首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
What's new about cadmium hyperaccumulation?   总被引:3,自引:0,他引:3  
  相似文献   

2.
3.
We describe a new method for protein affinity purification that capitalizes on the high affinity of streptavidin for biotin but does not require dissociation of the biotin–streptavidin complex for protein retrieval. Conventional reagents place both the selectively reacting group (the “warhead”) and the biotin on the same molecule. We place the warhead and the biotin on separate molecules, each linked to a short strand of peptide nucleic acid (PNA), synthetic polymers that use the same bases as DNA but attached to a backbone that is resistant to attack by proteases and nucleases. As in DNA, PNA strands with complementary base sequences hybridize. In conditions that favor PNA duplex formation, the warhead strand (carrying the tagged protein) and the biotin strand form a complex that is held onto immobilized streptavidin. As in DNA, the PNA duplex dissociates at moderately elevated temperature; therefore, retrieval of the tagged protein is accomplished by a brief exposure to heat. Using iodoacetate as the warhead, 8-base PNA strands, biotin, and streptavidin-coated magnetic beads, we demonstrate retrieval of the cysteine protease papain. We were also able to use our iodoacetyl–PNA:PNA–biotin probe for retrieval and identification of a thiol reductase and a glutathione transferase from soybean seedling cotyledons.  相似文献   

4.
What's new about old fields? Land abandonment and ecosystem assembly   总被引:6,自引:1,他引:5  
Environmental and socio-economic changes are leading to increased levels of land abandonment worldwide. The assembly of plant communities on old fields has informed much ecological theory, which in turn has facilitated efforts at ecological restoration. The interaction of the cultivation legacy with inherent soil and vegetation characteristics will determine the dynamics of plant community assembly on old fields and indicate the level of effort required to restore historical vegetation states. The abandonment of traditional agricultural lands in some areas will create old fields that require limited or no restoration. Yet intensification of agriculture and rapid environmental change will lead to increasing numbers of old fields that show little recovery towards an historic vegetation state. The restoration of these old fields will pose significant scientific and policy challenges.  相似文献   

5.
Qin S  Zhou HX 《Biopolymers》2007,86(2):112-118
The negatively charged phosphates of nucleic acids are often paired with positively charged residues upon binding proteins. It was thus counter-intuitive when previous Poisson-Boltzmann (PB) calculations gave positive energies from electrostatic interactions, meaning that they destabilize protein-nucleic acid binding. Our own PB calculations on protein-protein binding have shown that the sign and the magnitude of the electrostatic component are sensitive to the specification of the dielectric boundary in PB calculations. A popular choice for the boundary between the solute low dielectric and the solvent high dielectric is the molecular surface; an alternative is the van der Waals (vdW) surface. In line with results for protein-protein binding, in this article, we found that PB calculations with the molecular surface gave positive electrostatic interaction energies for two protein-RNA complexes, but the signs are reversed when the vdW surface was used. Therefore, whether destabilizing or stabilizing effects are predicted depends on the choice of the dielectric boundary. The two calculation protocols, however, yielded similar salt effects on the binding affinity. Effects of charge mutations differentiated the two calculation protocols; PB calculations with the vdW surface had smaller deviations overall from experimental data.  相似文献   

6.
A selection of World Wide Web sites relevant to papers published in this issue of Current Opinion in Structural Biology.  相似文献   

7.
The underlying physico-chemical principles of the interactions between domains in protein folding are similar to those between protein molecules in binding. Here we show that conserved residues and experimental hot spots at intermolecular binding interfaces overlap residues that vibrate with high frequencies. Similarly, conserved residues and hot spots are found in protein cores and are also observed to vibrate with high frequencies. In both cases, these residues contribute significantly to the stability. Hence, these observations validate the proposition that binding and folding are similar processes. In both packing plays a critical role, rationalizing the residue conservation and the experimental alanine scanning hot spots. We further show that high-frequency vibrating residues distinguish between protein binding sites and the remainder of the protein surface.  相似文献   

8.
Protein is the working molecule of the cell, and evolution is the hallmark of life. It is important to understand how protein folding and evolution influence each other. Several studies correlating experimental measurement of residue participation in folding nucleus and sequence conservation have reached different conclusions. These studies are based on assessment of sequence conservation at folding nucleus sites using entropy or relative entropy measurement derived from multiple sequence alignment. Here we report analysis of conservation of folding nucleus using an evolutionary model alternative to entropy-based approaches. We employ a continuous time Markov model of codon substitution to distinguish mutation fixed by evolution and mutation fixed by chance. This model takes into account bias in codon frequency, bias-favoring transition over transversion, as well as explicit phylogenetic information. We measure selection pressure using the ratio omega of synonymous versus non-synonymous substitution at individual residue site. The omega-values are estimated using the PAML method, a maximum-likelihood estimator. Our results show that there is little correlation between the extent of kinetic participation in protein folding nucleus as measured by experimental phi-value and selection pressure as measured by omega-value. In addition, two randomization tests failed to show that folding nucleus residues are significantly more conserved than the whole protein, or the median omega value of all residues in the protein. These results suggest that at the level of codon substitution, there is no indication that folding nucleus residues are significantly more conserved than other residues. We further reconstruct candidate ancestral residues of the folding nucleus and suggest possible test tube mutation studies for testing folding behavior of ancient folding nucleus.  相似文献   

9.
10.
11.
《Biophysical journal》2021,120(18):4115-4128
Empirically, α-helical membrane protein folding stability in surfactant micelles can be tuned by varying the mole fraction MFSDS of anionic (sodium dodecyl sulfate (SDS)) relative to nonionic (e.g., dodecyl maltoside (DDM)) surfactant, but we lack a satisfying physical explanation of this phenomenon. Cysteine labeling (CL) has thus far only been used to study the topology of membrane proteins, not their stability or folding behavior. Here, we use CL to investigate membrane protein folding in mixed DDM-SDS micelles. Labeling kinetics of the intramembrane protease GlpG are consistent with simple two-state unfolding-and-exchange rates for seven single-Cys GlpG variants over most of the explored MFSDS range, along with exchange from the native state at low MFSDS (which inconveniently precludes measurement of unfolding kinetics under native conditions). However, for two mutants, labeling rates decline with MFSDS at 0–0.2 MFSDS (i.e., native conditions). Thus, an increase in MFSDS seems to be a protective factor for these two positions, but not for the five others. We propose different scenarios to explain this and find the most plausible ones to involve preferential binding of SDS monomers to the site of CL (based on computational simulations) along with changes in size and shape of the mixed micelle with changing MFSDS (based on SAXS studies). These nonlinear impacts on protein stability highlights a multifaceted role for SDS in membrane protein denaturation, involving both direct interactions of monomeric SDS and changes in micelle size and shape along with the general effects on protein stability of changes in micelle composition.  相似文献   

12.
The cellular fatty acid-binding proteins (FABP) and cellular retinoid (retinol, retinoic acid)-binding proteins (CRtBP) are structurally and functionally-defined groups within an evolutionarily conserved gene family. CRtBP are expressed in both fully differentiated and developing tissues in a manner that supports a relationship to the action of retinoic acid in morphogenesis and cellular differentiation. The FABP are, by contrast, expressed only in fully differentiated tissues in a manner compatible with a major function in the metabolism of long-chain fatty acids (LCFA) for energy production or storage. The precise function(s) of FABP and CRtBP remain imperfectly understood, while subspecialization of function(s) within the two groups is suggested by the complex diversity in both of structurally distinct members that display striking tissue and temporal specificity of expression in addition to ligand specificity. Notwithstanding this considerable apparent functional diversity among the FABP and CRtBP, available evidence supports a dual set of generic functions for both protein groups in a) promoting cellular flux of poorly water-soluble ligands and their subsequent metabolic utilization or transformation, and b) sequestration of ligands in a manner that limits their association with alternative binding sites within the cell, of which members of the steroid hormone nuclear receptor superfamily (HNR) are a potentially important category. Theoretical as well as experimental models probing diffusional fluxes of LCFAin vitro and in living cells have provided support for a function for FABP in intracellular LCFA transport. Protein-bound ligand also appears to provide the substrate for metabolic transformation of retinoids bound to CRtBP, but convincing evidence is lacking for an analogous mechanism in the direct facilitation of fatty acid utilization by FABP. An emerging relationship between FABP and CRtBP function centers on their binding of, and induction by, ligands which activate or transform specific HNR-the retinoic acid receptors and the peroxisome proliferator activated receptor in the case of CRtBP and FABP, respectively. Evidence consistent with both a promotive role (provision of ligands for HNR) and a protective role (limiting availability of free ligand for HNR association) has been advanced for CRtBP. Available data supports a protective function for cellular retinoic acid-binding proteins (CRABP) and liver FABP (L-FABP) and points to the existence of ligand-defined, lipid-binding-protein-HNR relationships in which CRABP serve to attenuate the induction of gene expression by retinoic acid, and in which L-FABP may modulate a cellular adaptive multigene response to increased LCFA flux or compromised LCFA utilization. Furthermore, the emerging role of LCFA in the regulation of gene expression combined with the complex interplay between heterologous HNR-ligand associations and gene cross-regulation implies an important potential interaction between FABP, CRtBP, and their respective ligands in gene regulation.Abbreviations A-FABP Adipocyte Fatty Acid-Binding Protein - CRABP Cellular Retinoic Acid-Binding Protein(s) - CRABP I Cellular Retinoic Acid-Binding Protein type I - CRABP II Cellular Retinoic Acid-Binding Protein type II - CRBP Cellular Retinol-Binding Protein(s) - CRBP Cellular Retinol-Binding Protein typy I - CRBP II Cellular Retinol-Binding Protein type II - CRtBP Cellular Retinoid-Binding Proteins - FABP Fatty Acid-Binding Protein - H-FABP Heart Fatty Acid-Binding Protein - HNR steroid Hormone-type Nuclear Receptor - I-FABP Intestinal Fatty Acid-Binding Protein - LCFA Long-Chain Fatty Acids - L-FABP Liver Fatty Acid-Binding Protein - NBD-stearate 12-(N-methyl)-N-(7-nitrobenzo-2-oxa-1,3,-diazol-4-yl)amino)-octadecanoic acid - PPAR Peroxisome Proliferator-Activated Receptor - RAR Retinoic Acid Receptor(s) - RARE Retinoic Acid Response Element - RXR Retinoic acid X Receptors(s) - RXRE Retinoic acid X Response Element  相似文献   

13.
14.
Sensitivity of the electron paramagnetic resonance (CW EPR) to molecular tumbling provides potential means for studying processes of molecular association. It uses spin-labeled macromolecules, whose CW EPR spectra may change upon binding to other macromolecules. When a spin-labeled molecule is mixed with its liganding partner, the EPR spectrum constitutes a linear combination of spectra of the bound and unbound ligand (as seen in our example of spin-labeled cytochrome c 2 interacting with cytochrome bc 1 complex). In principle, the fraction of each state can be extracted by the numerical decomposition of the spectrum; however, the accuracy of such decomposition may often be compromised by the lack of the spectrum of the fully bound ligand, imposed by the equilibrium nature of molecular association. To understand how this may affect the final estimation of the binding parameters, such as stoichiometry and affinity of the binding, a series of virtual titration experiments was conducted. Our non-linear regression analysis considered a case in which only a single class of binding sites exists, and a case in which classes of both specific and non-specific binding sites co-exist. The results indicate that in both models, the error due to the unknown admixture of the unbound ligand component in the EPR spectrum causes an overestimation of the bound fraction leading to the bias in the dissociation constant. At the same time, the stoichiometry of the binding remains relatively unaffected, which overall makes the decomposition of the EPR spectrum an attractive method for studying protein–protein interactions in equilibrium. Our theoretical treatment appears to be valid for any spectroscopic techniques dealing with overlapping spectra of free and bound component.  相似文献   

15.
16.

Background

Epidemiological and molecular findings suggest a relationship between Alzheimer’s disease (AD) and dyslipidemia, although the nature of this association is not well understood.

Results

Using linear mixed effects models, we investigated the relationship between CSF levels of heart fatty acid binding protein (HFABP), a lipid binding protein involved with fatty acid metabolism and lipid transport, amyloid-β (Aβ), phospho-tau, and longitudinal MRI-based measures of brain atrophy among 295 non-demented and demented older individuals. Across all participants, we found a significant association of CSF HFABP with longitudinal atrophy of the entorhinal cortex and other AD-vulnerable neuroanatomic regions. However, we found that the relationship between CSF HABP and brain atrophy was significant only among those with low CSF Aβ1–42 and occurred irrespective of phospho-tau181p status.

Conclusions

Our findings indicate that Aβ-associated volume loss occurs in the presence of elevated HFABP irrespective of phospho-tau. This implicates a potentially important role for fatty acid binding proteins in Alzheimer’s disease neurodegeneration.
  相似文献   

17.
18.
19.
Kaya F  Belin S  Diamantidis G  Fontes M 《FEBS letters》2008,582(25-26):3614-3618
Recently, using an animal model of Charcot-Marie-Tooth human disorder, we showed that ascorbic acid (AA) represses PMP22 gene expression by acting on intracellular cAMP concentrations. In this work, we present kinetics data on the inhibitory effect of AA upon adenylate cyclase activity. The data show that this molecule acts as a competitive inhibitor of the enzyme, a finding that opens new pharmacological avenues.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号