首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inhibition of pyridoxal kinase by methylxanthines   总被引:2,自引:0,他引:2  
In the presence of saturating concentrations of adenosine triphosphate (ATP) and rate-limiting amounts of pyridoxal, theophylline was found to inhibit sheep brain pyridoxal kinase (EC 2.7.1.35) competitively. The apparent inhibition constant (Ki) of theophylline for pyridoxal kinase was determined as 8.7 mumol/l. Theophylline concentrations of up to 60 mumol/l did not affect pyridoxal phosphorylation in the presence of saturating amounts of pyridoxal and rate-limiting concentrations of ATP. Caffeine was less potent to inhibit pyridoxal kinase (Ki = 45 mumol/l) due to the presence of a methyl group on the 7 position of the xanthine ring structure. Theobromine showed only a weak inhibition of pyridoxal kinase (Ki = 453 mumol/l). The presence of a hydroxyethyl, hydroxypropyl or dihydroxypropyl group on the N7 position of theophylline completely abolished inhibition of pyridoxal kinase. Enprofylline (3-propylxanthine), a recently described bronchodilator, was also able to inhibit pyridoxal kinase with a Ki of 256 mumol/l.  相似文献   

2.
Scatchard plot analysis indicated that pyridoxal binds to hemoglobin more than twice as tightly as it does to serum albumin. Comparison of the formation constants for hemoglobin and albumin, using standard competitive binding equations, indicated that the distribution ratio for pyridoxal between erythrocytes and plasma should be 6.5:1. This distribution was approximately the same as that observed when pyridoxal was incubated with whole human blood, suggesting that these two proteins are the primary determinants of the pyridoxal distribution in whole blood. With in situ perfused rat liver the uptake of [3H] pyridoxal from the perfusate was reduced by the inclusion of erythrocytes in the perfusate. This was reflected in the decreased production of 4-pyridoxic acid by the perfused liver from 3.8% to 1.2% of the dose by the addition of erythrocytes to the perfusate. The major labeled metabolites found in the liver were pyridoxal phosphate, pyridoxamine phosphate, and 4-pyridoxic acid for both types of perfusion. In intact animals, reduction of the erythrocytes concentrations to hematocrits of 30-40% increased the recovery in the urine of 3H from administered [3H] pyridoxal from control values of 27-35% to 40-50% of the dose within 48 h. Half of the label in urinary metabolites was in 4-pyridoxic acid.  相似文献   

3.
M Khatami  Z Suldan  I David  W Li  J H Rockey 《Life sciences》1988,43(21):1725-1731
Nonenzymatic glycosylation of serum albumin was studied in the presence of naturally occurring metabolites, pyridoxal, pyridoxal phosphate and ascorbate/dehydroascorbate, and a hydrazine compound, aminoguanidine. Pyridoxal, pyridoxal phosphate, ascorbate and dehydroascorbate, at concentrations of 0.1 mM or greater, significantly inhibited the nonenzymatic glycosylation of albumin. Aminoguanidine was the most potent inhibitor of nonenzymatic glycosylation and 54% or 85% inhibition occurred when 5 or 50 mM aminoguanidine, respectively, was present in the incubation mixture containing 20 mM glucose. A major effect of aminoguanidine was to lower the free glucose concentration in the incubation mixture by a direct reaction with glucose as judged by thin layer chromatography. The present studies suggest that vital metabolites such as pyridoxal phosphate and ascorbate may be potentially important in controlling glucose-induced nonenzymatic glycosylation of proteins. Pyridoxal phosphate forms a Schiff base with proteins as does glucose and therefore may be a preferable drug, over aminoguanidine which is a hydrazine, for inhibiting the effects of glucose-induced nonenzymatic glycosylation.  相似文献   

4.
This paper deals with the synthesis of 3-pyrazolidone and the biochemical action of hydrazinopropionic acid. The latter compound is formed upon alkaline hydrolysis of 3-pyrazolidone. Hydrazinopropionic acid was found in vitro to be a very potent inhibitor of bacterial aminobutyrate transaminase as well as of aminobutyrate transaminase and glutamate decarboxylase from mouse brain. This inhibition was shown to occur despite the presence of high concentrations of pyridoxal phosphate in the incubation media. Injections of 20 mg hydrazinopropionic acid/kg into mice resulted in complete inhibition of aminobutyrate transaminase in brain and approximately 20 per cent inactivation of glutamate decarboxylase. This inhibition could not be prevented or antagonized by administration of pyridoxine to the animals. Addition of pyridoxal phosphate to homogenates of brain from animals treated with hydrazinopropionic acid also failed to reactivate the enzymes. The tentative conclusion reached from these results is that hydrazinopropionic acid has inhibitory action because of its close similarity to GABA with respect to molecular size, structural configuration and molecular charge distribution. This can be demonstrated by comparing a Dreiding model of hydrazinopropionic acid with that representing GABA.  相似文献   

5.
Previous studies from this laboratory have shown that pyridoxal-5-sulphate, the synthetic analogue of pyridoxal phosphate, causes epileptic seizures including tonic-clonic convulsions. These seizure activities are prevented or reversed by GABA or muscimol. In an attempt to delineate the biochemical basis of these seizure processes further, we have studied and shown that pyridoxal sulphate is a competitive inhibitor of glutamic acid decarboxylase. In addition, the chronic administration of pyridoxal sulphate was shown to reduce the concentration of pyridoxal phosphate in the cerebellum, the cerebrum, and basal ganglion, but not in the hippocampus. The activity of hippocampal glutamic acid decarboxylase was reduced after 1, 3, and 5 days of chronic application of pyridoxal sulphate. The inhibition was demonstrated, whether glutamic acid decarboxylase was assayed in the presence or absence of its coenzyme pyridoxal phosphate. Unlike findings in the hippocampus, the activity of glutamic acid decarboxylase in other brain regions was unaffected following chronic application of pyridoxal sulphate. The selective toxic effects of pyridoxal sulfate to the hippocampus, a brain area well known for its high susceptibility to seizure discharges, deserve additional indepth investigation.  相似文献   

6.
Pyridoxal kinase was purified 4760-fold from rat liver. The Km values for pyridoxine and pyridoxal were 120 and 190 microM respectively, and pyridoxine showed substrate inhibition at above 200 microM. Pyridoxamine 5-phosphate oxidase was also purified 2030-fold from rat liver, and its Km values for pyridoxine 5-phosphate and pyridoxamine 5-phosphate were 0.92 and 1.0 microM respectively. Pyridoxine 5-phosphate gave a maximum velocity that was 5.6-fold greater than with pyridoxamine 5-phosphate and showed strong substrate inhibition at above 6 microM. Among the tryptophan metabolites, picolinate, xanthurenate, quinolinate, tryptamine and 5-hydroxytryptamine inhibited pyridoxal kinase. However, pyridoxamine 5-phosphate oxidase could not be inhibited by tryptophan metabolites, and on the contrary it was activated by 3-hydroxykynurenine and 3-hydroxyanthranilate. Regarding the metabolism of vitamin B-6 in the liver, the effects of tryptophan metabolites that were accumulated in vitamin B-6-deficient rats after tryptophan injection were discussed.  相似文献   

7.
4-Benzoylbenzoic acid inhibits pyridoxal kinase activity competitively with respect to pyridoxal. The Ki was determined to be 5 x 10(-5) M. Binding studies showed that 4-benzoylbenzoic acid bound to pyridoxal kinase at a 1:1 molar ratio and with a dissociation constant (Kd) of 5.9 x 10(-5) M. Photoirradiation of pyridoxal kinase in the presence of a 10-fold excess of 4-benzoylbenzoic acid at pH 6.5 resulted in an irreversible loss of enzymatic activity; this photoinactivation was prevented by the presence of pyridoxal. Amino acid analysis revealed that 1 tyrosine residue/subunit was modified during photoinactivation. The presence of a tyrosine residue at the active site of pyridoxal kinase was confirmed by reaction with tetranitromethane. In the presence of 1 x 10(-4) M tetranitromethane, a complete loss of the kinase activity was observed after incubation at 25 degrees C for 8 min, with modification of a total of 3 tyrosine residues. The second-order rate constant (K2) of the reaction between the tyrosine residues and tetranitromethane was determined to be 53.3 s-1 M-1.  相似文献   

8.
W B Whitman  F R Tabita 《Biochemistry》1978,17(7):1282-1287
Ribulose 1,5-bisphosphate carboxylase isolated from Rhodospirillum rubrum was strongly inhibited by low concentrations of pyridoxal 5'-phosphate. Activity was protected by the substrate ribulose bisphosphate and to a lesser extent by other phosphorylated compounds. Pyridoxal phosphate inhibition was enhanced in the presence of magnesium and bicarbonate, but not in the presence of either compound alone. Concomitant with inhibition of enzyme activity, pyridoxal phosphate forms a Schiff base with the enzyme which is reversible upon dialysis and reducible with sodium borohydride. Subsequent to reduction of the Schiff base with tritiated sodium borohydride, tritiated N6-pyridoxyllysine could be identified in the acid hydrolysate of the enzyme. Only small amounts of this compound were present when the reduction was performed in the presence of carboxyribitol bisphosphate, an analogue of the intermediate formed during the carboxylation reaction. Therefore, it is concluded that pyridoxal phosphate modifies a lysyl residue close to or at the active site of ribulose bisphosphate carboxylase.  相似文献   

9.
The kinetics of the inhibition of mouse brain glutamate decarboxylase by pyri-doxaI-5′-phosphate oxime-O-acetic acid (PLPOAA) was studied. The inhibition was noncompetitive with regard to glutamic acid; it could be partially reversed by pyridoxal phosphate, but only when the concentration of the latter in the incubation medium was higher than that of pyridoxal-5′-phosphate oxime-O-acetic acid. The inhibition produced by aminooxyacetic acid, which is remarkably greater than that produced by PLPOAA, was also partially reversed only when an excess of pyridoxal phosphate was added. Both in the presence and in the absence of a saturating concentration of pyridoxal phosphate, the activity of the enzyme was decreased by PLPOAA at a 10?4m concentration to a value of about 50 per cent of the control value obtained without added coenzyme. This activity could not be further reduced even when PLPOAA concentration was increased to 5 × 10?3m . This same minimal activity of glutamate decarboxylase was obtained after dialysis of the enzymic preparation, or after incubation with glutamic acid in the cold followed by filtration through Sephadex G-25. The addition of pyridoxal phosphate to the dialysed or glutamic acid-treated enzyme restored the activity to almost the control values. PLPOAA did not affect the activity of glutamate decarboxylase from E. coli or that of DOPA decarboxylase and GABA transaminase from mouse brain. To account for the results obtained it is postulated that brain glutamate decarboxylase has two types of active site, one with firmly bound, non-dialysable pyridoxal phosphate and the other with loosely bound, dialysable coenzyme; PLPOAA behaves as a weak inhibitor probably because it can combine mainly with the loosely bound coenzyme site, while aminooxyacetic acid is a potent inhibitor probably because it can block both the ‘loosely bound coenzyme’ and the ‘firmly bound coenzyme’ sites.  相似文献   

10.
5-Enolpyruvyl shikimate 3-phosphate synthase catalyzes the reversible condensation of phosphoenolpyruvate and shikimate 3-phosphate to yield 5-enolpyruvyl shikimate 3-phosphate and inorganic phosphate. The enzyme is a target for the nonselective herbicide glyphosate (N-phosphonomethylglycine). In order to determine the role of lysine residues in the mechanism of action of this enzyme as well as in its inhibition by glyphosate, chemical modification studies with pyridoxal 5'-phosphate were undertaken. Incubation of the enzyme with the reagent in the absence of light resulted in a time-dependent loss of enzyme activity. The inactivation followed pseudo first-order and saturation kinetics with Kinact of 45 microM and a maximum rate constant of 1.1 min-1. The inactivation rate increased with increase in pH, with a titratable pK of 7.6. Activity of the inactive enzyme was restored by addition of amino thiol compounds. Reaction of enzyme with pyridoxal 5'-phosphate was prevented in the presence of substrates or substrate plus glyphosate, an inhibitor of the enzyme. Upon 90% inactivation, approximately 1 mol of pyridoxal 5'-phosphate was incorporated per mol of enzyme. The azomethine linkage between pyridoxal 5'-phosphate and the enzyme was reduced by NaB3H4. Tryptic digestion followed by reverse phase chromatographic separation resulted in the isolation of a peptide which contained the pyridoxal 5'-phosphate moiety as well as 3H label. By amino acid sequencing of this peptide, the modified residue was identified as Lys-22. The amino acid sequence around Lys-22 is conserved in bacterial, fungal, as well as plant enzymes suggesting that this region may constitute a part of the enzyme's active site.  相似文献   

11.
L Kopelovich  G Wolfe 《Biochemistry》1977,16(16):3721-3726
Whole tRNA preparation obtained from a human cell line (HT-29) of colon carcinoma and purified specific Escherichia coli tRNA were reacted with pyridoxal 5'-phosphate, reduced by sodium borohydride and digested with RNase A and snake venom phosphodiesterase. Two-dimensional chromatography of the pyridoxal 5'-phosphate treated tRNA digest showed that pyridoxal 5'-phosphate binds specifically to GMP, presumably in the form of a Schiff base with the exocyclic amino group of the purine. The reaction of pyridoxal 5'-phosphate with whole tRNA was competitively inhibited by N-acetoxy-2-acetylaminofluorene. This suggests that binding occurred primarily to the G20 base residue at the unpaired region of the dihydrouridine loop (Fujimura et al., 1972). The modification of tRNA by pyridoxal 5'-phosphate resulted in the inhibition, to varying extent (10-80%), of amino acid acceptance in the aminoacyl-tRNA synthetase reaction. Defects in codon recognition by pyridoxal 5'-phosphate modified amino acid acylated tRNAs in the presence of the corresponding guanine-containing polynucleotide triplets were observed by the ribosomal binding assay.  相似文献   

12.
Gamma-aminobutyric acid transaminase (GABA-T, EC 2.6.1.19) is a pyridoxal phosphate (PLP) dependent enzyme that catalyzes the degradation of gamma-aminobutyric acid. The kinetics of this reaction are studied in vitro, both in the absence, and in the presence of two inhibitors: gamma-vinyl GABA (4-aminohex-5-enoic acid), and a natural product, taurine (ethylamine-2-sulfonic acid). A kinetic model that describes the transamination process is proposed. GABA-T from Pseudomonas fluorescens is inhibited by gamma-vinyl GABA and taurine at concentrations of 51.0 and 78.5 mM. Both inhibitors show competitive inhibition behavior when GABA is the substrate and the inhibition constant (Ki) values for gamma-vinyl GABA and taurine were found to be 26 +/- 3 mM and 68 +/- 7 mM respectively. The transamination process of alpha-ketoglutarate was not affected by the presence of gamma-vinyl GABA, whereas, taurine was a noncompetitive inhibitor of GABA-T when alpha-ketoglutarate was the substrate. The inhibition dissociation constant (Kii) for this system was found to be 96 +/- 10 mM. The Michaelis-Menten constant (Km) in the absence of inhibition, was found to be 0.79 +/- 0.11 mM, and 0.47 +/- 0.10 mM for GABA and alpha-ketoglutarate respectively.  相似文献   

13.
Pyridoxal-P has been shown to be an activator of the spinach leaf ADP-glucose pyrophosphorylase. It has a higher apparent affinity than the physiological activator 3-phosphoglycerate but only activates the enzyme activity 6-fold whereas 3-phosphoglycerate gives a 25-fold activation. Reductive phosphopyridoxylation of the spinach leaf enzyme results in enzyme having less dependence on the presence of activator for activity. Labeled pyridoxal-P is incorporated into both the 54- and 51-kilodalton subunits of the spinach leaf enzyme. The incorporation is inhibited by the presence of either 3-phosphoglycerate or the allosteric inhibitor, inorganic phosphate, thus suggesting that pyridoxal phosphate is covalently bound to the allosteric activator site. The pyridoxal phosphate is bound to an epsilon-amino group of a lysine residue. The phosphopyridoxylated enzyme is more resistant to phosphate inhibition than the unmodified form. The modified 51-kDa subunit has been digested with trypsin, and the peptide containing the labeled pyridoxal phosphate has been purified via high performance liquid chromatography and sequenced. Comparison of this sequence with the deduced amino acid sequence of a rice endosperm cDNA clone indicates that the putative allosteric site of the 51-kDa subunit is close to the carboxyl-terminal. This is in contrast to what had been demonstrated for the position of the activator site of the Escherichia coli ADP-glucose pyrophosphorylase which was shown to be close to the amino-terminal of the subunit.  相似文献   

14.
A Basu  M J Modak 《Biochemistry》1987,26(6):1704-1709
We have labeled the large fragment of Escherichia coli DNA polymerase I (Pol I) with pyridoxal 5'-phosphate, a substrate binding site directed reagent for DNA polymerases [Modak, M. J. (1976) Biochemistry 15, 3620-3626]. A covalent attachment of pyridoxal phosphate to Pol I results in the loss of substrate binding as well as the polymerase activity. The inactivation was found to be strictly dependent on the presence of a divalent metal ion. Four moles of pyridoxal phosphate was found to react per mole of the enzyme, while in the presence of substrate deoxynucleoside triphosphate only 3 mol of pyridoxal phosphate was bound. To identify the substrate-protected site on the enzyme, tryptic peptides from enzyme labeled with pyridoxal phosphate and tritiated borohydride, in the presence and absence of substrate, were resolved on a C-18 reverse-phase column. A single peptide containing the substrate-protected site was identified and further purified. The amino acid composition and sequence analysis of this peptide revealed it to span residues 756-775 in the primary acid sequence of Pol I. Lys-758 of this sequence was found to be the site of the pyridoxal phosphate reaction. It is therefore concluded that Lys-758 is the site of binding for the metal chelate form of nucleotide substrates in E. coli DNA polymerase I.  相似文献   

15.
L R Stepp  L J Reed 《Biochemistry》1985,24(25):7187-7191
The pyruvate dehydrogenase multienzyme complex from bovine kidney and heart is inactivated by treatment with pyridoxal 5'-phosphate and sodium cyanide or sodium borohydride. The site of this inhibition is the pyruvate dehydrogenase (E1) component of the complex. Inactivation of E1 by the pyridoxal phosphate-cyanide treatment was prevented by thiamin pyrophosphate. Equilibrium binding studies showed that E1 contains two thiamin pyrophosphate binding sites per molecule (alpha 2 beta 2) and that modification of E1 increased the dissociation constant (Kd) for thiamin pyrophosphate about 5-fold. Incorporation of approximately 2.4 equiv of 14CN per mole of E1 tetramer in the presence of pyridoxal phosphate resulted in about a 90% loss of E1 activity. Radioactivity was incorporated predominantly into the E1 alpha subunit. Radioactive N6-pyridoxyllysine was identified in an acid hydrolysate of the E1-pyridoxal phosphate complex that had been reduced with NaB3H4. The data are interpreted to indicate that in the presence of sodium cyanide or sodium borohydride, pyridoxal phosphate reacts with a lysine residue at or near the thiamin pyrophosphate binding site of E1. This binding site is apparently located on the alpha subunit.  相似文献   

16.
Extracellular treatment of human erythrocytes with papain completely converted the chymotryptic 38,000-dalton fragment of Band 3 to the 29,000-dalton fragment and inhibited the transport of inorganic phosphate in the cells. The inhibition, however, was not complete, indicating the presence of two components in the anion-transport system: the one resistant to papain digestion and the other sensitive to the digestion. The latter activity is well correlated with the degradation of the 38,000-dalton fragment. The activity remaining in the cells treated with papain was markedly different from that of the control cells. The remaining activity was not inhibited by pyridoxal phosphate and dinitrostilbene-2,2'-disulfonic acid, potent inhibitors to the anion transport, whereas phenyl phosphate inhibited the activities of both papain-treated and control cells. The results indicate that the anion-transport system consists of multiple anion-binding sites and a part of the system which is sensitive to pyridoxal phosphate and dinitrostilbene-2,2'-disulfonic acid was located in the papain-sensitive portion of 38,000-dalton fragment. A possible model of the anion-transport system was presented.  相似文献   

17.
N F Phillips  N H Goss  H G Wood 《Biochemistry》1983,22(10):2518-2523
Pyruvate, phosphate dikinase from Bacteroides symbiosus is strongly inhibited by low concentrations of pyridoxal 5'-phosphate. The inactivation follows pseudo-first-order kinetics over an inhibitor concentration range of 0.1-2 mM. The inactivation is highly specific since pyridoxine and pyridoxamine 5'-phosphate, analogues of pyridoxal 5'-phosphate, which lack an aldehyde group, caused little or no inhibition even at high concentrations. The unreduced dikinase-pyridoxal 5'-phosphate complex displays an absorption maxima near 420 nm, typical for Schiff base formation. Following reduction of the Schiff base with sodium borohydride, N6-pyridoxyllysine was identified in the acid hydrolysate. When the enzyme was incubated in the presence of pyridoxal 5'-phosphate and reducing agent, the ATP/AMP, Pi/PPi, and pyruvate/phosphoenolpyruvate isotopic exchange reactions were inhibited to approximately the same extent, suggesting that the modification of the lysyl moiety causes changes in the enzyme that affect the reactivity of the pivotal histidyl residue. Phosphorylation of the histidyl group appears to prevent the inhibitor from attacking the lysine residue. On the other hand, addition of pyridoxal 5'-phosphate to the pyrophosphorylated enzyme promotes release of the pyrophosphate and yields the free enzyme which is subject to inhibition.  相似文献   

18.
Using a novel fluorimetric assay for pyridoxal phosphate phosphatase, human polymorphonuclear leucocytes were found to exhibit both acid an alkaline activities. The neutrophils were homogenised in isotonic sucrose and subjected to analytical subcellular fractionation by sucrose density gradient centrigfugation. The alkaline pyridoxal phosphate phosphatase showed a very similar distribution to alkaline phosphatase an was located solely to the phosphasome granules. Fractionation experiments on neutrophils treated with isotonic sucrose containing digitonin and inhibitor studies with diazotised sulphanilic acid and levamisole further confirmed that both enzyme activities had similar locations and properties. Acid pyridoxal phosphate phosphatase activity was located primarily to the tertiary granule with a partial azurophil distribution. Fractionation studies on neutrophils homogenised in isotonic sucrose containing digitonin and specific inhibitor studies showed that acid pyridoxal phosphate phosphatase and acid phosphatase were not the result of a single enzyme activity, Neutrophils were isolated from control subjects, patients with chronic granulocytic leukaemia and patients in the third trimester of pregnancy. The specific activities (munits/mg protein) of alkaline pyridoxal phosphate phosphatase an alkaline phosphatase varied widely in the three groups and the alterations occurred in a parallel manner. The specific activities of acid pyridoxal phosphate phosphatase and of acid phosphatase were similar in the three groups. These results, together with the fractionation experiments and inhibition studies strongly suggest that pyridoxal phosphate is a physiological substrate for neutrophil alkaline phosphatase.  相似文献   

19.
A spectrophotometric method with 3-methyl-2-benzothiazolone hydrazone hydrochloride was developed for the determination of pyridoxal and pyridoxal 5'-phosphate, and for the selective determination of each in the presence of the other. Pyridoxal and pyridoxal 5'-phosphate react with the reagent to yield the azine derivatives, which give characteristic absorption spectra. The highest extinction values are obtained when pyridoxal and pyridoxal 5'-phosphate are incubated at pH values of about 3.4 and 8.0 respectively; their maxima are at 430nm. (in 2.74x10(4)) and 380nm. (in 2.24x10(4)) respectively. The azine of pyridoxal is only slightly soluble under the neutral and alkaline conditions, whereas that of pyridoxal 5'-phosphate is substantially insoluble in the acid pH range. This difference in solubility of the azines made possible the selective determination of pyridoxal and pyridoxal 5'-phosphate. alpha-Oxoglutarate and pyruvate are among the substances shown not to interfere with the assay of pyridoxal; their derivatives absorb appreciably only at wavelengths below 420nm. For the assay of pyridoxal 5'-phosphate in the presence of these compounds measurement at 390nm. is necessary.  相似文献   

20.
Effects of pyridoxal 5'-phosphate on the activity of crude and purified acetylcholinesterase from cerebral hemispheres of adult rat brain were examined. Acetylcholinesterase was completely inactivated by incubation with 0.5 mM pyridoxal 5'-phosphate. The enzyme activity remained unaltered in the presence of analogs of pyridoxal 5'-phosphate, pyridoxal, pyridoxamine and pyridoxamine 5'-phosphate. The inhibition of acetylcholinesterase activity by pyridoxal 5'-phosphate appeared to be of a noncompetitive nature, as determined by Lineweaver-Burk analysis. The inhibitory effect of pyridoxal 5'-phosphate on acetylcholinesterase appeared to be a general one, as the activity of the enzyme from the brains of immature chick and egg-laying hen, and from different tissues of the adult male rats, exhibited a similar pattern in the presence of the inhibitor. The inhibitory effects of pyridoxal 5'-phosphate could be reversed upon exhaustive dialysis of the pyridoxal 5'-phosphate-treated acetylcholinesterase preparations. We propose that the effects of pyridoxal 5'-phosphate are due to its interaction with acetylcholinesterase, and that it can be employed as a useful tool for studying biochemical aspects of this important brain enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号