BeWo) cells was investigated. BeWo cells were found to rapidly incorporate exogenous [14C]arachidonic acid and [3H] docosahexaenoic acid into the total cellular lipid pool. The extent of docosahexaenoic acid esterification was more rapid than for arachidonic acid, although this difference abated with time to leave only a small percentage of the fatty acids in their unesterified form. Furthermore, uptake was found to be saturable. In the cellular lipids these fatty acids were mainly esterified into the phospholipid (PL) and the triacyglycerol (TAG) fractions. Smaller amounts were also detected in the diacylglycerol and cholesterol ester fractions. Almost 60% of the total amount of [3H]Docosahexaenoic acid taken up by the cells was esterified into TAG whereas 37% was in PL fractions. For arachidonic acid the reverse was true, 60% of the total uptake was incorporated into PL fractions whereas less than 35% was in TAG. Marked differences were also found in the distribution of the fatty acids into individual phospholipid classes. The higher incorporation of docosahexaenoic acid and arachidonic acid was found in PC and PE, respectively. The greater cellular uptake of docosahexaenoic acid and its preferential incorporation in TAG suggests that both uptake and transport modes of this fatty acid by the placenta to fetus is different from that of arachidonic acid.  相似文献   

5.
When cultured human choriocarcinoma (BeWo) cells are exposed to methotrexate, proliferation ceases and cells undergo a complex differentiative response that resembles development of normal trophoblast. Although thymidylate starvation has been shown to be causative in methotrexate-induced expression of syncytiotrophoblastic markers by BeWo cells, the role of purine deprivation is uncertain since previous studies utilized growth media containing exogenous purines. This work investigated the effects of hypoxanthine on methotrexate-induced cell enlargement, expression of placental alkaline phosphatase, and morphological differentiation to the syncytiotrophoblast-like phenotype. When methotrexate exposures (1 microM, 48 h) were conducted in a purine-free basal medium supplemented with dialyzed fetal bovine serum, RNA synthesis was greatly reduced and cell enlargement did not occur. Specific methods for removing purines (charcoal extraction and xanthine oxidase treatment) decreased the ability of serum to support cell enlargement during methotrexate exposures, whereas addition of hypoxanthine to culture fluids restored its ability to support maximal increases in cell mass, confirming that purines were the factors lost during dialysis. In contrast, morphologically differentiation to the syncytiotrophoblast-like phenotype and increased expression of placental alkaline phosphatase were unaffected by the availability of purines during exposure to methotrexate.  相似文献   

6.
Placental leucine aminopeptidase (P-LAP), a cystine aminopeptidase that is identical to insulin-regulated membrane aminopeptidase, hydrolyzes oxytocin, which results in the loss of oxytocin activity. We previously isolated genomic clones containing the human P-LAP promoter region, which included two sites homologous to the 10-bp-insulin responsive element (IRE) that was identified on the phosphoenolpyruvate carboxinase gene. We therefore postulated that insulin regulates P-LAP expression via these IREs and investigated this notion using BeWo choriocarcinoma trophoblastic cells cultured in the presence of insulin. Insulin increased P-LAP activity in a time- and dose-dependent manner. Physiological concentrations of insulin at 10(-7) M exhibited the most potent effect on P-LAP activity. Western blotting demonstrated that 10(-7) M insulin increased P-LAP protein levels. Semi-quantitative RT-PCR and Southern blotting showed that insulin also increased P-LAP mRNA, which was abrogated by prior exposure to cycloheximide. Luciferase assay did not reveal any regulatory regions within 1.1 kb upstream of the P-LAP gene that could explain the insulin-induced P-LAP mRNA accumulation. These findings indicate that insulin induces P-LAP expression in trophoblasts, and that it acts via de novo synthesis of other proteins, which partially contradicts our initial hypothesis.  相似文献   

7.
In the presence of methotrexate, cultured human choriocarcinoma (BeWo) cells undergo a differentiative response that resembles normal trophoblastic development. In the current study, the effects of cell number and population density on drug-induced conversion of BeWo cells from the cytotrophoblastlike to the syncytiotrophoblastlike phenotype were investigated using as markers of differentiation formation of "giant" cells, a process shown to require exogenous purines, and expression of placental (heat-stable) alkaline phosphatase. Giant cell formation, assessed by determination of cell volumes, was reduced in crowded cultures, and addition of hypoxanthine to growth media partially restored methotrexate-induced cell enlargement. Cellular uptake of methotrexate, assessed by following the loss of methotrexate from cell culture fluids during drug exposures, was two-threefold greater in sparsely populated than in densely populated cultures. Although the concentration of methotrexate in culture fluids of crowded cultures declined during exposures of 48 hr, the amount of extracellular drug remaining at 48 hr was well above the threshold for induction of the differentiative response. When culture population was held constant and population density was manipulated by varying the substratum available to cells, methotrexate-induced cell enlargement was inversely related to population density. Expression of placental alkaline phosphatase, salvage of exogenous hypoxanthine, and synthesis of RNA were also reduced at high population densities. These results indicate that expression of markers of methotrexate-induced differentiation of BeWo cells was inhibited in a density-dependent manner that may have been related to reduced cellular uptake of the inducing agent and of exogenous nutrients (purines) from culture fluids.  相似文献   

8.
Fatty acids regulate angiogenesis although no such information is available in first trimester placental trophoblast cells despite the fact that angiogenesis is a critical step involving these cells in early placentation. We investigated effects of different fatty acids on angiogenesis, their uptake and metabolism and expression of lipid metabolic genes in first trimester placental trophoblast cells using HTR-8/SVneo cell line. Fatty acid uptake by these cells exhibited a saturable kinetics. Uptake of AA was consistently greater compared with that of EPA and DHA throughout the incubation period of 180 min. Use of triacsin C, an inhibitor of acyl-CoA synthetase, significantly inhibited fatty acid uptake as well as fatty acid induced cell proliferation in these cells. Angiogenic effect (as measured by tube formation) of these fatty acids was in the following order DHA>EPA>AA>OA. Angiogenic effect of these fatty acids (AA, EPA, OA) was significantly decreased in ANGPTL4 knocked down cells, indicating ANGPTL4 may be involved at least in part in fatty acid induced angiogenesis. In addition, these fatty acids altered expression of several lipid metabolic genes such as ADRP, FABP4, FABP3, and COX-2 those are involved in angiogenesis. All these data suggest that fatty acids regulate angiogenic processes in these cells via different mechanisms.  相似文献   

9.
We have generated lines of BeWo cells that constitutively and stably express either histone H2B tagged with the green fluorescent protein (GFP), or the mitochondrial targeting sequence of subunit VIII of cytochrome c oxidase fused with a red fluorescent protein; one line has nuclei that fluoresce green, the other mitochondria that fluoresce red. Expression of these tagged proteins has no effect on the rates of DNA, RNA and protein synthesis, or on the amounts of human chorionic gonadotropin (hCG) secreted after treatment with forskolin. We used fluorescence-activated cell sorting (FACS) to monitor the extent of cell fusion (syncytialisation) between these two lines; fused cells are readily and accurately detected by their green/red fluorescence. This assay should prove useful in the investigation of the molecular mechanisms involved in trophoblast syncytialisation.  相似文献   

10.
BeWo human choriocarcinoma cells normally grow as cytotrophoblast cells. However, in the presence of 100 microM-forskolin or 5 mM-theophylline, these cells form syncytia similar to morphologically well differentiated syncytiotrophoblasts. We have examined the effect of syncytia formation on transferrin-receptor activity and recycling. Although cellular proliferation stops upon growth in the presence of forskolin or theophylline, the number of cell-surface transferrin-receptors unexpectedly increased 2-fold, whereas the total cellular number increased at most 15%. The rate of biosynthesis of the transferrin receptor as well as class I MHC glycoprotein did not change measurably during syncytium formation. The biosynthesis of human chorionic gonadotropin increased 35-fold after 30 h of growth in the presence of theophylline. The redistribution of the transferrin receptor in syncytia is maintained by a decreased rate constant of endocytosis (0.141 min-1 compared with 0.231 min-1 for control cells) and an increased rate constant of externalization (0.122 min-1 compared with 0.060 min-1 for control cells). These altered rates of endocytosis and externalization resulted in an increased rate of iron accumulation in the syncytia. Furthermore, the recycling time of the transferrin receptor decreased in cells grown in the presence of theophylline (14.6 min compared with 21.2 min in control cells).  相似文献   

11.
Fusion of placental villous cytotrophoblasts with the overlying syncytiotrophoblast is essential for the maintenance of successful pregnancy, and disturbances in this process have been implicated in pathological conditions such as pre-eclampsia and intra-uterine growth retardation. In this study we examined the role of the Rho GTPase family member RhoE in trophoblast differentiation and fusion using the BeWo choriocarcinoma cell line, a model of villous cytotrophoblast fusion. Treatment of BeWo cells with the cell permeable cyclic AMP analogue dibutyryl cyclic AMP (dbcAMP) resulted in a strong upregulation of RhoE at 24 h, coinciding with the onset of fusion. Using the protein kinase A (PKA)-specific cAMP analogue N(6)-phenyl-cAMP, and a specific inhibitor of PKA (14-22 amide, PKI), we found that upregulation of RhoE by cAMP was mediated through activation of PKA signalling. Silencing of RhoE expression by RNA interference resulted in a significant decrease in dbcAMP-induced fusion. However, expression of differentiation markers human chorionic gonadotrophin and placental alkaline phosphatase was unaffected by RhoE silencing. Finally, we found that RhoE upregulation by dbcAMP was significantly reduced under hypoxic conditions in which cell fusion is impaired. These results show that induction of RhoE by cAMP is mediated through PKA and promotes BeWo cell fusion but has no effect on functional differentiation, supporting evidence that these two processes may be controlled by separate or diverging pathways.  相似文献   

12.
13.
Thioesterase superfamily member 1 (Them1; synonyms acyl-CoA thioesterase 11 and StarD14) is highly expressed in brown adipose tissue and limits energy expenditure in mice. Them1 is a putative fatty acyl-CoA thioesterase that comprises tandem hot dog-fold thioesterase domains and a lipid-binding C-terminal steroidogenic acute regulatory protein-related lipid transfer (START) domain. To better define its role in metabolic regulation, this study examined the biochemical and enzymatic properties of Them1. Purified recombinant Them1 dimerized in solution to form an active fatty acyl-CoA thioesterase. Dimerization was induced by fatty acyl-CoAs, coenzyme A (CoASH), ATP, and ADP. Them1 hydrolyzed a range of fatty acyl-CoAs but exhibited a relative preference for long-chain molecular species. Thioesterase activity varied inversely with temperature, was stimulated by ATP, and was inhibited by ADP and CoASH. Whereas the thioesterase domains of Them1 alone were sufficient to yield active recombinant protein, the START domain was required for optimal enzyme activity. An analysis of subcellular fractions from mouse brown adipose tissue and liver revealed that Them1 contributes principally to the fatty acyl-CoA thioesterase activity of microsomes and nuclei. These findings suggest that under biological conditions, Them1 functions as a lipid-regulated fatty acyl-CoA thioesterase that could be targeted for the management of metabolic disorders.  相似文献   

14.
15.
Changes in the substratum anchorage of cells and nuclei were examined during methotrexate (MTX)-induced cytodifferentiation of BeWo human choriocarcinoma cells. During this process cytotrophoblast-like cells (CTLs) transform into giant mono- and multinucleated syncytiotrophoblast-like cells (STLs). Cells treated with MTX for 24 h exhibited significantly faster rates of substratum detachment by EDTA, trypsin-EDTA, EDTA-glycine, and DMSO than did uninduced controls. The decrease in cell-substratum adhesiveness occurred prior to the onset of morphological transformation. By 48 h, when morphological transformation was first observed, there had occurred a marked change in nuclear-cytoskeletal anchorage to the substratum, as evidenced by a difference in sensitivity of Triton-extracted STL and CTL monolayers to detachment by KI. STL monolayers were completely detached within 5 min of exposure to 0.3 M KI, while CTL monolayers remained firmly attached to the substratum for at least 3 h. KI-extracted residues were examined by electron microscopy and found to consist of nuclear shells attached to intermediate filaments. When cytoskeletal residues and KI-extracted proteins of STL and CTL cells were compared by two-dimensional polyacrylamide gel electrophoresis (PAGE), qualitative and quantitative differences were seen in a number of minor components. Thus the sensitivity of STL nuclear-cytoskeletal monolayers to removal by KI, an effective actin depolymerizing agent, may involve changes in the organization, stability, or interactions of actin with other components of the cytoskeletal framework.  相似文献   

16.
The oxygen dependence of oestrogen (oestrone and 17 beta-oestradiol) formation from androstenedione and testosterone was studied in term human placental microsomes and in cultured human choriocarcinoma cells (BeWo line). Incubations were performed under various steady-state oxygen concentrations and the production of oestrone and 17 beta-oestradiol quantitated by specific radioimmunoassays. The aromatization of C19-steroids by both placental microsomes and choriocarcinoma cells was shown to be oxygen dependent over a wide range of O2 concentrations. The results indicate that placental oxygenation may be a critical factor in determining oestrogen production in vivo. Therefore, impaired oestrogen biosynthesis due to hypoxia could be an important factor in a variety of physiological and pathological conditions.  相似文献   

17.
Human organic anion transporter 4 (hOAT4) belongs to a family of organic anion transporters that play critical roles in the body disposition of clinically important drugs, including anti-human immunodeficiency virus therapeutics, anti-tumor drugs, antibiotics, antihypertensives, and anti-inflammatories. hOAT4 is abundantly expressed in the placenta. In the current study, we examined the regulation of hOAT4 by pregnancy-specific hormones progesterone (P(4)) and 17beta-estradiol (E(2)) and by protein kinase C (PKC) in human placental BeWo cells. P(4) induced a time- and concentration-dependent downregulation of hOAT4 transport activity, whereas E(2) had no effect on hOAT4 function. The downregulation of hOAT4 activity by P(4) mainly resulted from a decreased cell surface expression without a change in total cell expression of the transporter, kinetically revealed as a decreased V(max) without significant change in K(m). Activation of PKC by phorbol 12,13-dibutyrate also resulted in an inhibition of hOAT4 activity through a decreased cell surface expression of the transporter. However, P(4)-induced downregulation of hOAT4 activity could not be prevented by treating hOAT4-expressing cells with the PKC inhibitor staurosporine. We concluded that both P(4) and activation of PKC inhibited hOAT4 activity through redistribution of the transporter from cell surface to the intracellular compartments. However, P(4) regulates hOAT4 activity by mechanisms independent of PKC pathway.  相似文献   

18.
The role of the Saccharomyces cerevisae peroxisomal acyl-coenzyme A (acyl-CoA) thioesterase (Pte1p) in fatty acid beta-oxidation was studied by analyzing the in vitro kinetic activity of the purified protein as well as by measuring the carbon flux through the beta-oxidation cycle in vivo using the synthesis of peroxisomal polyhydroxyalkanoate (PHA) from the polymerization of the 3-hydroxyacyl-CoAs as a marker. The amount of PHA synthesized from the degradation of 10-cis-heptadecenoic, tridecanoic, undecanoic, or nonanoic acids was equivalent or slightly reduced in the pte1Delta strain compared with wild type. In contrast, a strong reduction in PHA synthesized from heptanoic acid and 8-methyl-nonanoic acid was observed for the pte1Delta strain compared with wild type. The poor catabolism of 8-methyl-nonanoic acid via beta-oxidation in pte1Delta negatively impacted the degradation of 10-cis-heptadecenoic acid and reduced the ability of the cells to efficiently grow in medium containing such fatty acids. An increase in the proportion of the short chain 3-hydroxyacid monomers was observed in PHA synthesized in pte1Delta cells grown on a variety of fatty acids, indicating a reduction in the metabolism of short chain acyl-CoAs in these cells. A purified histidine-tagged Pte1p showed high activity toward short and medium chain length acyl-CoAs, including butyryl-CoA, decanoyl-CoA and 8-methyl-nonanoyl-CoA. The kinetic parameters measured for the purified Pte1p fit well with the implication of this enzyme in the efficient metabolism of short straight and branched chain fatty acyl-CoAs by the beta-oxidation cycle.  相似文献   

19.
Uptake of polyamines has been investigated extensively in many cells, but not in placenta, where the polyamine– polyamine oxidase system is supposed to have an immunoregulatory function in pregnancy. Due to the importance of the transfer in this tissue, we have started this study. JAR human placental choriocarcinoma cells in monolayer at confluency were used as a model for measuring the key enzymes of polyamine synthesis and interconversion, rate of uptake and efflux, and the polyamine content. Polyamines were taken up by JAR cells and released by an independent mechanism. Ornithine decarboxylase and spermidine acetyltransferase activities and the rate of transport in and out of the cell were much higher than in other cells, such as L1210 cells. However the systems used for uptake and release appear in many respects to be similar to those observed in L1210 cells, but different from others. The uptake appears to be regulated by an inhibitory protein. Moreover, protein kinase C appears to be involved in the process. The efflux also is regulated as in L1210 cells, through control of H+ and Ca2+ concentration. In conclusion, this study shows that, in JAR cells, ornithine decarboxylase and spermidine acetyltransferase activities were much higher than in other cells, and so was the rate of transport in and out of the cells. As a result, a much higher polyamine content was observed.  相似文献   

20.
The breast cancer resistance protein (BCRP) is abundant in the placenta and protects the fetus by limiting placental drug penetration. We hypothesize that pregnancy-specific hormones regulate BCRP expression. Hence, we examined the effects of progesterone (P4) and 17beta-estradiol (E2) on BCRP expression in the human placental BeWo cells. P4 and E2 significantly increased and decreased BCRP protein and mRNA, respectively. Likewise, treatment with P4 and E2 increased and decreased, respectively, fumitremorgin C-inhibitable mitoxantrone efflux activity of BeWo cells. Reduction in BCRP expression by E2 was abrogated by the estrogen receptor (ER) antagonist ICI-182,780. However, the progesterone receptor (PR) antagonist RU-486 had no effect on P4-mediated induction of BCRP. P4 together with E2 further increased BCRP protein and mRNA compared with P4 treatment alone. This combined effect on BCRP expression was abolished by RU-486, ICI-182,780, or both. Further analysis revealed that E2 significantly decreased ER beta mRNA and strongly induced PR(B) mRNA in a dose-dependent manner but had no effect on PR(A) and ER alpha. P4 alone had no significant effect on mRNA of ER alpha, ER beta, PR(A), and PR(B). E2 in combination with P4 increased PR(B) mRNA, but the level of induction was significantly reduced compared with E2 treatment alone. Taken together, these results indicate that E2 by itself likely downregulates BCRP expression through an ER, possibly ER beta. P4 alone upregulates BCRP expression via a mechanism other than PR. P4 in combination with E2 further increases BCRP expression, presumably via a nonclassical PR- and/or E2-mediated synthesis of PR(B).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号