首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
From January through July of 2000, a study was conducted to evaluate clearance, immunologic responses, and potential shedding of Brucella abortus strain RB51 (SRB51) following ballistic or subcutaneous (SQ) vaccination of 7 mo old bison (Bison bison) calves. Ten bison calves were vaccinated SQ with 1.4 x 10(10) colony-forming units (CFU) of SRB51 and five calves were inoculated SQ with sterile 0.15 M sodium chloride. An additional 10 bison calves were ballistically inoculated in the rear leg musculature with 1 x 10(10) CFU of SRB51 and five calves were ballistically inoculated with an empty Biobullet. Serologic responses were monitored at 0, 2, 4, 6, 8, 12, 18, and 24 wk using the standard tube agglutination test and a dot-blot assay. Swabs from rectal, vaginal, nasal, and ocular mucosal surfaces, and blood were obtained for culture from all bison at 2, 4, 6, and 8 weeks post-inoculation to evaluate potential shedding by vaccinated bison or persistent septicemia. The superficial cervical lymph node was biopsied in eight ballistic and eight hand vaccinated bison at 6 or 12 wk to evaluate clearance of the vaccine strain from lymphatic tissues. Lymphocyte proliferative responses to irradiated SRB51 bacteria were evaluated in peripheral blood mononuclear cells (PBMC) at 4, 6, 8, 12, 18, and 24 wk after inoculation. Serum obtained from hand or ballistically vaccinated bison demonstrated antibody responses on the dot-blot assay that were greater than control bison (saline or empty Biobullet) at 2, 4, 6, and 8 wk after vaccination. Antibody titers of ballistically vaccinated bison did not differ (P > 0.05) from hand vaccinated bison at any sampling time. Blood samples obtained from all bison at 2, 4, 6 and 8 wk after vaccination were negative for SRB51. One colony of SRB51 was recovered from the vaginal swab of one ballistically vaccinated bison at 2 wk after vaccination. All other ocular, vaginal, nasal, and rectal swabs were culture negative for SRB51. Strain RB51 was recovered from superficial cervical lymph nodes of hand and ballistic vaccinated bison at 6 (two of four and two of four bison, respectively) and 12 wk (three of four and one of four bison, respectively). Serologic tests and bacterial culture techniques failed to demonstrate infection of nonvaccinated bison. Peripheral blood mononuclear cells obtained from hand vaccinated bison had greater (P < 0.05) proliferative responses to strain RB51 bacteria when compared to PBMC from nonvaccinated and ballistically vaccinated bison. Proliferative responses of PBMC from ballistically vaccinated bison did not differ (P > 0.05) at any sampling time from proliferative responses of PBMC from control bison. Serum alpha 1-acid glycoprotein concentrations, plasma fibrinogen, and total protein concentrations were not influenced by treatments. Ballistic delivery of SRB51 did not induce adverse effects or influence clearance of the vaccine strain. There were no proliferative responses of PBMC to SRB51 in bison ballistically vaccinated with SRB51; whereas bison inoculated with SRB51 by hand injection had greater proliferative responses than control or ballistically vaccinated bison. Our study suggests that ballistic delivery may require a greater dose of SRB51 to induce cell-mediated immune responses in bison that are comparable to those induced by hand injection, and that ballistic or hand delivery of 1 x 10(10) CFU of SRB51 is safe in bison calves.  相似文献   

2.
Brucella abortus strain RB51 is used as a vaccine because it induces antibodies that do not react on standard serologic tests for brucellosis allowing differentiation between vaccination and infection. Strain RB51 was evaluated in captive elk (Cervus elaphus) to determine if vaccination protected against abortion following experimental challenge. Thirty elk were vaccinated intramuscularly with 1.0 x 10(10) colony-forming units (CFU) of strain RB51 in March 1998. Fourteen of these were given a booster dose of 1.13 x 10(10) CFU exactly 1 yr later. All vaccinated elk seroconverted via a modified dot blot assay to strain RB51 with the booster group having higher titers (P < or = 0.001). Seventeen other elk served as unvaccinated controls. All elk were bred and determined pregnant using pregnancy-specific protein B analysis. Elk were challenged in March 2000 with 1.1 x 10(7) CFU of B. abortus strain 2308 administered intraconjunctivally and all elk seroconverted to strain 2308. Fifteen of 17 control elk aborted; 16 of 16 elk given a single vaccination aborted (P = 0.44); and 13 of 14 elk given a booster aborted (P = 0.86). There were two viable calves in the control group and one in the booster group. Strain 2308 was recovered from fetuses and nonviable calves in all groups. Based on the results of this and other studies, the use of strain RB51 to prevent abortion in elk cannot be recommended.  相似文献   

3.
In two studies conducted from October 1999 to March 2000 and December 2000 to April 2001, adult black bears (Ursus americanus) were orally inoculated with 1.4-3.1 x 10(10) colony-forming units (CFU) of Brucella abortus strain RB51 (SRB51, n=12) or 2 ml of 0.15 M NaCl solution (saline, n=11). We did not detect a difference (P>0.05) in antibody titers to SRB51 in serum obtained before vaccination, at 8 wk after vaccination, or at necropsy at 21 or 23 wk after vaccination between SRB51-vaccinated and nonvaccinated bears. The SRB51 vaccine strain was recovered from tissues obtained at necropsy from one of six SRB51-vaccinated bears in study 1, but none of the six SRB51-vaccinated bears in study 2. Vaccination of black bears with SRB51 did not appear to influence (P>0.05) reproductive performance.  相似文献   

4.
In a study conducted from January to August 2000, elk (Cervus elaphus) were vaccinated with Brucella abortus strain RB51 (SRB51, n = 6) or injected with 0.15 M NaCl solution (n = 3) at approximately 6 mo of age. Beginning at 2 wk and continuing to 25 wk after vaccination, SRB51-vaccinated elk had greater antibody responses (P < 0.05) to SRB51 when compared to nonvaccinated elk. Peripheral blood mononuclear cells (PBMC) from SRB51-vaccinated elk had greater (P < 0.05) proliferative responses to SRB51 at 18 wk after vaccination when compared to responses of nonvaccinated elk. Strain RB51 was recovered from blood samples of all vaccinates at 2 wk, and three of six vaccinates at 4 wk after vaccination. The SRB51 vaccine strain was recovered from the superficial cervical lymph node of all vaccinates sampled at 6 wk after vaccination. but not from lymph node samples obtained from vaccinates at 12 or 18 wk after vaccination. At 34 wk after vaccination, SRB51 was recovered from the bronchial lymph node of one of five vaccinates but not from other tissues. Strain RB51 was not recovered at any time from samples obtained from nonvaccinated elk. This study suggests that following vaccination with SRB51, elk remain bacteremic for a prolonged period of time, rapidly develop high antibody titers, and are slower to develop detectable proliferative responses in PBMC when compared to responses of cattle or bison (Bison bison).  相似文献   

5.
Protection against Brucella abortus induced abortion and infection provided by strain 19 (S19) vaccination was evaluated in American bison (Bison bison). Forty-eight pregnant bison were manually inoculated (MI) with S19 vaccine, 44 were ballistically inoculated (BI) with an absorbable hollow pellet containing lyophilized S19, and 46 were manually injected with buffered saline as non-vaccinated controls (NVC). All bison were Brucella spp. seronegative prior to the experiment, in the second trimester of pregnancy, and were randomly assigned to experimental groups. Approximately 60 days post-vaccination, abortions were observed in the vaccinated bison. Brucella abortus strain 19 was recovered from a bison that had recently aborted, her fetus, and from 11 of 12 other aborted fetuses. Fifty-eight percent (53 of 92) of vaccinated bison aborted, and no abortions were observed in the NVC bison. One cow aborted during her second post-vaccinal pregnancy and S19 was identified from the dam and fetus indicating that chronic S19 infections can occur in bison. Positive antibody titers were present 10 mo post-vaccination in 73% (66 of 91) of the bison. Thirteen mo post-vaccination, 30 MI vaccinates, 27 BI vaccinates, and 30 NVC bison were challenged during the second trimester of pregnancy with 1 x 10(7) CFU of B. abortus strain 2308 via bilateral conjunctival inoculation. Protection against abortion was 67% (P less than or equal to 0.0001) for vaccinated bison compared to 4% in NVC. Protection against B. abortus infection was determined to be 39% (P greater than or equal to 0.001) for vaccinates and 0% (zero of 30) for NCV. Persistent antibody titers, vaccine induced abortions, and chronic S19 infections indicate that the S19 vaccine doses used in this study are not suitable for pregnant bison.  相似文献   

6.
Bovine brucellosis is a serious zoonotic disease affecting some populations of Rocky Mountain elk (Cervus elaphus nelsoni) and bison (Bison bison) in the Greater Yellowstone Area, USA. The fear that elk and/or bison may spread Brucella abortus to livestock has prompted efforts to reduce or eliminate the disease in wildlife. Brucella abortus strain RB51 (RB51) vaccine has recently been approved for use in cattle. Unlike strain 19 vaccine, RB51 does not cause false positive reactions on standard brucellosis serologic tests. If effective, it may become the vaccine of choice for wildlife. In February 1995, 45 serologically negative female elk calves were trapped and taken to the Sybille Wildlife Research and Conservation Education Unit near Wheatland, Wyoming, USA. In May 1995, 16 of these elk calves were hand-vaccinated with 1 x 10(9) colony forming units (CFU) of RB51, 16 were vaccinated with 1 x 10(8) CFU RB51 by biobullet, and 13 were given a saline placebo. The elk were bred in fall of 1996 and they were challenged with 1 x 10(7) CFU of B. abortus strain 2308 by intraconjunctival inoculation in March 1997. Thirteen (100%) control elk aborted, 14 (88%) hand-vaccinated elk aborted, and 12 (75%) biobullet vaccinated elk aborted or produced nonviable calves. These results suggest that a single dose of 1 x 10(8) to 1 x 10(9) CFU RB51 does not provide significant protection against B. abortus induced abortion in elk. However, the vaccine appears to be safe at this dose and additional study may reveal a more effective RB51 vaccine regimen for elk.  相似文献   

7.
Two groups of six, non-brucellosis vaccinated, brucellosis seronegative pregnant American bison (Bison bison) were individually challenged with 1 x 10(7) colony forming units (CFU) of Brucella abortus strain 2308. Three days after challenge, each bison group was placed in a common paddock with six non-vaccinated, brucellosis susceptible, pregnant domestic heifers. In a parallel study, two groups of six susceptible, pregnant cattle were simultaneously challenged with the identical dose as the bison and each group was placed with six susceptible cattle in order to compare bison to cattle transmission to that observed in cattle to cattle transmission. Blood samples were collected from bison and cattle weekly for at least 1 mo prior to exposure to B. abortus and for 180 days post-exposure (PE). Sera from the bison and cattle were evaluated by the Card, rivanol precipitation, standard plate agglutination, standard tube agglutination, cold complement fixation tube, warm complement fixation tube, buffered acidified plate antigen, rapid screening, bovine conjugated enzyme linked immunosorbent assay, bison or bovine conjugated enzyme linked immunosorbent assay, and the hemolysis-in-gel techniques for the presence of antibodies to Brucella spp. At the termination of pregnancy by abortion or birth of a live-calf, quarter milk samples, vaginal swabs, and placenta were collected from the dam. Rectal swabs were collected from live calves, and mediastinal lymph nodes, abomasal contents and lung were taken at necropsy from aborted fetuses for culture of Brucella spp. These tissues and swabs were cultured on restrictive media for the isolation and identification of Brucella spp. Pathogenesis of brucellosis in bison was studied in an additional group of six pregnant bison which were challenged with 1 x 10(7) CFU of B. abortus strain 2308. One animal was euthanatized each week PE. Tissues were collected at necropsy and later examined bacteriologically and histologically. Lesions of brucellosis in bison did not significantly differ grossly or histologically from those in cattle. There were six abortions and two nonviable calves in the bison group, as compared to nine abortions in the 12 similarly inoculated cattle. As determined by bacterial isolations, transmission of B. abortus from bison to cattle (five of 12 susceptible cattle became infected) did not differ statistically from cattle to cattle transmission (six of 12 susceptible cattle became infected) under identical conditions. No single serologic test was constantly reliable to diagnosing B. abortus infected bison for 8 wk PE.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Some of the elk (Cervus elaphus nelsoni) of the Greater Yellowstone Area (Wyoming, Idaho, Montana; USA) are infected with Brucella abortus, the bacterium that causes bovine brucellosis. Brucella abortus strain RB51 vaccine is being considered as a means to control B. abortus induced abortions in cow elk. However, the most probable vaccination strategies for use in free-ranging elk might also result in some bull elk being inoculated, thus, it is important to insure that the vaccine is safe in these animals. In the winter of 1995, 10 free-ranging bull elk calves were captured, tested for B. abortus antibodies, and intramuscularly inoculated with 1.0 x 10(9) colony forming units (CFU) of B. abortus strain RB51. Blood was collected for hemoculture and serology every 2 wk after inoculation for 14 wk. Beginning 4 mo postinoculation and continuing until 10 mo postinoculation elk were serially euthanized, necropsied, and tissues collected for culture and histopathology. These elk cleared the organism from the blood within 6 wk and from all tissues within 10 mo. No lesions attributable to B. abortus were found grossly and only minimal to mild lymphoplasmacytic epididymitis was found in a few elk on histologic examination. In a separate study, six adult bull elk from Wind Cave National Park (South Dakota, USA) were taken to a ranch near Carrington (North Dakota, USA). Three were orally inoculated with approximately 1.0 x 10(10) CFU of RB51 and three were inoculated with corn syrup and saline. Ninety days post-inoculation semen was examined and cultured from these bulls. Strain RB51 was not cultured from their semen at that time. There were no palpable abnormalities in the genital tract and all elk produced viable sperm. Although they contain small sample sizes, these studies suggest that B. abortus strain RB51 is safe in bull elk.  相似文献   

9.
Pathology of brucellosis in bison from Yellowstone National Park   总被引:2,自引:0,他引:2  
Between February 1995 and June 1999, specimens from seven aborted bison (Bison bison) fetuses or stillborn calves and their placentas, two additional placentas, three dead neonates, one 2-wk-old calf, and 35 juvenile and adult female bison from Yellowstone National Park (USA) were submitted for bacteriologic and histopathologic examination. One adult animal with a retained placenta had recently aborted. Serum samples from the 35 juvenile and adult bison were tested for Brucella spp. antibodies. Twenty-six bison, including the cow with the retained placenta, were seropositive, one was suspect, and eight were seronegative. Brucella abortus biovar 1 was isolated from three aborted fetuses and associated placentas, an additional placenta, the 2-wk-old calf, and 11 of the seropositive female bison including the animal that had recently aborted. Brucella abortus biovar 2 was isolated from one additional seropositive adult female bison. Brucella abortus was recovered from numerous tissue sites from the aborted fetuses, placentas and 2-wk-old calf. In the juvenile and adult bison, the organism was more frequently isolated from supramammary (83%), retropharyngeal (67%), and iliac (58%) lymph nodes than from other tissues cultured. Cultures from the seronegative and suspect bison were negative for B. abortus. Lesions in the B. abortus-infected, aborted placentas and fetuses consisted of necropurulent placentitis and mild bronchointerstitial pneumonia. The infected 2-wk-old calf had bronchointerstitial pneumonia, focal splenic infarction, and purulent nephritis. The recently-aborting bison cow had purulent endometritis and necropurulent placentitis. Immunohistochemical staining of tissues from the culture-positive aborted fetuses, placentas, 2-wk-old calf, and recently-aborting cow disclosed large numbers of B. abortus in placental trophoblasts and exudate, and fetal and calf lung. A similar study with the same tissue collection and culture protocol was done using six seropositive cattle from a B. abortus-infected herd in July and August, 1997. Results of the bison and cattle studies were similar.  相似文献   

10.
Brucella abortus strain RB51 is a laboratory-derived rough mutant of virulent B. abortus strain 2308 used as a vaccine because it induces antibodies that do not react on standard brucellosis serologic tests. Strain RB51 vaccine was evaluated in pregnant captive elk (Cervus elaphus) to determine (1) if it induced abortion and (2) if it protected against abortion following subsequent challenge. The time period of this study (February-June, 1998) was similar to field conditions where elk are vaccinated and possibly exposed to B. abortus. Fourteen elk were randomly and equally divided into vaccinated and control groups. The vaccinated group was vaccinated intramuscularly with 1.03 x 10(10) colony-forming units (CFU) of strain RB51 and seroconverted postvaccination. Antibodies to strain RB51 were detected by a modification of an existing dot-blot assay. Both groups were challenged 40 days postvaccination with 9.8 x 10(6) CFU of B. abortus strain 2308 administered intraconjunctivally. The first abortion occurred 38 days postchallenge. Abortion occurred in all control elk and in five of seven vaccinated elk 5 to 12 wk postchallenge (P = 0.23). Mixed strain RB51 and 2308 infections were present in fetuses and vaginas from the vaccinated group whereas only strain 2308 was cultured from control group fetuses and vaginal swabs. Further evaluation of strain RB51 will be necessary to determine if it will be safe and efficacious in free-ranging pregnant elk.  相似文献   

11.
The Brucella abortus vaccine strain RB51 (SRB51) is being considered for use in the management of bnucellosis in wild bison (Bison bison) and elk (Cervus elaphus) populations in the Greater Yellowstone Area (USA). Evaluation of the vaccines safety in non-target species was considered necessary prior to field use. Between June 1998 and December 1999, ground squirrels (Spermophilus richardsonii, n = 21), deer mice (Peromyscus maniculatus, n = 14), prairie voles (Microtus ochrogaster, n = 21), and ravens (Corvus corax, n = 13) were orally inoculated with SRB51 or physiologic saline. Oral and rectal swabs and blood samples were collected for bacteriologic evaluation. Rodents were necropsied at 8 to 10 wk and 12 to 21 wk post inoculation (PI), and ravens at 7 and 11 wk PI. Spleen, liver and reproductive tissues were collected for bacteriologic and histopathologic evaluation. No differences in clinical signs, appetite, weight loss or gain, or activity were observed between saline- and SRB51-inoculated animals in all four species. Oral and rectal swabs from all species were negative throughout the study. In tissues obtained from SRB51-inoculated animals, the organism was isolated from six of seven (86%) ground squirrels, one of six (17%) deer mice, none of seven voles, and one of five (20%) ravens necropsied at 8, 8, 10, and 7 wk PI, respectively. Tissues from four of seven (57%) SRB51-inoculated ground squirrels were culture positive for the organism 12 wk PI; SRB51 was not recovered from deer mice, voles. or ravens necropsied 12, 21, or 11 wk, respectively, PI. SRB51 was not recovered from saline-inoculated ground squirrels, deer mice, or voles at any time but was recovered from one saline-inoculated raven at necropsy, 7 wk PI, likely attributable to contact with SRB51-inoculated ravens in an adjacent aviary room. Spleen was time primary tissue site of colonization in ground squirrels, followed by the liver and reproductive organs. The results indicate oral exposure to SRB51 does not produce morbidity or mortality in ravens, ground squirrels, deer mice, or prairie voles.  相似文献   

12.
Brucella abortus strain RB51 is an approved brucellosis vaccine for use in cattle that may have potential as an oral vaccine for use in elk (Cervus elaphus) and/or bison (Bison bison). This study was designed to determine effects of strain RB51 on deer mice (Peromyscus maniculatus), a nontarget species that could have access to treated baits in a field situation. In February 1994, 90 mice were orally dosed or intraperitoneally injected with 1 x 10(8) colony forming units strain RB51 and 77 controls were similarly dosed with sterile saline. At weekly intervals through early April 1994, 4 to 6 mice from each group were euthanized, gross necropsies performed, spleens and uteruses cultured, and tissues examined histologically. All orally inoculated mice cleared the infection by 6 wk post-inoculation (PI). While most of the injected mice cleared the infection by 7 wk PI, a few required 9 wk. There were minimal adverse effects attributable to strain RB51. Apparently, strain RB51 would not negatively impact P. maniculatus populations if it were used in a field situation. Also, deer mice appear to be able to clear the vaccine in 6 to 9 wk, thus the probability of these mice transmitting the vaccine to other animals is low.  相似文献   

13.
Preventing pregnancy in brucellosis-infected bison (Bison bison) provides a potential means of preventing transmission of disease. To determine whether a gonadotropin-releasing hormone (GnRH) vaccine was effective in reducing pregnancy in bison and to study the safety of injecting GnRH in pregnant bison, a study was conducted at the Idaho Fish and Game Wildlife Health Laboratory in Caldwell, Idaho (USA). Four pregnant and two nonpregnant female bison were given a single injection of GnRH vaccine, and five pregnant adult females were given a sham injection that contained only adjuvant. Three of the GnRH-vaccinated bison that were pregnant at the time of vaccination delivered healthy calves. One treated bison had dystocia that resulted in a dead calf. All control bison delivered healthy calves. After calving, females of both groups were exposed to two bulls. Treated bison were palpated 6 wk after exposure to the bulls, and blood was drawn for pregnancy-specific protein B analysis. The six treated bison were not pregnant. The sham-treated bison became pregnant and delivered viable calves. This study demonstrates that a single dose of GnRH vaccine is effective in preventing pregnancy in female bison for at least 1 yr.  相似文献   

14.
Nine (four female, five male) captive adult Rocky Mountain bighorn sheep (Ovis canadensis) contracted brucellosis caused by Brucella abortus biovar 4 as a result of natural exposure to an aborted elk (Cervus elaphus) fetus. Clinical signs of infection were orchitis and epididymitis in males and lymphadenitis and placentitis with abortion in females. Gross pathologic findings included enlargement of the testes or epididymides, or both, and yellow caseous abscesses and pyogranulomas of the same. Brucella abortus biovar 4 was cultured in all bighorn sheep from a variety of tissues, including testes/epididymides, mammary gland, and lymph nodes. All bighorn sheep tested were positive on a variety of standard Brucella serologic tests. This is the first report of brucellosis caused by B. abortus in Rocky Mountain bighorn sheep. It also provides evidence that bighorn sheep develop many of the manifestations ascribed to this disease and that infection can occur from natural exposure to an aborted fetus from another species. Wildlife managers responsible for bighorn sheep populations sympatric with Brucella-infected elk or bison (Bison bison) should be cognizant of the possibility of this disease in bighorn sheep.  相似文献   

15.
A variable-number tandem repeat (VNTR) protocol targeting 10 loci in the Brucella abortus genome was used to assess genetic diversity among 366 field isolates recovered from cattle, bison, and elk in the Greater Yellowstone Area (GYA) and Texas during 1998 to 2011. Minimum spanning tree (MST) and unweighted-pair group method with arithmetic mean (UPGMA) analyses of VNTR data identified 237 different VNTR types, among which 14 prominent clusters of isolates could be identified. Cattle isolates from Texas segregated into three clusters: one comprised of field isolates from 1998 to 2005, one comprised of vaccination-associated infections, and one associated with an outbreak in Starr County in January 2011. An isolate obtained from a feral sow trapped on property adjacent to the Starr County herd in May 2011 clustered with the cattle isolates, suggesting a role for feral swine as B. abortus reservoirs in Starr County. Isolates from a 2005 cattle outbreak in Wyoming displayed VNTR-10 profiles matching those of strains recovered from Wyoming and Idaho elk. Additionally, isolates associated with cattle outbreaks in Idaho in 2002, Montana in 2008 and 2011, and Wyoming in 2010 primarily clustered with isolates recovered from GYA elk. This study indicates that elk play a predominant role in the transmission of B. abortus to cattle located in the GYA.  相似文献   

16.
Four juvenile male wolves (Canis lupus) each received an oral dose of 1.6-1.7 x 10(12) colony-forming units of Brucella abortus biovar 1 isolated from a bison (Bison bison) in Wood Buffalo National Park (Canada), and two others served as negative controls. Infected wolves did not show clinical signs of disease but did develop high Brucella antibody titers. Small numbers of B. abortus were excreted sporadically in feces until day 50 postinoculation (PI). Very small numbers of the bacterium were isolated from urine of only one wolf late on the same day that it was infected, and very small numbers of colonies of B. abortus were obtained from buccal swabs of three wolves for up to 48 hr PI. Two infected wolves euthanized 6 mo after the start of the experiment had no lesions, and colonies of B. abortus were isolated from thymus and most major lymph nodes. The other two infected wolves euthanized 12 mo after the start of the experiment had no lesions, and smaller numbers of brucellae were recovered from fewer lymph nodes compared with the wolves killed 6 mo earlier. The sporadic excretion of very small numbers of brucellae by the wolves was insignificant when compared with the infective dose for cattle. Brucella abortus, brucellosis, Canis lupus, pathogenesis, serology, wolf.  相似文献   

17.
A number of serological tests were compared for the detection of antibodies to Brucella abortus in bison (Bison bison). The performance of the fluorescence polarization assay (FPA) in both the preliminary evaluation and a subsequent blind validation indicated that this test was the most suitable for serological diagnosis of brucellosis in bison. The sensitivity and specificity in the preliminary evaluation were 92.1% and 99.4%, respectively. The sensitivity and specificity in a subsequent blind study were 96.3% and 97.6%, respectively. In a double blind study conducted on bison vaccinated with B. abortus strain 19, the data suggests that the FPA can differentiate bison infected with B. abortus from bison vaccinated with B. abortus strain 19. Both the indirect immunoassay (IELISA) and the competitive immunoassay (CELISA) performed nearly as well as the FPA. The buffered antigen plate agglutination test (BPAT) and the complement fixation test (CFT) did not perform as well as the FPA, CELISA or the IELISA in both studies. The FPA is a homogeneous assay eliminating the washing steps and reducing incubation to minutes rather than hours saving on time, equipment, materials, reagents and cost. These attributes, together, with its excellent sensitivity and specificity make the FPA an attractive test for the detection of serum antibodies to Brucella abortus in bison.  相似文献   

18.
Brucella abortus strain RB51 (SRB51) is a new cattle vaccine that is approved for use in the U.S. for prevention of brucellosis. At the present time, other countries are implementing or considering the use of SRB51 vaccine in their brucellosis control programs. In the current study, the effect of three stabilizing media, two fill volumes (1 and 3 ml), and three storage temperatures (-25, 4 and 25 degrees C) on the viability of lyophilized SRB51 over a 52 week period was determined. The effects of three concentrations of bacteria (5 x 10(8), 1 x 10(9), or 5 x 10(9) cfu/ml) and two storage temperatures (4 or 25 degrees C) on viability of liquid SRB51 vaccine were also determined. For lyophilized strain RB51 vaccine, fill volume did not influence viability (P> 0.05) during lyophilization. Although fill volume did not influence viability during storage in World Health Organization (WHO) media or media containing both WHO and Lactose Salt (LS) media, 1 ml fill volumes of SRB51 in LS media had greater (P< 0.05) viability when compared to 3 ml fill volumes. Lyophilized SRB51 vaccine stored at 25 degrees C had a more rapid decline in viability (P< 0.05) when compared to vaccine stored at -25 or 4 degrees C. With the exception of the 3-ml fill volumes of LS media, all three stabilizing media were similar in maintaining viability of SRB51 at -25 degrees C storage temperatures. However, when compared to WHO or WHO/LS media, stabilization in LS media was associated with a more rapid decline in viability during storage at 4 or 25 degrees C (P< 0.05). Initial SRB51 concentration in liquid vaccine did not influence (P> 0.05) viability during storage at 4 or 25 degrees C. When compared to liquid SRB51 vaccine stored at 25 degrees C, storage at 4 degrees C was associated with a slower decline in viability (P< 0.05) during 12 weeks of storage. Biochemical and morphological characteristics of SRB51 were stable under the storage conditions utilized in the present study. This study suggests that viability of SRB51 can be readily maintained during storage as a lyophilized or liquid brucellosis vaccine.  相似文献   

19.
Brucella abortus remains a threat to the health and well-being of livestock in states bordering the Greater Yellowstone Area. During the past several years, cohabitation of infected wildlife with cattle has jeopardized the brucellosis-free status of Idaho, USA; Wyoming, USA; and Montana, USA. Current livestock B. abortus vaccines have not proven to be efficacious in bison (Bison bison) or elk (Cervus elaphus nelsoni). One problem with the lack of vaccine efficacy may stem from the failure to understand wildlife immune responses to vaccines. In an attempt to understand their immune responses, bison were vaccinated with eukaryotic DNA expression vectors encoding the Brucella periplasmic protein, bp26, and the chaperone protein, trigger factor (TF). These DNA vaccines have previously been shown to be protective against Brucella infection in mice. Bison were immunized intramuscularly at weeks 0, 2, and 4 with bp26 and TF DNA vaccines plus CpG adjuvant or empty vector (control) plus CpG. Blood samples were collected before vaccination and at 8, 10, and 12 wk after primary vaccination. The results showed that bison immunized with bp26 and TF DNA vaccines developed enhanced antibody, proliferative T cell, and interferon-gamma (IFN-γ) responses upon in vitro restimulation with purified recombinant bp26 or TF antigens, unlike bison immunized with empty vector. Flow cytometric analysis revealed that the percentages of CD4(+) and CD8(+) T lymphocytes from the DNA-vaccinated groups were significantly greater than they were for those bison given empty vector. These data suggest that DNA vaccination of bison may elicit strong cellular immune responses and serve as an alternative for vaccination of bison for brucellosis.  相似文献   

20.
Brucellosis is endemic in free-ranging elk (Cervus elaphus) and bison (Bison bison) in the Greater Yellowstone Area (GYA; USA). It is possible that an oral brucellosis vaccine could be developed and disseminated in the GYA to reduce disease transmission. Should this occur, non-target species other than elk and bison may come in contact with the vaccine resulting in morbidity or mortality. To assess biosafety, bighorn sheep (Ovis canadensis; n = 10), pronghorn (Antilocapra americana; n = 9), mule deer (Odocoileus hemionus; n = 11), moose (Alces alces shirasi; n = 10), and coyotes (Canis latrans; n = 24) were given a single oral dose of at least 1.0 x 10(10) colony-forming units of Brucella abortus strain RB51 vaccine (RB51). Animals were randomly divided into vaccinated and control groups. Ungulates were captured, blood sampled, and swabs taken from the nares, rectum, and vagina for bacterial culture on day 0, 42, and 84 post-inoculation (PI). On day 42, the vaccinated group became a control group and vice versa in a crossover design. Blood and swab samples were taken from coyotes on days 0, 14, 28, and 42 PI. There was no crossover for the coyote study. Two coyotes from each group were also euthanized and cultured for RB51 on days 42, 84, 168, and 336 PI. Blood samples were analyzed for hematologic changes and antibodies to RB51 using a modified dot-blot assay. No morbidity or mortality as a result of vaccination was observed in any animal. There were no differences in hematologic parameters at any time for ungulate species; vaccinated coyotes had higher hematocrit, hemoglobin, and eosinophil counts (P < or = 0.006). All individuals, except some moose, seroconverted to RB51. Strain RB51 was cultured from oropharyngeal lymph nodes from one coyote 42 days PI and from a moose 117 days PI. This study suggested that a single oral dose of RB51 was safe in these species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号