首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
It has been shown that the membrane motor in the outer hair cell is driven by the membrane potential. Here we examine whether the motility satisfies the reciprocal relationship, the characteristic of piezoelectricity, by measuring charge displacement induced by stretching the cell with known force. The efficiency of inducing charge displacement was membrane potential dependent. The maximum efficiency of inducing charge displacement by force was approximately 20 fC/nN for 50-microm-long lateral membrane. The efficiency per cell stretching was 0.1 pC/microm. We found that these values are consistent with the reciprocal relationship based on the voltage sensitivity of approximately 20 nm/mV for 50-microm-long cell and force production of 0.1 nN/mV by the cell. We can thus conclude that the membrane motor in the outer hair cell satisfies a necessary condition for piezoelectricity and that the hair cell's piezoelectric coefficient of 20 fC/nN is four orders of magnitude greater than the best man-made material.  相似文献   

2.
3.
Functioning of the membrane motor of the outer hair cell is tightly associated with transfer of charge across the membrane. To obtain further insights into the motor mechanism, we examined kinetics of charge transfer across the membrane in two different modes. One is to monitor charge transfer induced by changes in the membrane potential as an excess membrane capacitance. The other is to measure spontaneous flip-flops of charges across the membrane under voltage-clamp conditions as current noise. The noise spectrum of current was inverse Lorentzian, and the capacitance was Lorentzian, as theoretically expected. The characteristic frequency of the capacitance was approximately 10 kHz, and that for current noise was approximately 30 kHz. The difference in the characteristic frequencies seems to reflect the difference in the modes of mechanical movement associated with the two physical quantities.  相似文献   

4.
Johnson SL  Beurg M  Marcotti W  Fettiplace R 《Neuron》2011,70(6):1143-1154
Outer hair cells (OHCs) provide amplification in the mammalian cochlea using somatic force generation underpinned by voltage-dependent conformational changes of the motor protein prestin. However, prestin must be gated by changes in membrane potential on a cycle-by-cycle basis and the periodic component of the receptor potential may be greatly attenuated by low-pass filtering due to the OHC time constant (τ(m)), questioning the functional relevance of this mechanism. Here, we measured τ(m) from OHCs with a range of characteristic frequencies (CF) and found that, at physiological endolymphatic calcium concentrations, approximately half of the mechanotransducer (MT) channels are opened at rest, depolarizing the membrane potential to near -40 mV. The depolarized resting potential activates a voltage-dependent K+ conductance, thus minimizing τ(m) and expanding the membrane filter so there is little receptor potential attenuation at the cell's CF. These data suggest that minimal τ(m) filtering in vivo ensures optimal activation of prestin.  相似文献   

5.
Cytoplasmic actin and cochlear outer hair cell motility   总被引:2,自引:0,他引:2  
Summary Isolated outer hair cells of the guinea pig lacking a cuticular plate and its associated infracuticular network retain the ability to shorten longitudinally and become thinner. Membrane ghosts lacking cytoplasm retain the cylindrical shape of the hair-cell, and although they do not shorten, they retain the ability to constrict and become thinner. These data suggest that cytoplasmic components are associated with outer hair-cell longitudinal shortening and that the lateral wall is responsible for maintaing cell shape and for constriction. Actin, a protein associated with the cytoskeleton and cell motility, is thought to be involved in outer hair-cell motility. To study its role, actin was localized in isolated outer hair cells by use of phalloidin labeled with fluorescein and antibodies against actin coupled to colloidal gold. In permeabilized guinea-pig hair cells stained with phalloidin, actin filaments are found along the lateral wall. In frozen-fixed hair cells actin filaments are distributed uniformly throughout the cytoplasm. Electron-microscopic studies show that antibodies label actin throughout the outer hair-cell body. Thus cytoplasmic actin filaments may provide the structural basis for the contraction-like events.  相似文献   

6.
We propose a three-dimensional (3D) model to simulate outer hair cell electromotility. In our model, the major components of the composite cell wall are explicitly represented. We simulate the activity of the particles/motor complexes in the plasma membrane by generating active strains inside them and compute the overall response of the cell. We also consider the constrained wall and compute the generated active force. We estimate the parameters of our model by matching the predicted longitudinal and circumferential electromotile strains with those observed in the microchamber experiment. In addition, we match the earlier estimated values of the active force and cell wall stiffness. The computed electromotile strains in the plasma membrane and other components of the wall are in agreement with experimental observations in trypsinized cells and in nonmotile cells transfected with Prestin. We discover several features of the 3D mechanism of outer hair cell electromotilty. Because of the constraints under which the motors operate, the motor-related strains have to be 2-3 times larger than the observable strains. The motor density has a strong effect on the electromotile strain. Such effect on the active force is significantly lower because of the interplay between the active and passive properties of the cell wall.  相似文献   

7.
Specialized outer hair cells (OHCs) housed within the mammalian cochlea exhibit active, nonlinear, mechanical responses to auditory stimulation termed electromotility. The extraordinary frequency resolution capacity of the cochlea requires an exquisitely equilibrated mechanical system of sensory and supporting cells. OHC electromotile length change, stiffness, and force generation are responsible for a 100-fold increase in hearing sensitivity by augmenting vibrational input to non-motile sensory inner hair cells. Characterization of OHC mechanics is crucial for understanding and ultimately preventing permanent functional deficits due to overstimulation or as a consequence of various cochlear pathologies. The OHCs' major structural assembly is a highly-specialized lateral wall. The lateral wall consists of three structures; a plasma membrane highly-enriched with the motor-protein prestin, an actin-spectrin cortical lattice, and one or more layers of subsurface cisternae. Technical difficulties in independently manipulating each lateral wall constituent have constrained previous attempts to analyze the determinants of OHCs' mechanical properties. Temporal separations in the accumulation of each lateral wall constituent during postnatal development permit associations between lateral wall structure and OHC mechanics. We compared developing and adult gerbil OHC axial stiffness using calibrated glass fibers. Alterations in each lateral wall component and OHC stiffness were correlated as a function of age. Reduced F-actin labeling was correlated with reduced OHC stiffness before hearing onset. Prestin incorporation into the PM was correlated with increased OHC stiffness at hearing onset. Our data indicate lateral wall F-actin and prestin are the primary determinants of OHC mechanical properties before and after hearing onset, respectively.  相似文献   

8.
Outer hair cell electromotility is crucial for the proper function of the cochlear amplifier, the active process that enhances sensitivity and frequency discrimination of the mammalian ear. Previous work (Kalinec, F., Zhang, M., Urrutia, R., and Kalinec, G. (2000) J. Biol. Chem. 275, 28000-28005) has suggested a role for Rho GTPases in the regulation of outer hair cell electromotility, although the signaling pathways mediated by these enzymes remain to be established. Here we have investigated the cellular and molecular mechanisms underlying the homeostatic regulation of the electromotile response of guinea pig outer hair cells. Our findings defined a ROCK-mediated signaling cascade that continuously modulates outer hair cell electromotility by selectively targeting the cytoskeleton. A distinct ROCK-independent pathway functions as a fast resetting mechanism for this system. Neither pathway affects the function of prestin, the unique molecular motor of outer hair cells. These results extend our understanding of a basic mechanism of both normal human hearing and deafness, revealing the key role of the cytoskeleton in the regulation of outer hair cell electromotility and suggesting ROCK as a molecular target for modulating the function of the cochlear amplifier.  相似文献   

9.
The interaction between the outer hair cell (OHC) lateral wall plasma membrane and the underlying cortical lattice was examined by a morphometric analysis of cell images during cell deformation. Vesiculation of the plasma membrane was produced by micropipette aspiration in control cells and cells exposed to ionic amphipaths that alter membrane mechanics. An increase of total cell and vesicle surface area suggests that the plasma membrane possesses a membrane reservoir. Chlorpromazine (CPZ) decreased the pressure required for vesiculation, whereas salicylate (Sal) had no effect. The time required for vesiculation was decreased by CPZ, indicating that CPZ decreases the energy barrier required for vesiculation. An increase in total volume is observed during micropipette aspiration. A deformation-induced increase in hydraulic conductivity is also seen in response to micropipette-applied fluid jet deformation of the lateral wall. Application of CPZ and/or Sal decreased this strain-induced hydraulic conductivity. The impact of ionic amphipaths on OHC plasma membrane and lateral wall mechanics may contribute to their effects on OHC electromotility and hearing.  相似文献   

10.
The role of outer hair cell motility in cochlear tuning.   总被引:7,自引:0,他引:7  
The mammalian cochlea's remarkable sensitivity and frequency selectivity are thought to be mediated by the mechanical feedback action of outer hair cells. New tools for measuring the movement of cochlear elements, and recent advances in modeling are increasing our knowledge of cochlear mechanics.  相似文献   

11.
Tuning of the outer hair cell motor by membrane cholesterol   总被引:2,自引:0,他引:2  
Cholesterol affects diverse biological processes, in many cases by modulating the function of integral membrane proteins. We observed that alterations of cochlear cholesterol modulate hearing in mice. Mammalian hearing is powered by outer hair cell (OHC) electromotility, a membrane-based motor mechanism that resides in the OHC lateral wall. We show that membrane cholesterol decreases during maturation of OHCs. To study the effects of cholesterol on hearing at the molecular level, we altered cholesterol levels in the OHC wall, which contains the membrane protein prestin. We show a dynamic and reversible relationship between membrane cholesterol levels and voltage dependence of prestin-associated charge movement in both OHCs and prestin-transfected HEK 293 cells. Cholesterol levels also modulate the distribution of prestin within plasma membrane microdomains and affect prestin self-association in HEK 293 cells. These findings indicate that alterations in membrane cholesterol affect prestin function and functionally tune the outer hair cell.  相似文献   

12.
Dallos P  Wu X  Cheatham MA  Gao J  Zheng J  Anderson CT  Jia S  Wang X  Cheng WH  Sengupta S  He DZ  Zuo J 《Neuron》2008,58(3):333-339
It is a central tenet of cochlear neurobiology that mammalian ears rely on a local, mechanical amplification process for their high sensitivity and sharp frequency selectivity. While it is generally agreed that outer hair cells provide the amplification, two mechanisms have been proposed: stereociliary motility and somatic motility. The latter is driven by the motor protein prestin. Electrophysiological phenotyping of a prestin knockout mouse intimated that somatic motility is the amplifier. However, outer hair cells of knockout mice have significantly altered mechanical properties, making this mouse model unsatisfactory. Here, we study a mouse model without alteration to outer hair cell and organ of Corti mechanics or to mechanoelectric transduction, but with diminished prestin function. These animals have knockout-like behavior, demonstrating that prestin-based electromotility is required for cochlear amplification.  相似文献   

13.
The exceptional performance of mammalian hearing is due to the cochlea's amplification of sound-induced mechanical stimuli. During acoustic stimulation, the vertical motion of the outer hair cells relative to the tectorial membrane (TM) is converted into the lateral motion of their stereocilia. The actual mode of this conversion, which represents a fundamental step in hearing, remains enigmatic, as it is unclear why the stereocilia are deflected when pressed against the TM, rather than penetrating it. In this study we show that deflection of the stereocilia is a direct outcome of the anisotropic material properties of the TM. Using force spectroscopy, we find that the vertical stiffness of the TM is significantly larger than its lateral stiffness. As a result, the TM is more resistant to the vertical motion of stereocilia than to their lateral motion, and so they are deflected laterally when pushed against the TM. Our findings are confirmed by finite element simulations of the mechanical interaction between the TM and stereocilia, which show that the vertical outer hair cells motion is converted into lateral stereocilia motion when the experimentally determined stiffness values are incorporated into the model. Our results thus show that the material properties of the TM play a central and previously unknown role in mammalian hearing.  相似文献   

14.
Here, we analyze energy transformations in the outer hair cell and its effectiveness as a piezoelectric-type actuator in the cochlea. The major modes of energy are introduced, and a method to estimate the coefficients of their tension-dependence is proposed. Next, we derive balance of the mechanical and electrical parts of energy, and show two forms of the active energy associated with the motors driving electromotility. The two forms of the active energy, stored mechanical energy, and external electrical work are then introduced as functions of voltage and applied force. We use the energy balance to introduce and estimate the effectiveness of the cell's electromotile response.  相似文献   

15.
Outer hair cells are the mechanical effectors of the cochlear amplifier, an active process that improves the sensitivity and frequency discrimination of the mammalian ear. In vivo, the gain of the cochlear amplifier is regulated by the efferent neurotransmitter acetylcholine through the modulation of outer hair cell motility. Little is known, however, regarding the molecular mechanisms activated by acetylcholine. In this study, intracellular signaling pathways involving the small GTPases RhoA, Rac1, and Cdc42 have been identified as regulators of outer hair cell motility. Changes in cell length (slow motility) and in the amplitude of electrically induced movement (fast motility) were measured in isolated outer hair cells patch clamped in whole-cell mode, internally perfused through the patch pipette with different inhibitors and activators of these small GTPases while being externally stimulated with acetylcholine. We found that acetylcholine induces outer hair cell shortening and a simultaneous increase in the amplitude of fast motility through Rac1 and Cdc42 activation. In contrast, a RhoA- and Rac1-mediated signaling pathway induces outer hair cell elongation and decreases fast motility amplitude. These two opposing processes provide the basis for a regulatory mechanism of outer hair cell motility.  相似文献   

16.
We propose a new mechanism for outer hair cell electromotility based on electrically induced localized changes in the curvature of the plasma membrane (flexoelectricity). Electromechanical coupling in the cell's lateral wall is modeled in terms of linear constitutive equations for a flexoelectric membrane and then extended to nonlinear coupling based on the Langevin function. The Langevin function, which describes the fraction of dipoles aligned with an applied electric field, is shown to be capable of predicting the electromotility voltage displacement function. We calculate the electrical and mechanical contributions to the force balance and show that the model is consistent with experimentally measured values for electromechanical properties. The model rationalizes several experimental observations associated with outer hair cell electromotility and provides for constant surface area of the plasma membrane. The model accounts for the isometric force generated by the cell and explains the observation that the disruption of spectrin by diamide reduces force generation in the cell. We discuss the relation of this mechanism to other proposed models of outer hair cell electromotility. Our analysis suggests that rotation of membrane dipoles and the accompanying mechanical deformation may be the molecular mechanism of electromotility.  相似文献   

17.
Two Ca(2+)-dependent mechanisms have been proposed to regulate the mechanical properties of outer hair cells (OHCs), the sensory-motor receptors of the mammalian cochlea. One involves the efferent neurotransmitter, acetylcholine, decreasing OHC axial stiffness. The other depends on elevation of intracellular free Ca(2+) concentration ([Ca(2+)](i)) resulting in OHC elongation, a process known as Ca(2+)-dependent slow motility. Here we provide evidence that both these phenomena share a common mechanism. In whole-cell patch-clamp conditions, a fast increase of [Ca(2+)](i) by UV-photolysis of caged Ca(2+) or by extracellular application of Ca(2+)-ionophore, ionomycin, produced relatively slow (time constant approximately 20s) cell elongation. When OHCs were partially collapsed by applying minimal negative pressure through the patch pipette, elevation of the [Ca(2+)](i) up to millimole levels (estimated by Fura-2) was unable to restore the cylindrical shape of the OHC. Stiffness measurements with vibrating elastic probes showed that the increase of [Ca(2+)](i) causes a decrease of OHC axial stiffness, with time course similar to that of the Ca(2+)-dependent elongation, without developing any measurable force. We concluded that, contrary to a previous proposal, Ca(2+)-induced OHC elongation is unlikely to be driven by circumferential contraction of the lateral wall, but is more likely a passive mechanical reaction of the turgid OHC to Ca(2+)-induced decrease of axial stiffness. This may be the key phenomenon for controlling gain and operating point of the cochlear amplifier.  相似文献   

18.
Cochlear outer hair cells undergo reversible changes in shape when externally stimulated. This response, known as OHC motility, is a central component of the cochlear amplifier, the mechanism responsible for the high sensitivity of mammalian hearing. We report that actin depolymerization, as regulated by activation/inhibition of LIMK/cofilin-mediated pathways, has a pivotal role in OHC motility. LIMK-mediated cofilin phosphorylation, which inhibits the actin depolymerizing activity of this protein, increases both electromotile amplitude and total length of guinea pig OHCs. In contrast, a decrease in cofilin phosphorylation reduces both OHC electromotile amplitude and OHC length. Experiments with acetylcholine and lysophosphatidic acid indicate that the effects of these agents on OHC motility are associated with regulation of cofilin phosphorylation via different signaling cascades. On the other hand, nonlinear capacitance measurements confirmed that all observed changes in OHC motile response were independent of the performance of the motor protein prestin. Altogether, these results strongly support the hypothesis that the cytoskeleton has a major role in the regulation of OHC motility, and identify actin depolymerization as a key process for modulating cochlear amplification.  相似文献   

19.
Somatic electromotility in cochlear outer hair cells, as the basis for cochlear amplification, is a mammalian novelty and it is largely dependent upon rapid cell length changes proposed to be mediated by the motor-protein prestin, a member of the solute carrier anion-transport family 26. Thus, one might predict that prestin has specifically evolved in mammals to support this unique mammalian adaptation. Using codon-based likelihood models we found evidences for positive selection in the motor-protein prestin only in the mammalian lineage, supporting the hypothesis that lineage-specific adaptation-driven molecular changes endowed prestin with the ability to mediate somatic electromotility. Moreover, signatures of positive selection were found on the alpha10, but not the alpha9, nicotinic cholinergic receptor subunits. An alpha9alpha10-containing nicotinic cholinergic receptor mediates inhibitory olivocochlear efferent effects on hair cells across vertebrates. Our results suggest that evolution-driven modifications of the alpha10 subunit probably allowed the alpha9alpha10 heteromeric receptor to serve a differential function in the mammalian cochlea. Thus, we describe for the first time at the molecular level signatures of adaptive evolution in two outer hair cell proteins only in the lineage leading to mammals. This finding is most likely related with the roles these proteins play in somatic electromotility and/or its fine tuning.  相似文献   

20.
The outer hair cell (OHC) in the mammalian ear has a unique membrane potential-dependent motility, which is considered to be important for frequency discrimination (tuning). The OHC motile mechanism is located at the cell membrane and is strongly influenced by its passive mechanical properties. To study the viscoelastic properties of OHCs, we exposed cells to a hypoosmotic solution for varying durations and then punctured them, to immediately release the osmotic stress. Using video records of the cells, we determined both the imposed strain and the strain after puncturing, when stress was reset to zero. The strain data were described by a simple rheological model consisting of two springs and a dashpot, and the fit to this model gave a time constant of 40 +/- 19 s for the relaxation (reduction) of tension during prolonged strain. For time scales much shorter or longer than this, we would expect essentially elastic behavior. This relaxation process affects the membrane tension of the cell, and because it has been shown that membrane tension has a modulatory role in the OHC's motility, this relaxation process could be part of an adaptation mechanism, with which the motility system of the OHC can adjust to changing conditions and maintain optimum membrane tension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号