首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Low-fluence and long-wavelength UV-B light promotes photomorphogenic development in Arabidopsis. CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) is a positive regulator in this pathway while it is a negative regulator of the traditional photomorphogenesis triggered by far-red and visible light. We have recently reported the mechanism by which the switch of COP1 function is accomplished in distinct light contexts. In response to photomorphogenic UV-B, the photoactivated UV RESISTANCE LOCUS 8 (UVR8) associates with the COP1- SUPRESSOR OF PHYA (SPA) core complexes, resulting in the physical and functional disassociation of COP1-SPA from the CULLIN4-DAMAGED DNA BINDING PROTEIN 1 (CUL4-DDB1) E3 scaffold. These UV-B dependent UVR8-COP1-SPA complexes promote the stability and activity of ELONGATED HYPOCOTYL 5 (HY5), and eventually cause COP1 to switch from repressing to promoting photomorphogenesis. In addition, it is possible that CUL4-DDB1 might simultaneously recruit alternative DDB1 BINDING WD40 (DWD) proteins to repress this UV-B-specific signaling. Further investigation is required, however, to verify this hypothesis. Overall, the coordinated organization of various protein complexes facilitates an efficient and balanced UV-B signaling.  相似文献   

2.
Arabidopsis thaliana UV RESISTANCE LOCUS8 (UVR8) is a photoreceptor specifically for UV-B light that initiates photomorphogenic responses in plants. UV-B exposure causes rapid conversion of UVR8 from dimer to monomer, accumulation in the nucleus, and interaction with CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1), which functions with UVR8 in UV-B responses. Studies in yeast and with purified UVR8 implicate several tryptophan amino acids in UV-B photoreception. However, their roles in UV-B responses in plants, and the functional significance of all 14 UVR8 tryptophans, are not known. Here we report the functions of the UVR8 tryptophans in vivo. Three tryptophans in the β-propeller core are important in maintaining structural stability and function of UVR8. However, mutation of three other core tryptophans and four at the dimeric interface has no apparent effect on function in vivo. Mutation of three tryptophans implicated in UV-B photoreception, W233, W285, and W337, impairs photomorphogenic responses to different extents. W285 is essential for UVR8 function in plants, whereas W233 is important but not essential for function, and W337 has a lesser role. Ala mutants of these tryptophans appear monomeric and constitutively bind COP1 in plants, but their responses indicate that monomer formation and COP1 binding are not sufficient for UVR8 function.  相似文献   

3.
UV-B photon reception by the Arabidopsis thaliana homodimeric UV RESISTANCE LOCUS8 (UVR8) photoreceptor leads to its monomerization and a crucial interaction with CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1). Relay of the subsequent signal regulates UV-B-induced photomorphogenesis and stress acclimation. Here, we report that two separate domains of UVR8 interact with COP1: the β-propeller domain of UVR8 mediates UV-B-dependent interaction with the WD40 repeats-based predicted β-propeller domain of COP1, whereas COP1 activity is regulated by interaction through the UVR8 C-terminal C27 domain. We show not only that the C27 domain is required for UVR8 activity but also that chemically induced expression of the C27 domain is sufficient to mimic UV-B signaling. We further show, in contrast with COP1, that the WD40 repeat proteins REPRESSOR OF UV-B PHOTOMORPHOGENESIS1 (RUP1) and RUP2 interact only with the UVR8 C27 domain. This coincides with their facilitation of UVR8 reversion to the ground state by redimerization and their potential to interact with UVR8 in a UV-B-independent manner. Collectively, our results provide insight into a key mechanism of photoreceptor-mediated signaling and its negative feedback regulation.  相似文献   

4.
5.
6.
7.
8.
来自太阳光谱中的UV-B辐射被认为是一种重要的环境信号,可以被植物感受并诱导植物调整自身生长和发育状态以适应环境。人们对植物中光敏色素、隐花色素和蓝光受体向光素的研究已非常深入,但对植物响应UV-B的机制仅在最近才取得一些突破性进展。这些研究发现,植物中存在着UV-B受体UVR8(UV Resistance Locus 8)。目前认为,UVR8二聚体感应UV-B后瞬间解聚为单体,并与E3泛素连接酶COP1(constitutively photomorphogenic 1)相互作用,从而激活UV-B响应基因的表达。该文从UVR8的发现、UVR8的结构和感受UV-B机制、UVR8二聚体重新形成以及UV-B信号传导与可见光信号传导途径间的差异等方面综述了关于UV-B受体UVR8的最新研究成果。  相似文献   

9.
Plants experience a variety of environmental stresses such as cold, drought, freezing, flooding, wounding, heat and UV-B, all of which result in decreased productivity. Among abiotic stresses, UV-B stress is considered to be a critical factor affecting the rate of plant growth because the amount of UV-B reaching the Earth’s surface is constantly increasing. While high fluence rates of UV-B trigger stress-related processes, low fluence rates of UV-B induce photomorphogenesis, a crucial developmental process at the early seedling stage in plants. Among the signaling components involved in UV-B-mediated cellular response, a clade composed of UVR8-COP1-HY5 has been shown to be a central sequence that effectively transduces the pathway from the primary signal to adaptation response. This review summarizes the most recent progress in studies of UVR8-COP1-HY5 as the key players participating in the UV-B signal transduction pathway. The current understanding of additional UV-B signaling components including substrate receptors of multi-subunit E3 ubiquitin ligase is also discussed.  相似文献   

10.
11.
12.
13.
Light is both a source of energy and a critically important environmental signal for plant development. Through decades of research, 2 groups of photomorphogenic repressors have been identified. The first group is CONSTITUTIVE PHOTOMORPHOGENIC/DE-ETIOLATED/FUSCA (COP/DET/FUS), which were first identified by genetic screening and then by purification of protein complexes. Another group is the Phytochrome-Interacting Factors (PIFs), which were identified by yeast 2-hybrid screens using phyB as bait. How so many factors work together to repress photomorphogenesis has long been an interesting question. Previously, we demonstrated that CULLIN4 (CUL4) works as a core factor connecting the COP1-SPA complexes, the COP9 signalosome (CSN), and the COP10-DDB1-DET1 (CDD) complex. Recently, we showed that DET1 represses photomorphogenesis through positively regulating the abundance of PIF proteins in the dark. Dr. Huq and his colleagues reported that PIFs may enhance the function of COP1-SPA complexes to promote the degradation of HY5, and thus they synergistically repress photomorphogenesis in the dark. Though much work still needs to be done, these recent breakthroughs shed light on the regulatory relationships among these multiple photomorphogenic repressors.  相似文献   

14.
15.
About 95% of the ultraviolet (UV) photons reaching the Earth’s surface are UV-A (315–400 nm) photons. Plant responses to UV-A radiation have been less frequently studied than those to UV-B (280–315 nm) radiation. Most previous studies on UV-A radiation have used an unrealistic balance between UV-A, UV-B, and photosynthetically active radiation (PAR). Consequently, results from these studies are difficult to interpret from an ecological perspective, leaving an important gap in our understanding of the perception of solar UV radiation by plants. Previously, it was assumed UV-A/blue photoreceptors, cryptochromes and phototropins mediated photomorphogenic responses to UV-A radiation and “UV-B photoreceptor” UV RESISTANCE LOCUS 8 (UVR8) to UV-B radiation. However, our understanding of how UV-A radiation is perceived by plants has recently improved. Experiments using a realistic balance between UV-B, UV-A, and PAR have demonstrated that UVR8 can play a major role in the perception of both UV-B and short-wavelength UV-A (UV-Asw, 315 to ∼350 nm) radiation. These experiments also showed that UVR8 and cryptochromes jointly regulate gene expression through interactions that alter the relative sensitivity to UV-B, UV-A, and blue wavelengths. Negative feedback loops on the action of these photoreceptors can arise from gene expression, signaling crosstalk, and absorption of UV photons by phenolic metabolites. These interactions explain why exposure to blue light modulates photomorphogenic responses to UV-B and UV-Asw radiation. Future studies will need to distinguish between short and long wavelengths of UV-A radiation and to consider UVR8’s role as a UV-B/UV-Asw photoreceptor in sunlight.

In sunlight, UVR8 mediates the perception of both UV-B and short-wavelength UV-A radiation with its sensitivity moderated by blue light perceived through cryptochromes.  相似文献   

16.
UV-B-induced photomorphogenesis in Arabidopsis thaliana   总被引:4,自引:0,他引:4  
Relatively little is known about the types of photomorphogenic responses and signal transduction pathways that plants employ in response to ultraviolet-B (UV-B, 290–320 nm) radiation. In wild-type Arabidopsis seedlings, hypocotyl growth inhibition and cotyledon expansion were both reproducibly promoted by continuous UV-B. The fluence rate response of hypocotyl elongation was examined and showed a biphasic response. Whereas photomorphogenic responses were observed at low doses, higher fluences resulted in damage symptoms. In support of our theory that photomorphogenesis, but not damage, occurs at low doses of UV-B, photomorphogenic responses of UV-B sensitive mutants were indistinguishable from wild-type plants at the low dose. This allowed us to examine UV-B-induced photomorphogenesis in photoreceptor deficient plants and constitutive photomorphogenic mutants. The cry1 cryptochrome structural gene mutant, and phytochrome deficient hy1, phyA and phyB mutant seedlings resembled wild-type seedlings, while phyA/phyB double mutants were less sensitive to the photomorphogenic effects of UV-B. These results suggest that either phyA or phyB is required for UV-B-induced photomorphogenesis. The constitutive photomorphogenic mutants cop1 and det1 did not show significant inhibition of hypocotyl growth in response to UV-B, while det2 was strongly affected by UV-B irradiation. This suggests that COP1 and DET1 work downstream of the UV-B signaling pathway.  相似文献   

17.
拟南芥(Arabidopsis thaliana)蛋白UVR8(UV RESISTANCE LOCUS 8)是UV-B特异的光受体,介导UV-B诱导的光形态建成。无UV-B照射时,UVR8以二聚体的形式存在于细胞质和细胞核中。接收到UV-B光信号后,细胞质中的UVR8转移到细胞核中并解聚,之后与E3泛素连接酶COP1(CONSTITUTIVELY PHOTOMORPHOGENIC 1)相互作用,调节一系列重要的UV防御基因的表达。UVR8除了作为UV-B特异的光受体,在细胞中也具有重要作用,协调整个植物体对UV-B的应答。该文重点综述了UVR8蛋白的结构、生理功能及其介导的UV-B光信号转导分子机制等方面的研究进展。  相似文献   

18.
19.
Plants perceive UV-B radiation as an informational signal by a pathway involving UVR8 as UV-B photoreceptor, activating photomorphogenic and acclimation responses. In contrast, the response to UV-B as an environmental stress involves mitogen-activated protein kinase (MAPK) signalling cascades. Whereas the perception pathway is plant specific, the UV-B stress pathway is more broadly conserved. Knowledge of the UV-B stress-activated MAPK signalling pathway in plants is limited, and its potential interplay with the UVR8-mediated pathway has not been defined. Here, we show that loss of MAP kinase phosphatase 1 in the mutant mkp1 results in hypersensitivity to acute UV-B stress, but without impairing UV-B acclimation. The MKP1-interacting proteins MPK3 and MPK6 are activated by UV-B stress and are hyperactivated in mkp1. Moreover, mutants mpk3 and mpk6 exhibit elevated UV-B tolerance and partially suppress the UV-B hypersensitivity of mkp1. We show further that the MKP1-regulated stress-response MAPK pathway is independent of the UVR8 photoreceptor, but that MKP1 also contributes to survival under simulated sunlight. We conclude that, whereas UVR8-mediated acclimation in plants promotes UV-B-induced defence measures, MKP1-regulated stress signalling results when UV-B protection and repair are insufficient and damage occurs. The combined activity of these two mechanisms is crucial to UV-B tolerance in plants.  相似文献   

20.
COP1 (CONSTITUTIVE PHOTOMORPHOGENIC 1), a ubiquitin E3 ligase, is a central negative regulator of photomorphogenesis. However, how COP1 activity is regulated by post-translational modifications remains largely unknown. Here we show that SUMO (small ubiquitin-like modifier) modification enhances COP1 activity. Loss-of-function siz1 mutant seedlings exhibit a weak constitutive photomorphogenic phenotype. SIZ1 physically interacts with COP1 and mediates the sumoylation of COP1. A K193R substitution in COP1 blocks its SUMO modification and reduces COP1 activity in vitro and in planta. Consistently, COP1 activity is reduced in siz1 and the level of HY5, a COP1 target protein, is increased in siz1. Sumoylated COP1 may exhibits higher transubiquitination activity than does non-sumoylated COP1, but SIZ1-mediated SUMO modification does not affect COP1 dimerization, COP1-HY5 interaction, and nuclear accumulation of COP1. Interestingly, prolonged light exposure reduces the sumoylation level of COP1, and COP1 mediates the ubiquitination and degradation of SIZ1. These regulatory mechanisms may maintain the homeostasis of COP1 activity, ensuing proper photomorphogenic development in changing light environment. Our genetic and biochemical studies identify a function for SIZ1 in photomorphogenesis and reveal a novel SUMO-regulated ubiquitin ligase, COP1, in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号