首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fine structure of primary, secondary, and tertiary stages of Zea endodermal cell development was investigated. The casparian strip formed in situ in the anticlinal walls and remained at a fixed point relative to the endodermis-pericycle boundary. The only protoplasmic structure that had a constant spatial association with the developing strip was the plasmalemma. Plasmodesmata appeared to be more numerous on the tangential walls than on radial walls; only rarely were they located in the casparian strip. The suberized lamella developed on inner and outer tangential walls before it appeared on the radial walls. No cytoplasmic organelles were found to have any particular spatial association with this layer. The suberized lamella was about 0.04 μm thick except near plasmodesmata and along the adaxial margin of the casparian strip, where it was thicker. Occasionally it failed to form along the abaxial margin of the strip. The adherent affinity between plasmalemma and casparian strip was lost after the strip was covered by suberized lamella. The secondary wall became asymmetrically thickened by differential deposition of successive lamellae. A thin layer of secondary wall material extended across the floor of each pit. Pit cavities often contained mitochondria, and plasmodesmata were restricted to the pits. The plasmodesmata were constricted where they entered the thin layer of secondary wall material and where they penetrated the suberized lamella. The various stages of cell development tended to be asynchronous. No passage cells were observed. Endodermal cell development in Zea closely resembles that described for barley.  相似文献   

2.
Karahara I  Ikeda A  Kondo T  Uetake Y 《Planta》2004,219(1):41-47
The Casparian strip in the endodermis of vascular plant roots appears to play an important role in preventing the influx of salts into the stele through the apoplast under salt stress. The effects of salinity on the development and morphology of the Casparian strip in primary roots of maize (Zea mays L.) were studied. Compared to the controls, the strip matured closer to the root tip with increase in the ambient concentration of NaCl. During growth in 200 mM NaCl, the number and the length of the endodermal cells in the region between the root tip and the lowest position of the endodermal strip decreased, as did the apparent rate of production of cells in single files of endodermal cells (the rate of cell formation being equal to the rate at which cells are lost from the meristem). The estimated time required for an individual cell to complete the formation of the strip after generation of the cell in the presence of 200 mM NaCl was not very different from that required in controls. Thus, salinity did not substantially affect the actual process of formation of the strip in individual cells. The radial width of the Casparian strip, a morphological parameter that should be related to the effectiveness of the strip as a barrier, increased in the presence of 200 mM NaCl. The mean width of the lignified region was 0.92 m in distilled water and 1.33 m in 200 mM NaCl at the lowest position of the strip. The mean width of the strip relative to that of the radial wall at this position was significantly greater after growth in the presence of 200 mM NaCl than in the controls, namely, 20.5% in distilled water and 33.9% in 200 mM NaCl. These observations suggest that the function of the strip is enhanced under salt stress.  相似文献   

3.
J. Marc  Y. Mineyuki  B. A. Palevitz 《Planta》1989,179(4):516-529
The initiation and development of a radial array of microtubules (MTs) in guard cells of A. cepa was studied using immunofluorescence microscopy of tubulin in isolated epidermal layers. Soon after the completion of cytokinesis, MTs originate in the cortex adjacent to a central strip of the new, anticlinically oriented ventral wall separating the two guard cells. Cortical MTs extend from the mid-region of the central strip toward the cell edge where the ventral wall joins the inner periclinal wall. They then spread in a fan-like formation along the periclinal wall and gradually extend along the lateral and end walls as well. Many MTs criss-cross at various angles as they arc past the edge formed by the junction of the ventral and periclinal walls, but they do not terminate there, indicating that, contrary to previous report, the edge is not involved in MT initiation. Instead, the mid-region of the central strip appears to function as a planar MT-organizing zone. Initially, MTs radiate from this zone through the inner cytoplasm as well as the cortex. During cell expansion, however, the cortical MTs increasingly predominate and consolidate into relatively thick, long bundles, while the frequency of non-cortical MTs diminishes. The apparent density of MTs per unit surface area is maintained as the cells expand and gradually flex into an elliptical shape. The guard cells eventually separate completely at the pore site. The entire process is accomplished within about 12 h.Abbreviations DIC differential interference contrast - GC guard cell - MT microtubule To whom correspondence should be addressed.  相似文献   

4.
Adventitious roots of Primula acaulis Jacq. are characterized by broad cortex and narrow stele during the primary development. Secondary thickening of roots occurs through limited cambial growth together with secondary dilatation growth of the persisting cortex. Close to the root tip, at a distance of ca. 4 mm from the apex, Casparian bands (state I of endodermal development) within endodermal cells develop synchronously. During late, asynchronous deposition of suberin lamellae (state II of endodermal development), a positional effect is clearly expressed - suberization starts in the cells opposite to the phloem sectors of the vascular cylinder at a distance of 30 – 40 mm from the root tip. The formation of secondary walls in endodermis (state III of endodermal development) correlates with the beginning of secondary growth of the root at a distance of ca. 60 mm. Endodermis is the only cortical layer of primrose, where not only cell enlargement but also renewed cell division participate in the secondary dilatation growth. The original endodermal cells additionally divide anticlinally only once. Newly-formed radial walls acquire a typical endodermal character by forming Casparian bands and deposition of suberin lamellae. A network of endodermal Casparian bands of equal density develops during the root thickening by the tangential expansion of cells and by the formation of new radial walls with characteristic wall modifications. These data are important since little attention has been paid up till now to the density of endodermal network as a generally significant structural and functional trait of the root. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
Inada  S.  Sato  S. 《Plant and Soil》2000,226(1):117-128
In actively growing cortical cells in the elongation zone of Lemna minor L. roots, both longitudinal (radial and tangential) and transverse walls expand in both length and width. The longitudinal walls of the three types of cortical cells in the root (i.e. outer, middle and inner) showed the largest expansion in the longitudinal axis. In contrast, the inner cortical cells exhibited the least expansion in width, whereas the middle cortical cells displayed the largest expansion in width. Thus, the profiles of the expansion of longitudinal walls were characteristic for the three types of cortical cells. In this study, both the orientation of cortical microtubule (MT) arrays and their dynamic reorientation, and the density of cortical MTs, were documented and correlated to the patterns of cell wall expansion. Significantly, transverse arrays of cortical MTs were most prominent in the radial walls of the inner cortical cells, and least so in those of the middle cortical cells. Toward the base of roots, beyond the elongation zone, the orientation of cortical MTs shifted continuously from transverse to oblique and then to longitudinal. In this case, the rate of shift in the orientation of cortical MTs along the root axis was appreciably faster in the middle cortical cells than in the other two types of cortical cells. Interestingly, the continuous change in cortical MT orientation was not confirmed in the transverse walls which showed much smaller two-dimensional expansion than the radial walls. Additionally, the presence of fragmented or shortened cortical MTs rapidly increased concomitantly with the decrease of transversely oriented cortical MTs. This relationship was especially prominent in the transverse walls of the inner cortical cells, which displayed the least expansion among the three types of cortical cells investigated. In the root elongation zone, the density of cortical MTs in the inner cortical cells was about three times higher than that in the other two cortical cell types. These results indicate that in the early stage of cell expansion, the orientation of cortical MTs determines a preferential direction of cell expansion and both the shifting orientation and density of cortical MTs affect the magnitude of expansion in width of the cell wall.  相似文献   

6.
Effects of environmental factors on wood formation in Scots pine stems   总被引:10,自引:0,他引:10  
Summary To find the optimal conditions for growth and development of tracheid walls in Scots pine stems the effects of temperature and precipitation on xylem cell production by the cambium, radial cell expansion and secondary wall thickening have been studied. The observations were carried out on 10 specially chosen 50 to 60-year-old trees, growing in central Siberia, over 2 seasons. The data on the number of cells in differentiation zones and mature xylem along radial rows of tracheids, radial and tangential sizes of tracheids and their lumens were used for calculating cambial activity, the rates and durations of cell development in the zones, and both the thickness and cross sectional areas of tracheid walls. The mean day, mean maximal diurnal and mean minimal nocturnal temperatures have been shown by correlation and regression analyses to affect differentially separate stages of cytogenesis. The temperature influenced the initial division the side of xylem and radial cell expansion mainly in May–June, while the influence of precipitation increased in July–August. Throughout all seasons it was the temperature that had the main influence on the biomass accumulation in cell walls. Optimal values of temperature and precipitation for cell production by cambium, radial cell expansion and secondary wall thickening have been calculated. The data are discussed in connection with productivity and quality of wood.  相似文献   

7.
 The relationship between the cessation of cell expansion and formation of the secondary wall was investigated in the early-wood tracheids of Abies sachalinensis Masters by image analysis and field emission scanning electron microscopy. The area of the lumen and the length of the perimeter of the lumen of differentiating tracheids increased from the cambium towards the xylem. These increases had just ceased in the case of tracheids closest to the cambium in which birefringence was first detected by observations with a polarizing light microscope. Cellulose microfibrils (MFs) deposited on the innermost surfaces of radial walls were not well ordered during the expansion of cells, but well ordered MFs were deposited at the subsequent stage of cell wall formation. The first well ordered MFs were oriented in an S-helix. The well ordered MFs had already been deposited at the tracheids where birefringence was first detected under the polarizing light microscope. These results indicate that the deposition of the well ordered MFs, namely, the formation of the secondary wall, begins before the cessation of cell expansion of tracheids. Therefore, it seems that the expansion of tracheids is restricted by the deposition of the secondary wall because the cell walls become rigid simultaneously with the development of the secondary wall and, therefore, the yield point of cell walls exceeds the turgor pressure of the cell. Received: 3 July 1996 / Accepted: 24 September 1996  相似文献   

8.
Ultrastructure and development of apoplastic barriers within indeterminate root nodules formed by Vicia faba L. were examined by light and electron microscopy. The nodule outer cortex is separated from the inner cortex by a heavily suberized nodule endodermis, which matures in submeristematic regions and possesses suberin lamellae. Unsuberized passage cells are present near vascular strands, which are surrounded by a vascular endodermis attached on the inner side of the nodule endodermal cell walls. The vascular endodermis appears immediately below the meristematic apex in developmental state I (Casparian bands), gradually develops suberin lamellae, and attains developmental state II at the base of the nodule. For chemical analysis apoplastic barrier tissues were dissected after enzymatic digestion of non-impregnated tissues. Root epidermal and endodermal cell walls as well as nodule outer cortex could be isolated as pure fractions; nodule endodermal cell walls could not be separated from vascular endodermal cell walls and enclosed xylem vessels. Gas chromatography-flame ionization detection and gas chromatography-mass spectrometry were applied for quantitative and qualitative analysis of suberin and lignin in isolated cell walls of these tissues. The suberin content of isolated endodermal cell walls of nodules was approximately twice that of the root endodermal cell walls. The suberin content of the nodule outer cortex and root epidermal cell walls was less than one-tenth of that of the nodule endodermal cell wall. Substantial amounts of lignin could only be found in the nodule endodermal cell wall fraction. Organic solvent extracts of the isolated tissues revealed long-chain aliphatic acids, steroids, and triterpenoid structures of the lupeol type. Surprisingly, extract from the outer cortex consisted of 89% triterpenoids whereas extracts from all other cell wall isolates contained not more than 16% total triterpenoids. The results of ultrastructural and chemical composition are in good correspondence and underline the important role of the examined tissues as apoplastic barriers.  相似文献   

9.
Adventitious roots of marsh-grown Pontederia cordata were examined to determine cortical development and structure. The innermost layer of the ground meristem forms the endodermis and aerenchymatous cortex. The outermost layer of the early ground meristem undergoes a precise pattern of oblique and periclinal cell divisions to produce a single or double layer of prohypodermis with an anchor cell for each radial file of aerenchyma cells. At maturity, endodermal cell walls are modified only by narrow Casparian bands. The central regions of the ground meristem become proaerenchyma and exhibit asymmetric cell division and expansion. They produce an aerenchymatous zone with barrel-shaped large cells and irregularly shaped small cells traversing the aerenchyma horizontally along radii; some crystalliferous cells with raphides are present in the aerenchyma. The walls of the hypodermis are modified early by polyphenols. The outermost layer of the hypodermis later matures into an exodermis with Casparian bands that are impermeable to berberine, an apoplastic tracer dye. The nonexodermal layer(s) of the hypodermis has suberin-modified walls. Radial files of aerenchyma are usually connected by narrow protuberances near their midpoints, the aerenchyma lacunae having been produced by expansion of cells along walls lining intercellular spaces. We are terming this type of aerenchyma development, which is neither schizogenous nor lysigenous, "differential expansion."  相似文献   

10.
 Effects of temperature and precipitation on xylem cell production by the cambium, radial cell expansion and secondary wall thickening in larch stems have been studied. The observations were carried out over two seasons on ten 50- to 60-year-old trees, growing in central Siberia and chosen according to growth rate (the number of cells in radial rows of each of two of the preceding seasons was equal). The data on the number of cells in differentiation zones and mature xylem along radial rows of tracheids, radial and tangential sizes of tracheids and their lumina were used for calculating cambial activity, the rates and durations of cell development in the zones, and both the thickness and cross-sectional areas of tracheid walls. The mean day air temperature, mean maximum diurnal and mean minimum nocturnal temperatures as well as precipitation have been shown by correlation and regression analyses to affect differentially separate stages of tracheid differentiation. Throughout all the seasons it was temperature that had the main influence on the initial divisions in the xylem, radial cell expansion and biomass accumulation. However, the levels of such an effect on separate stages of cytogenesis were different, especially the influence of nocturnal temperature on xylem cell production by cambium and primary wall growth. The optimum values of temperature and precipitation for cell production by cambium, for radial cell expansion and secondary wall thickening have been calculated. These optimum values of the first and second processes proved to be practically equal, while the last differs considerably in response to temperature. The data are discussed in connection with formation of early and late tracheids. Received: 3 July 1996 / Accepted: 7 February 1997  相似文献   

11.
The Cellulose Synthase-Like D (CslD) genes have important, although still poorly defined, roles in cell wall formation. Here, we show an unexpected involvement of CslD1 from maize (Zea mays) in cell division. Both division and expansion were altered in the narrow-organ and warty phenotypes of the csld1 mutants. Leaf width was reduced by 35%, due mainly to a 47% drop in the number of cell files across the blade. Width of other organs was also proportionally reduced. In leaf epidermis, the deficiency in lateral divisions was only partially compensated by a modest, uniform increase in cell width. Localized clusters of misdivided epidermal cells also led to the formation of warty lesions, with cell clusters bulging from the epidermal layer, and some cells expanding to volumes 75-fold greater than normal. The decreased cell divisions and localized epidermal expansions were not associated with detectable changes in the cell wall composition of csld1 leaf blades or epidermal peels, yet a greater abundance of thin, dense walls was indicated by high-resolution x-ray tomography of stems. Cell-level defects leading to wart formation were traced to sites of active cell division and expansion at the bases of leaf blades, where cytokinesis and cross-wall formation were disrupted. Flow cytometry confirmed a greater frequency of polyploid cells in basal zones of leaf blades, consistent with the disruption of cytokinesis and/or the cell cycle in csld1 mutants. Collectively, these data indicate a previously unrecognized role for CSLD activity in plant cell division, especially during early phases of cross-wall formation.  相似文献   

12.

CWM, isolated cell wall material
ECW, isolated endodermal cell walls
G, guaiacyl monomer
H, p-hydroxyphenyl monomer
HCW, isolated hypodermal cell walls
RHCW, isolated rhizodermal and hypodermal cell walls
S, syringyl monomer
XV, isolated xylem vessels

Endodermal cell walls of the three dicotyledoneous species Pisum sativum L., Cicer arietinum L. and Ricinus communis L. were isolated enzymatically and analysed for the occurrence of the biopolymers lignin and suberin. From P. sativum, endodermal cell walls in their primary state of development (Casparian strips) were isolated. Related to the dry weight, these isolates contained equal amounts of suberin (2·5%) and lignin (2·7%). In contrast, the endodermal cell walls of C. arietinum and R. communis, which were nearly exclusively in their secondary state of development, contained significantly higher proportions of suberin (10–20%) and only traces of lignin (1–2%). The results of the chemical analyses were supported by a microscopic investigation of Sudan III-stained root cross-sections, showing a Casparian strip restricted to the radial walls of the endodermis of P. sativum and well-pronounced red suberin lamellae in C. arietinum and R. communis roots. Compared with recently investigated monocotyledoneous species, higher amounts of suberin by one order of magnitude were detected with the secondary state of development of dicotyledoneous species. Furthermore, the carbohydrate and protein contents of primary (Clivia miniata Reg. and Monstera deliciosa Liebm.), secondary (C. arietinum and R. communis) and tertiary endodermal cell walls (Allium cepa L. and Iris germanica L.) were determined. The relative carbohydrate content of secondary endodermal cell walls was low (14–20%) compared with the content of primary (42–50%) and tertiary endodermal cell walls (60%), whereas the protein content of isolated endodermal cell walls was high in primary (13%) and secondary (8%) and low in tertiary endodermal cell walls (0·9–2%). The results presented here indicate that the quantitative chemical composition of primary, secondary, and tertiary endodermal cell walls varies significantly. Finally, cell wall proteins are described as an additional important constituent of endodermal cell walls, with the highest concentrations occurring in primary (Casparian strips) and secondary endodermal cell walls.  相似文献   

13.
Sorghum belongs to a group of economically important, silicon accumulating plants. X-ray microanalysis coupled with environmental scanning electron microscopy (ESEM) of fresh root endodermal and leaf epidermal samples confirms histological and cultivar specificity of silicification. In sorghum roots, silicon is accumulated mostly in endodermal cells. Specialized silica aggregates are formed predominantly in a single row in the form of wall outgrowths on the inner tangential endodermal walls. The density of silica aggregates per square mm of inner tangential endodermal cell wall is around 2700 and there is no significant difference in the cultivars with different content of silicon in roots. In the leaf epidermis, silicon deposits were present in the outer walls of all cells, with the highest concentration in specialized idioblasts termed 'silica cells'. These cells are dumb-bell shaped in sorghum. In both the root endodermis and leaf epidermis, silicification was higher in a drought tolerant cultivar Gadambalia compared with drought sensitive cultivar Tabat. Silicon content per dry mass was higher in leaves than in roots in both cultivars. The values for cv. Gadambalia in roots and leaves are 3.5 and 4.1% Si, respectively, and for cv. Tabat 2.2 and 3.3%. However, based on X-ray microanalysis the amount of Si deposited in endodermal cell walls in drought tolerant cultivar (unlike the drought susceptible cultivar) is higher than that deposited in the leaf epidermis. The high root endodermal silicification might be related to a higher drought resistance.  相似文献   

14.
Summary Three successive states are recognized in the development of endodermal cells in seminal and nodal axes and primary lateral roots of barley: 1. Casparian bands in the anticlinal walls; 2. suberin lamella around the whole inner face of the wall; 3. unevenly deposited cellulosic wall thickening. These states develop asynchronously, the cells adjacent to the protoxylem pole cells always being last to mature. All cells have progressed to at least the secondary state by 32 cm from the tip in seminal axes, 48 cm from the tip in nodal axes, but only 6 cm from the tip in primary laterals. The asynchronous development gives the appearance of passage cells adjacent to the protoxylem pole cells, although all cells eventually attain the same state and degree of wall thickening. Long distance transport of calcium shows a close correlation with the incidence of suberin lamellae in the three types of root examined; it is suggested that formation of a suberin lamella effectively blocks calcium movement into the stele and, therefore, long distance transport. Plasmodesmata are present in comparable frequencies through both tangential and radial endodermal walls; they appear to maintain intercellular continuity until a late stage in development.  相似文献   

15.
Details of mouth formation in normal and exogastrulated Pisaster ochraceus larvae have been studied by light microscopy and transmission and scanning electron microscopy. As the archenteron begins to bend, the cells in the presumptive mouth region dissociate and migrate into the blastocoele where they become mesenchyme cells. This leaves a defect in the “blind” endodermal tube, which is covered by a basal lamina. Subsequently this exposed basal lamina bulges to form a blister which appears to extend across the blastocoele to make contact with spikelike projections from the future stomodeal region of the ectoderm. Mesenchyme cell processes are associated with both the basal lamina blister and the ectoderm in this region and may provide both motive power and guidance for contact. Shortly after contact is made the blister of basal lamina from the endoderm fuses with the basal lamina of the ectodermal cells and the ectoderm begins to invaginate. At this time the lateral walls of the presumptive oesophagus are largely formed of naked basal lamina with some loosely associated cells on the endodermal side. Eventually the lateral walls of the proximal part of the oesophagus become cellular, giving rise to an epithelium. A cell plug located between the stomodeum and oesophagus persists for some time before finally breaking down to complete the larval digestive tract. Experiments with exogastrulae suggest that many of these developmental patterns are determined before gastrulation.  相似文献   

16.
Electron-probe Microanalysis of Silicon in the Roots of Oryza sativa L.   总被引:1,自引:0,他引:1  
Employing the electron-probe microanalyser, the localizationof silicon in the different tissues of the mature root of ricehas been investigated. Deposition of silicon is specific tothe endodermis. The heaviest accumulation is associated withthe inner tangential walls and to some extent the radial wallsof the endodermal cells.  相似文献   

17.
By microinjecting rhodamine-conjugated pig brain tubulin into living pea stem epidermal cells it has been possible to follow cortical microtubules beneath the outer tangential wall (OTW) as they re-orientate from a transverse to a longitudinal alignment. Earlier immunofluorescence studies on fixed material have shown that parallel cortical microtubules circumnavigate the cell forming apparently continuous arrays which are transverse, oblique or longitudinal to the cell's long axis. If the array re-orientates as a whole then microtubules along the radial walls would be expected to share the alignment of those on the tangential walls. There are, however, reports that microtubules beneath the outer tangential wall have a different orientation from microtubules at the radial cell walls, raising important questions about the construction and behaviour of the array. Using computer-rotated stacks of optical sections collected by confocal scanning laser microscopy it has been possible to display the microtubules along radial as well as tangential walls of the same microinjected cells. These observations demonstrate for living epidermal cells that when microtubules are aligned longitudinally at the outer epidermal wall they remain oblique or transverse at the radial walls. The array may not therefore re-orientate as a whole but seems to undergo re-organization on only one cell face. However, despite the differing angles between the OTW and radial walls microtubules still form patterns which at the level of the confocal microscope are continuous from one cell face to another, around the cell.
It is concluded that some organizing principle attempts to establish overall organization at the cellular level but that this can be perturbed by local re-organization of dynamic microtubules in subcellular domains. This study emphasizes the importance of the outer epidermal wall and its associated cytoskeleton in initiating changes in the direction of cell expansion.  相似文献   

18.
The root endodermis forms a selective barrier that prevents the free diffusion of solutes into the vasculature; to make this barrier, endodermal cells deposit hydrophobic compounds in their cell walls, forming the Casparian strip. Here, we showed that, in contrast to vascular and epidermal root cells, endodermal root cells do not divide alongside the root apical meristem in Arabidopsis thaliana. Auxin treatment induced division of endodermal cells in wild-type plants, but not in the auxin signaling mutant auxin resistant3-1. Endodermis-specific activation of auxin responses by expression of truncated AUXIN-RESPONSIVE FACTOR5 (ΔARF5) in root endodermal cells under the control of the ENDODERMIS7 promoter (EN7::ΔARF5) also induced endodermal cell division. We used an auxin transport inhibitor to cause accumulation of auxin in endodermal cells, which induced endodermal cell division. In addition, knockout of P-GLYCOPROTEIN1 (PGP1) and PGP19, which mediate centripetal auxin flow, promoted the division of endodermal cells. Together, these findings reveal a tight link between the endodermal auxin response and endodermal cell division, suggesting that auxin is a key regulator controlling the division of root endodermal cells, and that PGP1 and PGP19 are involved in regulating endodermal cell division.

The endodermal auxin response, which is regulated by centripetal auxin flow, determines division of the endodermal cells.  相似文献   

19.
Background and Aims Latewood formation in conifers occurs during the later part of the growing season, when the cell division activity of the cambium declines. Changes in temperature might be important for wood formation in trees. Therefore, the effects of a rapid decrease in temperature on cellular morphology of tracheids were investigated in localized heating-induced cambial reactivation in Cryptomeria japonica trees and in Abies firma seedlings. Methods Electric heating tape and heating ribbon were wrapped on the stems of C. japonica trees and A. firma seedlings. Heating was discontinued when 11 or 12 and eight or nine radial files of differentiating and differentiated tracheids had been produced in C. japonica and A. firma stems, respectively. Tracheid diameter, cell wall thickness, percentage of cell wall area and percentage of lumen area were determined by image analysis of transverse sections and scanning electron microscopy. Key Results Localized heating induced earlier cambial reactivation and xylem differentiation in stems of C. japonica and A. firma as compared with non-heated stems. One week after cessation of heating, there were no obvious changes in the dimensions of the differentiating tracheids in the samples from adult C. japonica. In contrast, tracheids with a smaller diameter were observed in A. firma seedlings after 1 week of cessation of heating. Two or three weeks after cessation of heating, tracheids with reduced diameters and thickened cell walls were found. The results showed that the rapid decrease in temperature produced slender tracheids with obvious thickening of cell walls that resembled latewood cells. Conclusions The results suggest that a localized decrease in temperature of stems induces changes in the diameter and cell wall thickness of differentiating tracheids, indicating that cambium and its derivatives can respond directly to changes in temperature.  相似文献   

20.
利用紫外光显微镜、透射电子显微镜结合免疫胶体金标记,研究了杜仲(Eucommia ulmoides Oliv.)次生木质部分化过程中木质素与半纤维素组分(木葡聚糖和木聚糖)在细胞壁分布的动态变化。在形成层及细胞伸展区域,细胞壁具有木葡聚糖的分布,而没有木聚糖和木质素沉积,随着次生壁S1层的形成,木质素出现在细胞角隅和胞间层,木聚糖开始出现在S1层中,此时木葡聚糖则分布在初生壁和胞间层;随着次生,壁S2层及S3层的形成和加厚,木质逐逐步由细胞角隅和胞间层扩展到S1、S2和S3层,其沉积呈现出不均匀的块状或片状沉积模式,在次生壁各层形成与其木质化的同时,木聚糖逐渐分布于整个次生壁中,而木糖聚糖仍局限分布于初生壁和胞间层。结果表明,随着细胞次生壁的形成与木质化,细胞壁结构发生较大变化。细胞壁的不同区域,如细胞角隅、胞间层、初生壁和次生壁各层,具有不同的半纤维素组成,其与木质等细胞壁组分结构构成不同的细胞壁分子结构。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号