首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Behavioral responses of Marthasterias glacialis to low molecular compounds were studied under laboratory conditions. Feeding postures, stomach eversions and locomotion of initially inactive animals can be released with very dilute solutions of lactic acid, neutral 2 and 3 carbon amino acids, L isomers of 4 to 6 carbon neutral amino acids, L-arginine, acetylcholine iodide, and several of their analogues. Hunger was induced by temporary withdrawal of food. Responsiveness to feeding stimuli was controlled with L-cysteine and L-leucine. The lowest behavioral thresholds for the most effective feeding stimuli were 3 X 10(-11) mol/l for both enantiomers of lactic acid, 10(-8) mol/l for L-proline and both enantiomers of cysteine and 10(-7) mol/l for acetylcholine iodide and some of the effective neutral amino acids. The behavioral threshold values for chemical stimuli differed by a factor between 30 and 100 in different sea stars. The test concentration was 3 X 10(-7) mol/l, the level at which L-cysteine elicited a complete feeding response from all the animals. Structure-activity comparison of substances less effective than the control stimulus was thus possible. The behavioral threshold of fully effective substances was determined later. The independence of receptor mechanisms for different substances can be inferred as: L-cysteine controlled responsiveness is not always accompanied by responsiveness to neutral amino acids. Autotomized marthasterias arms crawled after stimulation with lactic acid, cysteine, and acetylcholine iodide but did not respond to the feeding stimuli betaine and L-proline. An animal became inactive if electric shocks were paired with L-proline or L-cysteine emanating from an 'electric' food model.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
1. We derived audiograms from recordings of multiunit activity in the torus semicircularis of 10 males and 6 females of the spring peeper from central Missouri, USA. We used free-field stimulation with tone bursts that had temporal properties similar to typical advertisement calls and that ranged in frequency from 500-6000 Hz. 2. Audiograms from different electrode positions in the same animal had the same general shape. There was no evidence of tonotopy. 3. Audiograms showed two regions of maximal sensitivity: a low-frequency region (500-700 Hz); and a high-frequency region (2000-4000 Hz). Absolute thresholds and frequencies of maximum sensitivity varied considerably from individual to individual. 4. Audiograms derived from all individuals of each sex indicated that in the high-frequency region, corresponding to the frequency range of advertisement calls, males were more broadly tuned than females. However, tuning in both sexes was relatively weak, and the data predict relatively little selectivity in behavioral responses over the entire range of variation in frequency of the advertisement call in local populations. 5. The results are discussed in terms of behavioral experiments with both males and females from the same populations in central Missouri. We show that merely summarizing the audiograms based on estimates of minimum thresholds of a population or species may mask significant individual differences in tuning. Moreover, most behavioral studies are conducted at playback levels considerably above threshold. For these reasons, behavioral selectivity is not always accurately predicted by inspection of "average" audiograms.  相似文献   

3.
Stability of depressor responses evoked by long-lasting continuous and intermittent stimulation of the aortic nerve was studied in rabbits anaesthetized with urethane. Continuous stimulation produces blood pressure falls whose stability at low frequencies (1-10 cycles/sec) ranges from 91 to 86%. With rise of the stimulation frequency stability is decreased : at 500 cycles/sec, it amounts to 19%. Intermittent stimulation consisting in switching excitation on and off every 10 sec increases stability of depressor responses and at 500 cycles/sec, it is significantly higher than stability of effects produced by continuous stimulation. Following transection of aortic nerves, stability is increased at all frequencies of continuous stimulation and at all but the lowest frequency of intermittent stimulation. Vagotomy performed after section of the aortic nerves does not significantly affect the changes in stability observed after severing the aortic afferents. It is suggested that at high frequencies of stimulation, stability of depressor responses is reduced by homosynaptic depression. During intermittent stimulation, its effect is counteracted by post-tetanic changes occurring at intervals when the stimulation is switched off. The increase in stability after section of aortic nerves is probably related to its effect on excitability of the vasomotor centres.  相似文献   

4.
1. The unconditioned feeding response of the mottled sculpin, Cottus bairdi, was used to measure threshold sensitivity of the lateral line system to a vibrating sphere as a function of stimulus position (i.e., sphere near head, trunk or tail) and vibration frequency. In addition, extracellular recording techniques were used to measure threshold sensitivity curves for posterior lateral line nerve fibers for the same stimulus positions used for measuring trunk sensitivity in behavioral measurements. 2. For all stimulus positions, behaviorally-measured threshold sensitivity was relatively independent of vibration frequency from 10 to 100 Hz when defined in terms of water acceleration, rather than velocity or displacement. Best thresholds for stimuli placed 15 mm away from the head were around -75 dB re: 1m/s(2), approximately 20 dB less than that for stimuli placed at the same distance near the tail. Trunk sensitivity was intermediate. 3. Physiologically-measured threshold sensitivity, in terms of acceleration, was also relatively independent of of frequency from 10 to 100 Hz in most fibers. A smaller number of fibers showed a decline in acceleration sensitivity after 10-30 Hz, with the rate of decline being equivalent to equal velocity sensitivity. Best sensitivity of all fibers fell between -40 and -70 dB re: 1m/s (2). 4. These results indicate that (a) behavioral thresholds are based on acceleration-sensitive endorgans--most likely lateral line canal (rather than superficial) neuromasts, (b) behavioral performance can be accounted for on the basis of information from a single population of fibers, and (c) sensitivity varies along the fish's body in a manner that corresponds to the size and distribution of neuromasts.  相似文献   

5.
The spectral-correlation analysis of biopotentials in the cortex and some other brain structures (the anteroventral thalamic nucleus, dorsal hippocampus, lateral geniculate body, mid-brain reticular formation), in chronic experiments on alert rabbits, revealed that during electrical stimulation of thalamic mid-line nuclei within the ranges of 1-3, 4-7 and 8-10 c/s, there occured a rearrangement of the EEG frequencies; a dominant, narrow-band peak at the stimulation frequency, appeared. The coherence of the biopotentials of different cortical areas, of the cortex and subcortical formations increased during the stimulation at the frequency of the stimulation, reaching maximum values between the potentials of the visual and sensorimotor cortical areas.  相似文献   

6.
Local blood flow was measured with radioactive microspheres in 9 near-term ewes 2 min into successive high and low voltage electrocortical activity states. In an additional 8 animals the umbilical blood flow was measured using an electromagnetic flow-probe on the common umbilical vein. The microsphere data indicated that the blood flow during low and high voltage electrocortical activity was 185 +/- 22 ml/min per kg of fetus (SEM) and 165 +/- 22 ml/min per kg of fetus (P less than 0.01) respectively. Using the electromagnetic flowprobe the average flow during low and high voltage electrocortical activity was 203 +/- 14 ml/min per kg of fetus and 196 +/- 13 ml/min per kg of fetus (P less than 0.05) respectively. We observed that the decrease in the umbilical blood flow preceded the change from low to high voltage electrocortical activity by approximately 1 min. In that time the flow is significantly lower than it was during the preceding measurements taken during the low voltage electrocortical activity periods. This depression was still significantly lower at 3 min into the high voltage electrocortical activity whereas at 5 min into the high voltage state it was elevated to near average values. We conclude that the umbilical blood flow, on the average, is lower in high voltage states than it is in low voltage states and that this change precedes the switch from low to high voltage electrocortical activity.  相似文献   

7.
Odontocetes are believed to receive sounds primarily through the pan bone region of the lower jaw although much variation in jaw morphology exists among species. In order to further examine this jaw hearing hypothesis we tested the head receiving sensitivity and directional hearing of a beluga whale, Delphinapterus leucas. Hearing thresholds were measured using auditory evoked potentials (AEPs). The subject proved to have highly directional hearing for far-field click stimuli similar to that of bottlenose dolphins and more directional than the harbor porpoise. For near-field jawphone stimulation, the beluga's lowest thresholds were found when click stimuli were presented at the rostrum tip (76 dB re: 1 μPa) although thresholds from the pan bone region stimulation were only 2–3 dB higher. Stimulation at and behind the external auditory meatus were elevated by nearly 20 dB. Stimuli presented at the surface of the melon did not generate detectable AEP responses, although sound levels of up to 142 dB were employed. Latencies of responses were generally shortest for meatal stimulation and increased with distance. Results support a shaded receiver model for odontocete hearing but how received sounds are filtered and shaded may depend on species. We also suggest that odontocete hearing thresholds are not necessarily lowest through the pan bone region. Rather, hearing pathway variations appear to exist among odontocete species and are at least partially dependent on head morphology.  相似文献   

8.
The electric fish, Eigenmannia, is able to discriminate the sign of the frequency difference, Df, between a neighbor's electric organ discharges (EODs) and its own. The fish lowers its EOD frequency for positive Dfs and raises its frequency for negative Dfs to minimize jamming of its electrolocation ability by a neighbor's EODs of similar frequency. This jamming avoidance response (JAR) is controlled by a group of 'sign-selective' neurons in the prepacemaker nucleus (PPN) that is located at the boundary of the midbrain and the diencephalon (Fig. 1). Extracellular recordings from a total of 35 neurons revealed a great similarity between behavioral and neuronal response properties: 1. All neurons fired vigorously for negative Dfs and were almost silent for positive Dfs, regardless of the orientation of the jamming stimulus, and thus discriminated the sign of Df unambiguously (Fig. 2). 2. In accordance with behavioral observations, individual neurons failed to discriminate the sign of Df when the jamming stimulus had the same field geometry as the signal mimicking the animal's own EOD (Fig. 3). 3. Df magnitudes which evoke strongest JARs, usually 4 to 8 Hz, also induced most vigorous responses in sign-selective neurons (Fig. 5). 4. Behavioral and neuronal thresholds for the detection of small jamming signals were similar. Threshold for sign selectivity was reached when the amplitude ratio of the jamming signal to the EOD mimic, measured near the head surface, was 0.001. This value corresponds to a maximal temporal disparity (a necessary cue for performing a correct JAR) of 1 to 2 microseconds for signals received by the two sides of the body in a transverse jamming field (Fig. 7). 5. The effects of two jamming fields, offered orthogonally to each other, may interact nonlinearly at the behavioral as well as at the neuronal level. A positive Df presented in one field may suppress behavioral and neuronal responses to modulations of the sign of Df in the other field (Fig. 8c).  相似文献   

9.
Repeated postnatal caffeine treatment of rat pups led to transient developmental changes in cortical epileptic afterdischarges. To know if physiological cortical functions are also affected transcallosal evoked potentials were studied. Rat pups of the Wistar strain were injected daily with caffeine (10 or 20 mg/kg s.c.) from postnatal day (P) 7 to P11, control siblings received saline. Cortical interhemispheric responses were tested at P12, 18, 25 and in young adult rats. Amplitude of initial monosynaptic components was evaluated in averaged responses. Single pulses as well as paired and frequency (five pulses) stimulations were used. Developmental rules - highest amplitude of responses in 25-day-old rats, potentiation with paired and frequency stimulation present since P18 - were confirmed. Caffeine-treated rats exhibited transient changes: single responses were augmented in P25 if high stimulation intensity was used, paired-pulse and frequency responses were higher in experimental than in control animals at P12, the opposite change was observed in 18- and more markedly in 25-day-old rats. No significant changes were found in adult animals, monosynaptic transcallosal responses represent a simple and robust system. The developmental profile of described changes did not exactly correspond to changes in epileptic afterdischarges supporting the possibility that afterdischarges did not arise from early monosynaptic components of responses. In spite of transient nature of changes they can reflect delayed or more probably modified brain development.  相似文献   

10.
The song of the male bushcricket Ancistrura nigrovittata consists of a sequence of verses. Each verse comprises a syllable group, plus, after about 400 ms a single syllable serving as a trigger for the female response song. The carrier frequency of the male song spectrum peaks at around 15 kHz, while the female song peaks at around 27 kHz. The thresholds of female responses to models of male songs are lowest for song frequencies between 12 and 16 kHz and therefore correspond to the male song spectrum. The threshold curve of the female response to the trigger syllable at different frequencies has the same shape as the tuning for the syllable group. Phonotactic thresholds of male Ancistrura nigrovittata to synthetic female responses at different frequencies are lowest between 24 and 28 kHz and thereby correspond to the female song spectrum and clearly differ from female response thresholds. Activity of the tympanic fibre bundle of both sexes is most sensitive between 15 and 35 kHz and therefore not specifically tuned to the partner's song. Individual behavioural thresholds have their minimum within 10 dB of the values of tympanic thresholds.  相似文献   

11.
Summary The responses of single sensory afferent nerve fibres were recorded from small nerve bundles of the intramandibular nerve of the chicken following thermal and mechanical stimulation of the beak. Thermoreceptors, nociceptors and mechanoreceptors were identified and their responses characterized.Of the thermoreceptors identified 11 units were classified as cold receptors, which responded to cooling the receptive field by increasing the discharge rate and had conduction velocities in the range 0.83 to 4.4 m/s. Only one warm unit was identified.Two classes of nociceptors were identified: mechano-thermal (polymodal) nociceptors and high threshold mechanical nociceptors. The discharge characteristics and stimulus-response curves of both types were described. While the mechanothermal nociceptors were exclusively C-fibres (c.v. 0.4 to 1.86 m/s), the high threshold mechanoreceptors contained both C and A delta fibres (c.v. 1 to 5.5 m/s). Thermal response thresholds for the mechano-thermal units ranged from 41 to 50 °C with mechanical thresholds of 2 to over 50 g. Mechanical thresholds for the high threshold units ranged from 5 to over 50 g.The mechanoreceptors were either slowly or rapidly adapting. The pattern of response together with stimulus-response curves were presented for the slowly adapting units. Conduction velocities of the slowly adapting units varied from 0.7 to 20 m/s and mechanical threshold from 0.1 to 2 g. On the basis of their response to a vibrating, and a ramp-and-hold mechanical stimulus, the rapidly adapting units were divided into Herbst and Grandry units with only the Herbst units responding accurately to the vibrating stimulus. Both units had fibres conducting in the 50 m/s range with thresholds in the 0.1 to 10 g range.The results are discussed in relation to the receptors found in other avian species and mammalian peripheral sensory afferents.Abbreviations c.v. conduction velocity - RA rapidly adapting (receptors) - SA slowly adapting (receptors)  相似文献   

12.
The present study investigated the contrast dependency of visual evoked potentials (VEPs) elicited by phase reversing sine wave gratings of varying spatial frequency. Sixty-five trials were recorded for each of 54 conditions: 6 spatial frequencies (0.8, 1.7, 2.8, 4.0, 8.0 and 16.0 c deg(-1)) each presented at 9 contrast levels (2, 4, 8, 11, 16, 23, 32, 64 and 90%). At the lowest spatial frequency, the waveform contained mainly one peak (P1). For spatial frequencies up to 8 c deg(-1), P1 had a characteristic magnocellular contrast response: it appeared at low contrasts, increased rapidly in amplitude with increasing contrast, and saturated at medium contrasts. With increasing spatial frequency, an additional peak (N1) gradually became the more dominant component of the waveform. N1 had a characteristic parvocellular contrast response: it appeared at medium to high contrasts, increased linearly in amplitude with increasing contrast, and did not appear to saturate. The data suggest the contribution of both magnocellular and parvocellular responses at intermediate spatial frequencies. Only at the lowest and highest spatial frequencies tested did magnocellular and parvocellular responses, respectively, appear to dominate.  相似文献   

13.
Passive immunization with monoclonal antibodies (mAbs) against (+)-methamphetamine (METH) is being evaluated for the treatment of METH addiction. A human/mouse chimeric form of the murine anti-METH mAb7F9 has entered clinical trials. This study examined the effects of murine mAb7F9 on certain addiction-related behavioral effects of METH in rats as measured using intracranial self-stimulation (ICSS). Initial studies indicated that acute METH (0.1-0.56 mg/kg, s.c.) lowered the minimal (threshold) stimulation intensity that maintained ICSS. METH (0.3 mg/kg, s.c.) also blocked elevations in ICSS thresholds (anhedonia-like behavior) during spontaneous withdrawal from a chronic METH infusion (10 mg/kg/day x 7 days). In studies examining effects of i.v. pretreatment with mAb7F9 (at 30, 100, or 200 mg/kg), 200 mg/kg blocked the ability of an initial injection of METH (0.3 mg/kg, s.c.) to reduce baseline ICSS thresholds, but was less capable of attenuating the effect of subsequent daily injections of METH. MAb7F9 (200 mg/kg) also produced a small but significant reduction in the ability of METH (0.3 mg/kg, s.c.) to reverse METH withdrawal-induced elevations in ICSS thresholds. These studies demonstrate that mAb7F9 can partially attenuate some addiction-related effects of acute METH in an ICSS model, and provide some support for the therapeutic potential of mAb7F9 for the treatment of METH addiction.  相似文献   

14.
The response properties of 322 single units in the electroreceptive midbrain (lateral mesencephalic nucleus, LMN) of the thornback ray, Platyrhinoidis triseriata, were studied using uniform and local electric fields. Tactile, visual, or auditory stimuli were also presented to test for multimodality. Most LMN electrosensory units (81%) are silent in the absence of stimulation. Those with spontaneous activity fired irregularly at 0.5 to 5 impulses/s, the lower values being more common. Two units had firing rates greater than 10/s. Midbrain electrosensory units are largely phasic, responding with one or a few spikes per stimulus onset or offset or both, but the adaptation characteristics of some neurons are complex. The same neuron can exhibit phasic or phasic-tonic responses, depending upon orientation of the electric field. Tonic units without any initial phasic over-shoot were not recorded. Even the phasic-tonic units adapt to a step stimulus within several seconds. Unit thresholds are generally lower than 0.3 microV/cm, the weakest stimulus delivered, although thresholds as high as 5 microV/cm were recorded, Neuronal responses reach a maximum, with few exceptions, at 100 microV/cm and decrease rapidly at higher intensities. LMN neurons are highly sensitive to stimulus repetition rates: most responded to frequencies of 5 pulses/s or less; none responded to rates greater than 10/s. Three distinct response patterns are recognized. Best frequencies in response to sinusoidal stimuli range from 0.2 Hz (the lowest frequency delivered) to 4 Hz. Responses decrease rapidly at 8 Hz or greater, and no units responded to frequencies greater than 32 Hz. Most LMN neurons have small, well defined excitatory electroreceptive fields (RFs) exhibiting no surround inhibition, at least as detectable by methods employed here. Seventy-eight percent of units recorded had RFs restricted to the ventral surface: of these, 98% were contralateral. The remaining 22% of units had disjunct dorsal and ventral receptive fields. Electrosensory RFs on the ventral surface are somatotopically organized. Anterior, middle, and posterior body surfaces are mapped at the rostral, middle, and caudal levels, respectively, of the contralateral LMN. The lateral, middle, and medial body are mapped at medial, middle, and lateral levels of the nucleus. Moreover, the RFs of all units isolated in a given dorsoventral electrode track are nearly superimposable. About 40% of LMN, measured from the dorsal surface, is devoted to input from ventral electroreceptors located in a small region rostral and lateral to the mouth.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
In fetal sheep acute hypoxia causes a decreased incidence of breathing movements and motor activity, and the excitability of polysynaptic reflexes in the hindlimbs is depressed. To determine whether this inhibitory effect extends to other areas in the fetal CNS, we have studied the effect of hypoxia on two reflexes with cranial pathways. The digastric (jaw opening) reflex was elicited by stimulation of the dental nerve through a pair of stainless steel electrodes implanted into the mandible (4 fetuses). The thyroarytenoid muscle of the larynx was reflexly activated by stimulation of the superior laryngeal nerve by a cuff electrode (4 fetuses). Low level stimulation at 1.5-2 X threshold was repeated at approximately 2 min intervals for 3-4 h; the stimulation did not alter the pattern of electrocortical activity, breathing movements, or cause arousal. The amplitude of the digastric reflex was greatest during low voltage electrocortical activity; conversely, the amplitude of the thyroarytenoid reflex was greatest during high voltage electrocortical activity. Isocapnic hypoxia lasting 30-60 min (16 trials), in which the PaO2 was reduced to 12-14 mmHg, did not reduce the amplitude of either reflex. The reduction of thyroarytenoid reflex amplitude which normally occurred during low voltage electrocortical activity was not present during hypoxia. These experiments show that the inhibitory effects of hypoxia on spinal reflexes, breathing movements and motor activity do not include these cranial pathways.  相似文献   

16.
Correlations between the resting blood pressure and magnitude of depressor responses evoked by graded stimulation of the aortic nerve, were studied in rabbits anaesthetized with urethane. The strength of stimulation ranged from 1 to 10 times the threshold, and activated the myelinated afferents. The frequency of stimulation was 5 and 50 cycles/sec. At lower frequency of stimulation the correlations become significant when the intensity of stimulation is 3 times the threshold and they increase at the highest strengths of stimulation. Correlation coefficients calculated for responses obtained at the frequency of 50 cycles/sec are significant in 8 out of 9 intensities of stimulation. With increase in the strength of stimulation they increase, attain their maximum at twice the threshold and decrease at the largest used stimulus strengths. The changes in the values of the correlation coefficients are not paralleled by alterations in the mean size of depressor responses. Since all correlation coefficients are positive, it is inferred that the depressor responses produced by stimulation of the aortic nerve follow WILDER's "law of initial value". The conformity with this rule is the better the higher the values of the correlation coefficients. The strength of relationship between the resting blood pressure and the size of depressor responses is considered to reflect the efficiency of the homeostatic circulatory mechanism.  相似文献   

17.
Summary Physiological recordings were made of the compound action potential from the round window and single neurons in the cochlear ganglion of normal adult chickens (Gallus domesticus). The compound action potential threshold to tone bursts decreased from approximately 42 dB at 0.25 kHz to 30 dB between 1 and 2 kHz and then increased to 51 dB at 4 kHz. Most of the cochlear ganglion cells had characteristic frequencies below 2 kHz and the thresholds of most neurons were roughly 30–35 dB lower than the compound action potential thresholds. At any given characteristic frequency, thresholds varied by as much as 60 dB and units with the highest thresholds tended to have the lowest spontaneous rates. Spontaneous discharge rates ranged from 0 to 200 spikes/s with a mean rate of 86 spikes/s. Interspike interval histograms of spontaneous activity often contained regular peaks with the time interval between peaks approximately equal to 1/(characteristic frequency). Tuning curves were sharply tuned and V-shaped with approximately equal slopes to the curves above and below characteristic frequency. Q10dB and Q30dB values for the tuning curves increased with characteristic frequency. Post stimulus time histograms showed sustained firing during the stimulus and were characterized by a slight-to-moderate peak at stimulus onset. Most units showed vigorous phase-locking to tones at characteristic frequency although the degree of phase-locking declined sharply with increasing characteristic frequency. Discharge rate-level functions at characteristic frequency had a mean dynamic range of 42 dB and a mean saturation firing rate of 327 spikes/s. In general, the firing patterns of cochlear ganglion neurons are similar in most respects to those reported in other avians, but differ in several important respects from those seen in mammals.Abbreviations CF characteristic frequency - CAP compound action potential  相似文献   

18.
It has recently been reported that stimulation of the region of the subfornical organ (SFO) elicits an increase in arterial pressure. However, the mechanisms and forebrain neural circuitry that are involved in this cardiovascular response have not been elucidated. The present study was done in urethane-anaesthetized rats to determine whether selective activation of SFO neurons elicit cardiovascular responses and whether these responses were mediated by a pathway involving the paraventricular nucleus of the hypothalamus (PVH). Stimulation sites which required the lowest threshold current (30 microA) to elicit a pressor response and at which the largest rise in mean arterial pressure (MAP; 22 +/- 2 mmHg) was elicited at a constant current intensity (150 microA) were histologically localized in the region of the SFO. Short (mean peak latency; 4 +/- 2 s) and long (mean peak latency; 61 +/- 8 s) latency increases in MAP were observed during and after electrical stimulation of the SFO, respectively. Cardiac slowing accompanied the short latency pressor response and cardioacceleration was observed in most (57%) of the cases to accompany the late pressor response. Microinjection of L-glutamate into the SFO consistently elicited cardiovascular responses qualitatively similar to those observed during electrical stimulation. Ganglionic blockade abolished the short latency increase in MAP and the accompanying bradycardia. However, the long latency pressor and cardioacceleratory responses were not altered by ganglionic blockade and adrenalectomy. Selective bilateral electrolytic or kainic acid lesions of the region of the PVH significantly attenuated the cardiovascular responses elicited by stimulation of the SFO. These data suggest that activation of neurons in the SFO elicit cardiovascular responses partially mediated by sympathetic outflow through a neural pathway involving the PVH.  相似文献   

19.
20.
Barrett BT  Whitaker D 《Spatial Vision》2004,17(1-2):111-126
This study investigates the influence of contrast and exposure duration on vernier acuity thresholds for abutting and separated narrowband stimuli, and asks whether these data can predict broadband vernier performance. Vernier thresholds were determined for sinusoidal grating stimuli at two spatial frequencies (1 and 8 c/deg) across a range of contrasts (0.05-0.8) and exposure durations (35-2100 ms). Performance was assessed for the abutting configuration, and when a gap equivalent to 0.5 to 1.5 times the spatial period of the grating was introduced between the upper and lower halves of the grating. Vernier thresholds were also determined for a square-wave stimulus as a function of contrast (0.06 to 0.78). Exposure duration was fixed at 2100 ms. In addition, thresholds were determined at the appropriate contrast levels for the fundamental frequency (1.8 c/deg) of the square-wave, and for a number of the harmonics (3F, 5F, 7F, 9F). Our results provide support for filter models of vernier acuity by showing that vernier performance for abutting and closely-separated broadband stimuli represents the envelope of vernier sensitivity of those spatial frequency mechanisms that are activated by the broadband stimulus. In the case of high frequency grating stimuli presented for long exposure durations, vernier performance can be invariant across much of the contrast range. Despite this, however, contrast independence is not exhibited for abutting broadband stimuli because, within the broadband stimuli, the contrast of the higher harmonic components never reaches a level to reveal this plateau.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号