首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This review describes the current status of proteomic approaches to identify kinase substrates, which may lead to valuable medical applications. It guides the reader towards various methods using 2DE and liquid chromatography-tandem mass spectrometry. Dynamic changes of phosphorylation during extracellular stimuli can be quantitatively monitored by both technologies. Among appropriate prefractionation procedures, the purification of phosphoproteins and phosphopeptides is an absolute step for success. The temporal change and stoichiometry of phosphorylation are the important criteria to evaluate the physiological meaning of the reaction. Kinase substrates can also be identified by in vitro phosphorylation systems employing protein arrays, fractionated lysates, genetically engineered kinases and phage libraries. The final section contains an expert opinion on the current strategies and the issues we are going to challenge in the next 5 years.  相似文献   

2.
Phosphorylation of the mitogen‐activated protein kinase (MAPK) is essential for its enzymatic activity and ability to control multiple substrates inside a cell. According to the current models, control of MAPK phosphorylation is independent of its substrates, which are viewed as mere sensors of MAPK activity. Contrary to this modular view of MAPK signaling, our studies in the Drosophila embryo demonstrate that substrates can regulate the level of MAPK phosphorylation in vivo. We demonstrate that a twofold change in the gene dosage of a single substrate can induce a significant change in the phosphorylation level of MAPK and in the conversion of other substrates. Our results support a model where substrates of MAPK counteract its dephosphorylation by phosphatases. Substrate‐dependent control of MAPK phosphorylation is a manifestation of a more general retroactive effect that should be intrinsic to all networks with covalent modification cycles.  相似文献   

3.
Rho-associated kinase (Rho-kinase/ROCK/ROK) is a serine/threonine kinase and plays an important role in various cellular functions. The cAMP-dependent protein kinase (protein kinase A/PKA) and protein kinase C (PKC) are also serine/threonine kinases, and directly and/or indirectly take part in the signal transduction pathways of Rho-kinase. They have similar phosphorylation site motifs, RXXS/T and RXS/T. The purpose of this study was to identify whether sites phosphorylated by Rho-kinase could be targets for PKA and PKC and to find peptide substrates that are specific to Rho-kinase, i.e., with no phosphorylation by PKA and PKC. A total of 18 substrates for Rho-kinase were tested for phosphorylation by PKA and PKC. Twelve of these sites were easily phosphorylated. These results mean that Rho-kinase substrates can be good substrates for PKA and/or PKC. On the other hand, six Rho-kinase substrates showing no or very low phosphorylation efficiency (<20%) for PKA and PKC were identified. Kinetic parameters (K(m) and k(cat)) showed that two of these peptides could be useful as substrates specific to Rho-kinase phosphorylation.  相似文献   

4.
Scott MP  Miller WT 《Biochemistry》2000,39(47):14531-14537
The Src homology 2 (SH2) and Src homology 3 (SH3) domains of Src family kinases are involved in substrate recognition in vivo. Many cellular substrates of Src kinases contain a large number of potential phosphorylation sites, and the SH2 and SH3 domains of Src are known to be required for phosphorylation of these substrates. In principle, Src could phosphorylate these substrates by either a processive mechanism, in which the enzyme remains bound to the peptide substrate during multiple phosphorylation events, or a nonprocessive (distributive) mechanism, where each phosphorylation requires a separate binding interaction between enzyme and substrate. Here we use a synthetic peptide system to demonstrate that Hck, a Src family kinase, can phosphorylate substrates containing an SH2 domain ligand by a processive mechanism. Hck catalyzes the phosphorylation of these sites in a defined order. Furthermore, we show that addition of an SH3 domain to a peptide can enhance its phosphorylation both by activating Hck and by increasing the affinity of the substrate. On the basis of our observations on the role of the SH2 and SH3 domains in substrate recognition, we present a model for substrate targeting in vivo.  相似文献   

5.
The plasma membrane of 3T3 cells contains at least two different endogenous cyclic AMP-dependent protein kinase systems. One catalyzes the phosphorylation of endogenous protein substrates, i.e., PP24 and PP14, whereas the other catalyzes the phosphorylation of exogenous substrates. In this paper the topography of these cyclic AMP-dependent phosphorylation systems is described. The results show that the kinases which phosphorylate only exogenous substrates are primarily localized to the outer plasma membrane surface whereas the endogenous cyclic AMP-dependent protein kinase and its two endogenous substrates are localized to the cytoplasmic plasma membrane surface. The data also establish that neither the cytoplasmically orientated kinase nor its substrates has a transmembrane orientation even though factors acting on the outer plasma membrane can affect these proteins. This suggests that functional modulation of the cytoplasmically localized cyclic AMP-dependent phosphorylation system can be mediated by a transmembrane regulatory mechanism. The importance of determining the topography of such plasma membrane phosphorylation systems is emphasized by recent studies which show that neoplastic transformation can be mediated at least in part by protein kinases and/or phosphoproteins which are localized on the cytoplasmic surface of the plasma membrane.  相似文献   

6.
Satoru Mochida 《EMBO reports》2015,16(11):1411-1412
Entry into and exit from mitosis are brought about by the increase and decrease, respectively, in the activity of cyclin‐dependent kinases (CDKs). Many examples are known of how the properties of particular proteins can be altered by phosphorylation, promoting processes like nuclear envelope breakdown or assembly of the mitotic spindle. The regulation of protein phosphatases is shedding new light on how this quantitative change of protein phosphorylation is achieved by a tight linkage between CDK activity and CDK‐antagonizing phosphatases. On entering mitosis, increasing CDK activity ignites a repressive pathway that acts on PP2A‐B55, one of the major phosphatases for CDK substrates in higher eukaryotes. This repression allows rapid and near complete substrate phosphorylation. But this raises a serious bootstrapping problem at mitotic exit. Because the phosphatase responsible for CDK substrates has been shut off, how can the repression pathway, which was activated by CDK, be reversed? In the current issue, Heim and colleagues propose an answer to this question 1 . Their data show that dephosphorylation of Greatwall kinase (Gwl) at its auto‐phosphorylation site(s) is targeted by PP1, which leads to significant decrease in Gwl kinase activity. This early action by PP1 seems to be a prerequisite for PP2A‐B55 to escape from repression and to return Gwl back to its inactive hypophosphorylated interphase state. This study provides an important piece of evidence for how the repression mechanism of PP2A‐B55 is made reversible, and offers a solution to the bootstrap problem.  相似文献   

7.
LAMMER protein kinases are ubiquitous throughout eukaryotes, including multiple paralogues in mammals. Members are characterized by similar overall structure and highly identical amino acid sequence motifs in catalytic subdomains essential for phosphotransfer and interaction with substrates. LAMMER kinases phosphorylate and regulate the activity of the SR protein class of pre-mRNA splicing components, both in vitro and in vivo. In this study, we define an optimum in vitro consensus phosphorylation site for three family members using an oriented degenerate peptide library approach. We also examine the substrate specificity and interactions of several LAMMER protein kinases from widely diverged species with potential substrates, including their own N-termini, predicted to be substrates by the peptide-based approach. Although the optimal in vitro consensus phosphorylation site for these kinases is remarkably similar for short peptides, distinct substrate preferences are revealed by in vitro phosphorylation of intact proteins. This finding suggests that these kinases may possess varied substrates in vivo, and thus the multiple LAMMER kinases present in higher eukaryotes may perform differentiable functions. These results further demonstrate that these kinases can phosphorylate a number of substrates in addition to SR proteins, suggesting that they may regulate multiple cellular processes, in addition to the alternative splicing of pre-mRNAs.  相似文献   

8.
Regulation of all cellular processes requires dynamic regulation of protein phosphorylation. We have developed an unbiased system to globally quantify the phosphorylation index for substrates of a specific kinase by independently quantifying phosphorylated and total substrate molecules in a reverse in-gel kinase assay. Non-phosphorylated substrate molecules are first quantified in the presence and absence of a specific stimulus. Total substrate molecules are then measured after complete chemical dephosphorylation, and a ratio of phosphorylated to total substrate is derived. To demonstrate the utility of this approach, we profiled and quantified changes in phosphorylation index for Protein Kinase CK2 substrates that respond to a small-molecule inhibitor. A broad range of inhibitor-induced changes in phosphorylation was observed in cultured cells. Differences among substrates in the kinetics of phosphorylation change were also revealed. Comparison of CK2 inhibitor-induced changes in phosphorylation in cultured cells and in mouse peripheral blood lymphocytes in vivo revealed distinct kinetic and depth-of-response profiles. This technology provides a new approach to facilitate functional analyses of kinase-specific phosphorylation events. This strategy can be used to dissect the role of phosphorylation in cellular events, to facilitate kinase inhibitor target validation studies, and to inform in vivo analyses of kinase inhibitor drug efficacy.  相似文献   

9.
Tyrosine phosphorylation is negatively regulated by the protein-tyrosine phosphatases (PTPs). In order to find the physiological substrates of these enzymes, diverse PTP mutants that do not possess any catalytic activities but appear to bind tightly to their tyrosine phosphorylated substrates have been designed. Hence, they can be used as tools to pull out their respective substrates from heterogeneous extracts. Named PTP "substrate-trapping" mutants by the Tonks laboratory, they represent a diverse variety of defective PTPs that are epitomized by the Cys to Ser mutant (C/S) where the active cysteine residue of the signature motif is mutated to a serine residue. In addition, new mutants have been developed which are expected to help characterize novel and less abundant substrates. In this article, we review and describe all the different substrate-trapping mutants that have successfully been used or that hold interesting promises. We present their methodology to identify substrates in vivo (co-immunoprecipitation) and in vitro (GST pulldown), and provide a current list of substrates that have been identified using these technologies.  相似文献   

10.
Li T  Du P  Xu N 《PloS one》2010,5(11):e15411
Phosphorylation is an important type of protein post-translational modification. Identification of possible phosphorylation sites of a protein is important for understanding its functions. Unbiased screening for phosphorylation sites by in vitro or in vivo experiments is time consuming and expensive; in silico prediction can provide functional candidates and help narrow down the experimental efforts. Most of the existing prediction algorithms take only the polypeptide sequence around the phosphorylation sites into consideration. However, protein phosphorylation is a very complex biological process in vivo. The polypeptide sequences around the potential sites are not sufficient to determine the phosphorylation status of those residues. In the current work, we integrated various data sources such as protein functional domains, protein subcellular location and protein-protein interactions, along with the polypeptide sequences to predict protein phosphorylation sites. The heterogeneous information significantly boosted the prediction accuracy for some kinase families. To demonstrate potential application of our method, we scanned a set of human proteins and predicted putative phosphorylation sites for Cyclin-dependent kinases, Casein kinase 2, Glycogen synthase kinase 3, Mitogen-activated protein kinases, protein kinase A, and protein kinase C families (available at http://cmbi.bjmu.edu.cn/huphospho). The predicted phosphorylation sites can serve as candidates for further experimental validation. Our strategy may also be applicable for the in silico identification of other post-translational modification substrates.  相似文献   

11.

Background  

High-throughput screening is used by the pharmaceutical industry for identifying lead compounds that interact with targets of pharmacological interest. Because of the key role that aberrant regulation of protein phosphorylation plays in diseases such as cancer, diabetes and hypertension, kinases have become one of the main drug targets. With the exception of antibody-based assays, methods to screen for specific kinase activity are generally restricted to the use of small synthetic peptides as substrates. However, the use of natural protein substrates has the advantage that potential inhibitors can be detected that affect enzyme activity by binding to a site other than the catalytic site. We have previously reported a non-radioactive and non-antibody-based fluorescence quench assay for detection of phosphorylation or dephosphorylation using synthetic peptide substrates. The aim of this work is to develop an assay for detection of phosphorylation of chemically unmodified proteins based on this polymer superquenching platform.  相似文献   

12.
The ability of glycolysis, oxidative phosphorylation, the creatine kinase system, and exogenous ATP to suppress ATP-sensitive K+ channels and prevent cell shortening were compared in patch-clamped single guinea pig ventricular myocytes. In cell-attached patches on myocytes permeabilized at one end with saponin, ATP-sensitive K+ channels were activated by removing ATP from the bath, and could be closed equally well by exogenous ATP or substrates for endogenous ATP production by glycolysis (with the mitochondrial inhibitor FCCP present), mitochondrial oxidative phosphorylation, or the creatine kinase system. In the presence of an exogenous ATP-consuming system, however, glycolytic substrates (with FCCP present) were superior to substrates for either oxidative phosphorylation or the creatine kinase system at suppressing ATP-sensitive K+ channels. All three groups of substrates were equally effective at preventing cell shortening. In 6 of 38 excised inside-out membrane patches, ATP-sensitive K+ channels activated by removing ATP from the bath were suppressed by a complete set of substrates for the ATP-producing steps of glycolysis but not by individual glycolytic substrates, which is consistent with the presence of key glycolytic enzymes located near the channels in these patches. Under whole-cell voltage-clamp conditions, inclusion of 15 mM ATP in the patch electrode solution dialyzing the interior of the cell did not prevent activation of the ATP-sensitive K+ current under control conditions or during exposure to complete metabolic inhibition. In isolated arterially perfused rabbit interventricular septa, selective inhibition of glycolysis caused an immediate increase in 42K+ efflux rate, which was prevented by 100 microM glyburide, a known blocker of ATP-sensitive K+ channels. These observations suggest that key glycolytic enzymes are associated with cardiac. ATP-sensitive K+ channels and under conditions in which intracellular competition for ATP is high (e.g., in beating heart) that act as a preferential source of ATP for these channels.  相似文献   

13.
The kinetic mechanisms by which the glucose, glucitol, N-acetylglucosamine, and mannitol enzymes II catalyze sugar phosphorylation have been investigated in vitro. Lineweaver-Burk analyses indicate that the glucose and glucitol enzymes II catalyze sugar phosphorylation by a sequential mechanism when the two substrates are phospho-enzyme III and sugar. The N-acetylglucosamine and mannitol enzymes II, which do not function with an enzyme III, catalyze sugar phosphorylation by a ping-pong mechanism when the two substrates are phospho-HPr and sugar. These results, as well as previously published kinetic characterizations, suggest a common kinetic mechanism for all enzymes II of the system. It is suggested that all enzymes II and enzyme II-III pairs arose from a single (fused) gene product containing two sites of phosphorylation and that phosphoryl transfer from the second phosphorylation site to sugar can only occur when the enzyme II-III pair is present in the associated state.  相似文献   

14.
Calcium channels in the heart play a major role in cardiac function. These channels are modulated in a variety of ways, including protein phosphorylation. Cyclic AMP-mediated phosphorylation is the best understood phosphorylation mechanism which regulates calcium influx into cardiac cells. Binding of an agonist (e.g., a catecholamine) to the appropriate receptor stimulates production of cyclic AMP by adenylate cyclase. The cyclic AMP may subsequently bind to and activate a cyclic AMP-dependent protein kinase, which then can phosphorylate a number of substrates, including the calcium channel (or a closely-associated regulatory protein). This results in stimulation of the calcium channels, greater calcium influx, and increased contractility. The cyclic AMP system is not the only protein kinase system in the heart. Thus, the possibility exists that other protein kinases may also regulate the calcium channels and, hence, cardiac function. Recent evidence suggests that cyclic GMP-mediated phosphorylation may play a role opposite to cyclic AMP-mediated phosphorylation, i.e., inhibition of the calcium current rather than stimulation. Other recent evidence also suggests that a calcium/calmodulin-dependent protein kinase and calcium/phospholipid-dependent protein kinase (protein kinase C) may also regulate the myocardial calcium channels. Thus, protein phosphorylation may be a general mechanism whereby calcium channels and cardiac function are modulated under a variety of conditions.  相似文献   

15.
Protein phosphorylation is a key regulatory mechanism of cellular signalling processes. The analysis of phosphorylated proteins and the characterisation of phosphorylation sites under different biological conditions are some of the most challenging tasks in current proteomics research. Reduction of the sample complexity is one major step for the analysis of low-abundance kinase substrates, which can be achieved by various subcellular fractionation techniques. One strategy is the enrichment of phosphorylated proteins or peptides by immunoprecipitation or chromatography, e.g. immobilised metal affinity chromatography, prior to analysis. 2-DE gels are powerful tools for the analysis of phosphoproteins when combined with new multiplexing techniques like DIGE, phosphospecific stains, autoradiography or immunoblotting. In addition, several gel-free methods combining chromatography with highly sensitive MS have been successfully applied for the analysis of complex phosphoproteomes. Recently developed approaches like KESTREL or 'chemical genetics' and also protein microarrays offer new possibilities for the identification of specific kinase targets. This review summarises various strategies for the analyses of phosphoproteins with a special focus on the identification of novel kinase substrates.  相似文献   

16.
Protein phosphorylation plays an important role in the regulation of neural functions. We have studied the phosphorylation of proteins in homogenates of segmental ganglia of the leech Hirudo medicinalis. We describe a number of proteins whose phosphorylation is dependent on calcium/calmodulin or cyclic nucleotides. Most of the proteins whose phosphorylation is increased in the presence of calcium seem to be substrates for cyclic nucleotide-dependent protein kinases. Only two of the phosphoproteins described appear to be specific substrates for calcium/calmodulin protein kinase(s), and at least six phosphoproteins appear to be specific substrates for cyclic nucleotide-dependent kinase(s). The leech nervous system, with large and identifiable neurons, provides a good tool for studies of neural functions, such as learning. The results are discussed in the context of the role of protein phosphorylation on learning processes.  相似文献   

17.
The Ste20/PAK family is involved in many cellular processes, including the regulation of actin-based cytoskeletal dynamics and the activation of MAPK signaling pathways. Despite its numerous roles, few of its substrates have been identified. To better characterize the roles of the yeast Ste20p kinase, we developed an in vitro biochemical genomics screen to identify its substrates. When applied to 539 purified yeast proteins, the screen reported 14 targets of Ste20p phosphorylation. We used the data resulting from our screen to build an in silico predictor to identify Ste20p substrates on a proteome-wide basis. Since kinase-substrate specificity is often mediated by additional binding events at sites distal to the phosphorylation site, the predictor uses the presence/absence of multiple sequence motifs to evaluate potential substrates. Statistical validation estimates a threefold improvement in substrate recovery over random predictions, despite the lack of a single dominant motif that can characterize Ste20p phosphorylation. The set of predicted substrates significantly overrepresents elements of the genetic and physical interaction networks surrounding Ste20p, suggesting that some of the predicted substrates are in vivo targets. We validated this combined experimental and computational approach for identifying kinase substrates by confirming the in vitro phosphorylation of polarisome components Bni1p and Bud6p, thus suggesting a mechanism by which Ste20p effects polarized growth.  相似文献   

18.
The synthetic nonapeptide Arg-Arg-Lys-Ala-Ser-Gly-Pro-Pro-Val is a substrate for in vitro phosphorylation by a partially purified preparation of rat brain protein kinase C, with Kmapp of about 130 microM. The closely related peptide kemptide was a much weaker substrate, bovine serum albumin was not a substrate and the peptide Arg-Arg-Lys-Ala-Ala-Gly-Pro-Pro-Val was a weak inhibitor of the enzyme. Protein kinase C-catalyzed phosphorylation of histone III-S and the nonapeptide are regulated by identical mechanisms since with both substrates the reaction required added phospholipid and either Ca2+ (1mM) or TPA (200 nM TPA). Our findings show that polypeptides containing multiple basic residues followed by the sequence Ala-Ser can be substrates for TPA-stimulated phosphorylation by protein kinase C.  相似文献   

19.
The mitogen-activated protein kinase extracellular regulated kinase (ERK) plays a key role in the regulation of cellular proliferation. Mutations in the ERK cascade occur in 30% of malignant tumors. Thus understanding how the kinase identifies its cognate substrates as well as monitoring the activity of ERK is central to cancer research and therapeutic development. ERK binds to its protein targets, both downstream substrates and upstream activators, via a binding site distinct from the catalytic site of ERK. The substrate sequences that bind, or dock, to these sites on ERK influence the efficiency of phosphorylation. For this reason, simple peptide substrates containing only phosphorylation sequences typically possess low efficiencies for ERK. Appending short docking peptides derived from full-length protein substrates and activators of ERK to a phosphorylation sequence increased the affinity of ERK for the phosphorylation sequence by as much as 200-fold while only slightly diminishing the maximal velocity of the reaction. The efficiency of the phosphorylation reaction was increased by up to 150-fold, while the specificity of the substrate for ERK was preserved. Simple modular peptide substrates, which can be easily tailored to possess high phosphorylation efficiencies, will enhance our understanding of the regulation of ERK and provide a tool for the development of new kinase assays.  相似文献   

20.
Nearly all processes in cells are regulated by the coordinated interplay between reversible protein phosphorylation and dephosphorylation. Therefore, it is a great challenge to identify all phosphorylation substrates of a single protein kinase to understand its integration into intracellular signaling networks. In this work, we developed an assay that holds promise as being useful for the identification of phosphorylation substrates of a given protein kinase of interest. The method relies on irreversible inhibition of endogenous kinase activities with the ATP analogue 5'-fluorosulfonylbenzoyladenosine (5'FSBA). 5'FSBA-treated cell extracts are then combined with a purified activated kinase to allow phosphorylation of putative substrate proteins, followed by a two-step purification protocol and identification by fingerprint mass spectrometry. Specifically, we applied this method to identify new phosphorylation substrates of the Drosophila p21-activated kinase (PAK) protein Mbt. Among candidate proteins identified by mass spectrometry, the dynactin complex subunit dynamitin was verified as a bona fide Mbt phosphorylation substrate and interaction partner, suggesting an involvement of this PAK protein in the regulation of dynactin-dependent cellular processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号