共查询到20条相似文献,搜索用时 0 毫秒
1.
Enhanced Fusion Pore Expansion Mediated by the Trans-Acting Endodomain of the Reovirus FAST Proteins
The reovirus fusion-associated small transmembrane (FAST) proteins are virus-encoded membrane fusion proteins that function as dedicated cell–cell fusogens. The topology of these small, single-pass membrane proteins orients the majority of the protein on the distal side of the membrane (i.e., inside the cell). We now show that ectopic expression of the endodomains of the p10, p14, and p15 FAST proteins enhances syncytiogenesis induced by the full-length FAST proteins, both homotypically and heterotypically. Results further indicate that the 68-residue cytoplasmic endodomain of the p14 FAST protein (1) is endogenously generated from full-length p14 protein expressed in virus-infected or transfected cells; (2) enhances syncytiogenesis subsequent to stable pore formation; (3) increases the syncytiogenic activity of heterologous fusion proteins, including the differentiation-dependent fusion of murine myoblasts; (4) exerts its enhancing activity from the cytosol, independent of direct interactions with either the fusogen or the membranes being fused; and (5) contains several regions with protein–protein interaction motifs that influence enhancing activity. We propose that the unique evolution of the FAST proteins as virus-encoded cellular fusogens has allowed them to generate a trans-acting, soluble endodomain peptide to harness a cellular pathway or process involved in the poorly understood process that facilitates the transition from microfusion pores to macrofusion and syncytiogenesis. 相似文献
2.
Jolene Read Eileen K. Clancy Muzaddid Sarker Roberto de Antueno David N. Langelaan Hiren B. Parmar Kyungsoo Shin Jan K. Rainey Roy Duncan 《PLoS pathogens》2015,11(6)
Pore formation is the most energy-demanding step during virus-induced membrane fusion, where high curvature of the fusion pore rim increases the spacing between lipid headgroups, exposing the hydrophobic interior of the membrane to water. How protein fusogens breach this thermodynamic barrier to pore formation is unclear. We identified a novel fusion-inducing lipid packing sensor (FLiPS) in the cytosolic endodomain of the baboon reovirus p15 fusion-associated small transmembrane (FAST) protein that is essential for pore formation during cell-cell fusion and syncytiogenesis. NMR spectroscopy and mutational studies indicate the dependence of this FLiPS on a hydrophobic helix-loop-helix structure. Biochemical and biophysical assays reveal the p15 FLiPS preferentially partitions into membranes with high positive curvature, and this partitioning is impeded by bis-ANS, a small molecule that inserts into hydrophobic defects in membranes. Most notably, the p15 FLiPS can be functionally replaced by heterologous amphipathic lipid packing sensors (ALPS) but not by other membrane-interactive amphipathic helices. Furthermore, a previously unrecognized amphipathic helix in the cytosolic domain of the reptilian reovirus p14 FAST protein can functionally replace the p15 FLiPS, and is itself replaceable by a heterologous ALPS motif. Anchored near the cytoplasmic leaflet by the FAST protein transmembrane domain, the FLiPS is perfectly positioned to insert into hydrophobic defects that begin to appear in the highly curved rim of nascent fusion pores, thereby lowering the energy barrier to stable pore formation. 相似文献
3.
Fusogenic reoviruses utilize the FAST proteins, a novel family of nonstructural viral membrane fusion proteins, to induce cell-cell fusion and syncytium formation. Unlike the paradigmatic enveloped virus fusion proteins, the FAST proteins position the majority of their mass within and internal to the membrane in which they reside, resulting in extended C-terminal cytoplasmic tails (CTs). Using tail truncations, we demonstrate that the last 8 residues of the 36-residue CT of the avian reovirus p10 FAST protein and the last 20 residues of the 68-residue CT of the reptilian reovirus p14 FAST protein enhance, but are not required for, pore expansion and syncytium formation. Further truncations indicate that the membrane-distal 12 residues of the p10 and 47 residues of the p14 CTs are essential for pore formation and that a residual tail of 21 to 24 residues that includes a conserved, membrane-proximal polybasic region present in all FAST proteins is insufficient to maintain FAST protein fusion activity. Unexpectedly, a reextension of the tail-truncated, nonfusogenic p10 and p14 constructs with scrambled versions of the deleted sequences restored pore formation and syncytiogenesis, while reextensions with heterologous sequences partially restored pore formation but failed to rescue syncytiogenesis. The membrane-distal regions of the FAST protein CTs therefore exert multiple effects on the membrane fusion reaction, serving in both sequence-dependent and sequence-independent manners as positive effectors of pore formation, pore expansion, and syncytiogenesis.The only examples of nonenveloped viruses that induce cell-cell fusion and syncytium formation occur within the family Orthoreoviridae, an extremely diverse group of viruses containing segmented double-stranded RNA genomes (9). In recent years, the viral proteins responsible for the syncytiogenic phenotype of the fusogenic orthoreoviruses and aquareoviruses have been identified and characterized (14, 18, 41, 46). These fusion-associated small transmembrane (FAST) proteins define a new family of viral fusogens with several unique biological and biophysical properties. Unlike the well-characterized enveloped virus fusion proteins, reovirus FAST proteins are nonstructural viral proteins and are therefore not involved in mediating virus-cell fusion and virus entry (18, 21, 46). The FAST proteins are instead dedicated to inducing cell-cell fusion and syncytium formation following their expression and trafficking to the plasma membrane of virus-infected or transfected cells (14, 17, 46). Data from previously reported studies also suggest that the FAST proteins serve as virulence factors for the fusogenic reoviruses, promoting virus dissemination and increased tissue destruction (6, 43). How this atypical family of viral fusogens functions to mediate cell-cell membrane fusion remains unclear.The unusual biological role of the FAST proteins as nonstructural, virus-encoded, “cellular” fusogens is embodied in structural features that clearly distinguish the FAST proteins from the membrane fusion proteins of enveloped viruses. There are currently four distinct members of the FAST protein family, named according to their molecular masses: the homologous p10 proteins of avian reovirus (ARV) and Nelson Bay reovirus and the unrelated p14, p15, and p22 proteins of reptilian reovirus (RRV), baboon reovirus, and Atlantic salmon aquareovirus, respectively (14, 18, 41, 46). These proteins are the smallest known fusogens, ranging from 95 to 198 amino acids in size, and assume an asymmetric topology in the plasma membrane, with a single transmembrane domain that separates small N-terminal ectodomains of ∼20 to 41 residues from equal-sized or considerably larger C-terminal endodomains of ∼36 to 141 residues (Fig. (Fig.1A).1A). A number of structural motifs in both the ecto- and endodomains of the FAST proteins have been identified, including sites of acylation, hydrophobic patches, a membrane-proximal polybasic region, and regions rich in proline, cysteine, or arginine, proline, and histidine. Each of the FAST proteins has its own signature repertoire and arrangement of these motifs. Determining how these various motifs contribute to the fusogenic activity of the FAST proteins remains an area of active investigation.Open in a separate windowFIG. 1.ARV p10 and RRV p14 FAST protein topologies and tail truncations. (A) Diagrammatic representation of the p10 and p14 FAST proteins showing their topology in the plasma membrane. Both are single-pass transmembrane proteins with N-terminal ectodomains on the surface of cells and C-terminal endodomains in the cytoplasm. Structural motifs include hydrophobic patches (HP), polybasic motifs (PB), fatty acid modifications (indicated by squiggly lines) that are either the N-terminal myristoylation or palmitoylation of a dicysteine motif (CC), and a polyproline motif (PP). The total number of residues in each protein is indicated by the numbers. (B) The amino acid sequences of the p10 and p14 endodomains are shown, along with the motifs described above. Progressive truncations of the CTs were constructed (arrows), with the numbers indicating the last amino acid present in the full-length proteins or each truncation.Numerous studies of diverse fusion processes define five general steps of the pathway for membrane fusion and syncytium formation: membrane binding, close membrane apposition, hemifusion (i.e., the mixing of the outer leaflets of the two bilayers), stable pore formation, and pore expansion (12, 13, 44). The well-characterized enveloped virus fusion proteins utilize extensive structural rearrangement of their complex ectodomains to provide mechanical energy to draw membranes into close proximity and promote membrane merger (21, 53). The limited size of the FAST protein ectodomains precludes such a mechanical model for membrane fusion, necessitating the development of alternate models to explain how the diminutive FAST proteins breach the thermodynamic barriers that prevent the spontaneous merger of biological membranes. The FAST proteins are both necessary and sufficient to mediate membrane fusion (51). However, data from recent studies indicate that for maximal cell fusion activity, the FAST proteins rely on surrogate adhesins to mediate close membrane apposition (42). Data from recent studies also indicate that a small percentage of the p14 FAST protein expressed in virus-infected or transfected cells is proteolytically processed to generate a bioactive, soluble endodomain that recruits cellular pathways to drive the expansion of stable fusion pores into the extended fusion apertures needed for syncytium formation (50). The FAST proteins therefore utilize accessory proteins to mediate the prefusion (membrane binding and apposition) and postfusion (pore expansion) stages of syncytiogenesis, retaining within their rudimentary structures all that is required to mediate the actual process of membrane merger. This subdivision of the multistep process of syncytium formation is reflected in, and is perfectly suited to, the evolution of the FAST proteins as virus-encoded cellular fusogens.The small size of the FAST protein ectodomains and their donor membrane-focused topology contrast markedly with enveloped virus fusion proteins that position the majority of their mass external to the membrane. While the complex ectodomains of the enveloped virus fusion proteins clearly play an essential role in the fusion reaction, the involvement of their cytoplasmic tails (CTs) is far less certain, and no consistent picture of the role of these C-terminal tails has emerged. The CTs of many enveloped viral fusion proteins, including baculovirus (31), severe acute respiratory syndrome coronavirus (5), vesicular stomatitis virus (36), parainfluenza virus type 2 (56), and influenza A virus subtype H3 (10), play no role in the membrane fusion reaction. Of the fusion protein tails that do modulate the fusion reaction, the majority serve inhibitory roles, including the F proteins of measles virus and parainfluenza virus type 5 SER (7, 45, 52), glycoprotein B from several herpesviruses (22, 24, 28), and the fusion proteins of numerous retroviruses (1, 8, 30, 32, 34, 47, 48). These inhibitory cytoplasmic domains alter the conformation of the fusion protein ectodomains, thereby coupling virion maturation to fusion competence (1, 2, 35, 52, 54). In the few cases where extensive tail truncations adversely affect fusion, these truncations generally decrease but do not eliminate syncytiogenesis, and it is the membrane-proximal portion of the tail that promotes pore formation or pore expansion (20, 25, 26, 32).Since the FAST proteins are nonstructural viral proteins, their CTs (also referred to as endodomains) are not required to suppress fusion activity until after virus particle assembly. At the same time, the disproportionate size of their endodomains strongly suggests that these CTs play an important role in membrane fusion activity. Although one such role of the p14 CT is the generation of a soluble endodomain that recruits cellular factors involved in pore expansion, the majority of p14 is not proteolytically processed, suggesting that FAST protein CTs may serve additional roles as components of the intact protein (50). We now show that C-terminal truncations of the p10 and p14 FAST proteins reduced and eventually eliminated cell-cell fusion. Fluorescence-based pore formation assays coupled with tail reextension studies further revealed that FAST protein CTs drive fusion pore formation and expansion in both sequence-dependent and sequence-independent manners. The membrane-distal regions of FAST protein CTs therefore exert multiple effects on the mechanism of membrane fusion. 相似文献
4.
Characterization of Thermobifida fusca Cutinase-Carbohydrate-Binding Module Fusion Proteins and Their Potential Application in Bioscouring 总被引:2,自引:0,他引:2
Yao Zhang Sheng Chen Meng Xu Artur Cavoco-Paulo Jing Wu Jian Chen 《Applied and environmental microbiology》2010,76(20):6870-6876
Cutinase from Thermobifida fusca is thermally stable and has potential application in the bioscouring of cotton in the textile industry. In the present study, the carbohydrate-binding modules (CBMs) from T. fusca cellulase Cel6A (CBMCel6A) and Cellulomonas fimi cellulase CenA (CBMCenA) were fused, separately, to the carboxyl terminus of T. fusca cutinase. Both fusion enzymes, cutinase-CBMCel6A and cutinase-CBMCenA, were expressed in Escherichia coli and purified to homogeneity. Enzyme characterization showed that both displayed similar catalytic properties and pH stabilities in response to T. fusca cutinase. In addition, both fusion proteins displayed an activity half-life of 53 h at their optimal temperature of 50°C. Compared to T. fusca cutinase, in the absence of pectinase, the binding activity on cotton fiber was enhanced by 2% for cutinase-CBMCel6A and by 28% for cutinase-CBMCenA, whereas in the presence of pectinase, the binding activity was enhanced by 40% for the former and 45% for the latter. Notably, a dramatic increase of up to 3-fold was observed in the amount of released fatty acids from cotton fiber by both cutinase-CBM fusion proteins when acting in concert with pectinase. This is the first report of improving the scouring efficiency of cutinase by fusing it with CBM. The improvement in activity and the strong synergistic effect between the fusion proteins and pectinase suggest that they may have better applications in textile bioscouring than the native cutinase.Cotton fiber has a multilayered structure, with its outermost surface being the cuticle that is cross-linked to the primary cell wall of cotton fiber by esterified pectin substances. The major component of the cuticle is cutin, an insoluble polyester composed mainly of saturated C16 and C18 hydroxy and epoxy fatty acids (14, 16, 27, 38). During the process of scouring in the textile industry, the cuticle layer has to be removed in order to improve the wettability of cotton fiber, which then facilitates uniform dyeing and finishing. Traditionally, this process is performed by hot hydrolysis in alkaline medium, which not only consumes large quantities of water and energy but also causes severe pollution and fiber damage (20, 21, 33). Therefore, environment-friendly scouring methods based on biocatalysts have been actively sought (2, 30, 36).Cutinase is a multifunctional esterase capable of degrading the cutin component of the cuticle. Earlier reports showed that the fungal cutinase from Fusarium solani pisi has potential use for cotton cuticle degradation and exhibits a good synergistic effect with pectinase, an enzyme utilized to degrade pectin, in the scouring of cotton fiber (1, 7, 8, 14). Moreover, site-directed mutagenesis has been performed to replace the specific amino acid residues near the active site of cutinase (3) to improve its hydrolytic activity toward polyesters. More recently, a cutinase from the thermophilic bacterium Thermobifida fusca has been identified and overexpressed in Escherichia coli in our laboratory (10). The good thermal stability and alkali resistance of this recombinant T. fusca cutinase make it potentially more amenable to textile bioscouring (10).To further improve the applicability and/or catalytic efficiency of T. fusca cutinase, the present study attempts to engineer a novel cutin-degrading enzyme, based on analysis of the surface structure of cotton fiber. It has been observed that, in addition to cutin, pectin, proteins and other components, there is also a large amount of cellulose on the surface layer of cotton fiber (23). Thus, it is tempting to hypothesize that if the enzyme can be engineered to specifically bind to cellulose through a “gain of function” modification, its concentration on the surface of cotton fiber could increase significantly. Subsequently, its catalytic efficiency for cutin breakdown could be improved due to a proximity effect. In order to design such an enzyme, a fusion protein strategy in which a cellulose-binding protein/module will be attached to cutinase is considered.It is well known that cellulase is capable of binding specifically to cellulose (25, 31). This enzyme has two separate modules: a catalytic module and a carbohydrate-binding module (CBM) (11). The two modules are discrete structural and functional units usually connected by a flexible linker (5, 17, 28). CBM has high specific capacities for cellulose binding. Previously, it has been reported that CBM is able to be fused to a chosen target protein by genetic manipulation (36), resulting in enhanced binding of this fusion protein to cellulose (6, 29). For example, fusion proteins were constructed by fusing CBM to β-glucose nucleotide enzyme (GUS) (13) or β-glycosidase (BglA) (19), which facilitates biochemical analysis of scouring efficiency for cotton fabrics.In the present study, the CBM from T. fusca cellulase Cel6A (CBMCel6A) and the CBM from Cellulomonas fimi cellulase CenA (CBMCenA) were fused, separately, to the carboxyl terminus of T. fusca cutinase. The resulting fusion enzymes were compared to the native cutinase in terms of their biochemical properties, as well as the catalytic efficiency in cutin breakdown on cotton fiber. This is the first report of improving the scouring efficiency of cutinase by fusing it with CBM. 相似文献
5.
6.
Christopher Barry Tim Key Rami Haddad Roy Duncan 《The Journal of biological chemistry》2010,285(22):16424-16433
The reovirus fusion-associated small transmembrane (FAST) proteins are the smallest known viral membrane fusion proteins. With ectodomains of only ∼20–40 residues, it is unclear how such diminutive fusion proteins can mediate cell-cell fusion and syncytium formation. Contained within the 40-residue ectodomain of the p10 FAST protein resides an 11-residue sequence of moderately apolar residues, termed the hydrophobic patch (HP). Previous studies indicate the p10 HP shares operational features with the fusion peptide motifs found within the enveloped virus membrane fusion proteins. Using biotinylation assays, we now report that two highly conserved cysteine residues flanking the p10 HP form an essential intramolecular disulfide bond to create a cystine loop. Mutagenic analyses revealed that both formation of the cystine loop and p10 membrane fusion activity are highly sensitive to changes in the size and spatial arrangement of amino acids within the loop. The p10 cystine loop may therefore function as a cystine noose, where fusion peptide activity is dependent on structural constraints within the noose that force solvent exposure of key hydrophobic residues. Moreover, inhibitors of cell surface thioreductase activity indicate that disruption of the disulfide bridge is important for p10-mediated membrane fusion. This is the first example of a viral fusion peptide composed of a small, spatially constrained cystine loop whose function is dependent on altered loop formation, and it suggests the p10 cystine loop represents a new class of viral fusion peptides. 相似文献
7.
Protein labeling experiments confirm the surface location of proteins 2 and 5 in bluetongue virus, and proteins sigma3 and mu2 in reovirus. Lambda 2 is the major surface component of the reovirus core, and proteins 1, 3, and 4 appear to be the outer components of the bluetongue virus subviral particle. 相似文献
8.
To recycle reduced sulfur to methionine in the methionine salvage pathway (MSP), 5-methylthioribulose-1-phosphate is converted to 2-keto-4-methylthiobutyrate, the methionine precursor, by four steps; dehydratase, enolase, phosphatase, and dioxygenase reactions (catalyzed by MtnB, MtnW, MtnX and MtnD, respectively, in Bacillus subtilis). It has been proposed that the MtnBD fusion enzyme in Tetrahymena thermophila catalyzes four sequential reactions from the dehydratase to dioxygenase steps, based on the results of molecular biological analyses of mutant yeast strains with knocked-out MSP genes, suggesting that new catalytic function can be acquired by fusion of enzymes. This result raises the question of how the MtnBD fusion enzyme can catalyze four very different reactions, especially since there are no homologous domains for enolase and phosphatase (MtnW and MtnX, respectively, in B. subtilis) in the peptide. Here, we tried to identify the domains responsible for catalyzing the four reactions using recombinant proteins of full-length MtnBD and each domain alone. UV-visible and 1H-NMR spectral analyses of reaction products revealed that the MtnB domain catalyzes dehydration and enolization and the MtnD domain catalyzes dioxygenation. Contrary to a previous report, conversion of 5-methylthioribulose-1-phosphate to 2-keto-4-methylthiobutyrate was dependent on addition of an exogenous phosphatase from B. subtilis. This was observed for both the MtnB domain and full-length MtnBD, suggesting that MtnBD does not catalyze the phosphatase reaction. Our results suggest that the MtnB domain of T. thermophila MtnBD acquired the new function to catalyze both the dehydratase and enolase reactions through evolutionary gene mutations, rather than fusion of MSP genes. 相似文献
9.
Christian Hofmann Iain M. Cheeseman Bruce L. Goode Kent L. McDonald Georjana Barnes David G. Drubin 《The Journal of cell biology》1998,143(4):1029-1040
In this paper, we describe the identification and characterization of two novel and essential mitotic spindle proteins, Duo1p and Dam1p. Duo1p was isolated because its overexpression caused defects in mitosis and a mitotic arrest. Duo1p was localized by immunofluorescence, by immunoelectron microscopy, and by tagging with green fluorescent protein (GFP), to intranuclear spindle microtubules and spindle pole bodies. Temperature-sensitive duo1 mutants arrest with short spindles. This arrest is dependent on the mitotic checkpoint. Dam1p was identified by two-hybrid analysis as a protein that binds to Duo1p. By expressing a GFP–Dam1p fusion protein in yeast, Dam1p was also shown to be associated with intranuclear spindle microtubules and spindle pole bodies in vivo. As with Duo1p, overproduction of Dam1p caused mitotic defects. Biochemical experiments demonstrated that Dam1p binds directly to microtubules with micromolar affinity. We suggest that Dam1p might localize Duo1p to intranuclear microtubules and spindle pole bodies to provide a previously unrecognized function (or functions) required for mitosis. 相似文献
10.
11.
Klaus Heese 《Molecular neurobiology》2013,47(3):1103-1111
12.
13.
Christoph Q. Schmidt Haydyn D.T. Mertens Dinesh C. Soares Dusan Uhrin Dmitri I. Svergun 《Journal of molecular biology》2010,395(1):105-122
The first eight and the last two of 20 complement control protein (CCP) modules within complement factor H (fH) encompass binding sites for C3b and polyanionic carbohydrates. These binding sites cooperate self-surface selectively to prevent C3b amplification, thus minimising complement-mediated damage to host. Intervening fH CCPs, apparently devoid of such recognition sites, are proposed to play a structural role. One suggestion is that the generally small CCPs 10-15, connected by longer-than-average linkers, act as a flexible tether between the two functional ends of fH; another is that the long linkers induce a 180° bend in the middle of fH. To test these hypotheses, we determined the NMR-derived structure of fH12-13 consisting of module 12, shown here to have an archetypal CCP structure, and module 13, which is uniquely short and features a laterally protruding helix-like insertion that contributes to a prominent electropositive patch. The unusually long fH12-13 linker is not flexible. It packs between the two CCPs that are not folded back on each other but form a shallow vee shape; analytical ultracentrifugation and X-ray scattering supported this finding. These two techniques additionally indicate that flanking modules (within fH11-14 and fH10-15) are at least as rigid and tilted relative to neighbours as are CCPs 12 and 13 with respect to one another. Tilts between successive modules are not unidirectional; their principal axes trace a zigzag path. In one of two arrangements for CCPs 10-15 that fit well with scattering data, CCP 14 is folded back onto CCP 13. In conclusion, fH10-15 forms neither a flexible tether nor a smooth bend. Rather, it is compact and has embedded within it a CCP module (CCP 13) that appears to be highly specialised given both its deviant structure and its striking surface charge distribution. A passive, purely structural role for this central portion of fH is unlikely. 相似文献
14.
羧端部分缺失的HCV核心蛋白的融合表达,免疫原性及其应用 总被引:1,自引:0,他引:1
构建了丙型肝炎病毒核心蛋白的全长及N端和N端与谷胱甘肽巯基转移酶(GST)的融合表达克隆,比较了在不同大肠杆菌中的表达。表达蛋白为水溶性,经ELISA和蛋白质印迹分析,GSTC191的表达和稳定性都较差,GSTC69和GSTC40具有良好的稳定性,用GST亲和柱一步纯化,纯度可达90%,免疫小鼠可产生高滴度的抗体。应用表达的GSTC69和GSTC40抗原,检测人血清中的HCV核心蛋白抗体,初步结果 相似文献
15.
16.
17.
18.
Elisa Ventura Francesca Sassi Sara Fossati Arianna Parodi William Blalock Enrica Balza Patrizia Castellani Laura Borsi Barbara Carnemolla Luciano Zardi 《The Journal of biological chemistry》2009,284(39):26646-26654
We report a novel strategy to engineer and express stable and soluble human recombinant polyvalent/polyspecific fusion proteins. The procedure is based on the use of a central skeleton of uteroglobin, a small and very soluble covalently linked homodimeric protein that is very resistant to proteolytic enzymes and to pH variations. Using a human recombinant antibody (scFv) specific for the angiogenesis marker domain B of fibronectin, interleukin 2, and an scFv able to neutralize tumor necrosis factor-α, we expressed various biologically active uteroglobin fusion proteins. The results demonstrate the possibility to generate monospecific divalent and tetravalent antibodies, immunocytokines, and dual specificity tetravalent antibodies. Furthermore, compared with similar fusion proteins in which uteroglobin was not used, the use of uteroglobin improved properties of solubility and stability. Indeed, in the reported cases it was possible to vacuum dry and reconstitute the proteins without any aggregation or loss in protein and biological activity.The generation of recombinant polyvalent and/or polyspecific fusion proteins for use as components of novel drugs is still hindered by factors that limit their production, storage, and use, chief of which are issues related to instability and/or inadequate solubility. Here we describe a novel approach based on the use of uteroglobin (UG)3 as a skeleton for the generation of polyvalent/polyspecific recombinant proteins. Human UG is a small (15.8 kDa) globular, nonglycosylated, and homodimeric secreted protein that was discovered independently by two groups in the 1960s in rabbit uterus (1, 2), and it is the first member of a new superfamily of proteins, the so-called Secretoglobins (Scgb) (3). UG is present in the blood at a concentration of about 15 μg/ml and is found in urine and in other body fluids. The UG monomer is composed of about 70 amino acids, depending on the species, and is organized in a four α-helix secondary structure; the two subunits are joined in an anti-parallel fashion by disulfide bridges established between two highly conserved cysteine residues in amino- and carboxyl-terminal positions (4) (see Fig. 1). The exact functions of UG are not yet clear, but the protein has been reported to have anti-inflammatory properties due to its ability to inhibit the soluble phospholipase A2. Moreover, UG contains a central hydrophobic cavity able to accommodate hydrophobic molecules such as progesterone, retinol, and prostaglandin D2. Theoretically, this cavity could be loaded with different types of therapeutic hydrophobic substances and delivered to targets (for exhaustive reviews on UG, see Refs. 5, 6 and references therein).Open in a separate windowFIGURE 1.Central part of the figure depicts the ribbon structure of the oxidized homodimer of UG (adapted with permission from Ref. 4). A–E show the schemes of the various fusion proteins produced using UG as a central core. L19 is an scFv specific for the angiogenesis-associated FN isoform, and D2E7 is an scFv able to neutralize TNF-α.The high solubility and stability of UG to pH and temperature variations, its resistance to proteases, and its homodimeric structure prompted us to consider the protein as a candidate linker for the generation of polyvalent and polyspecific recombinant proteins. We demonstrate here that the use of UG as a linker could provide a general method for the generation of covalently linked bivalent and tetravalent antibodies, either monospecific or bispecific, as well as of different kinds of fusion proteins, which, compared with similar fusion proteins without UG, possess generally enhanced properties of solubility and stability, factors that expedite their storage and clinical use.We describe the use of UG for the production of a bivalent and tetravalent format of L19, an scFv specific for the angiogenesis-associated extra domain B (ED-B) of fibronectin (FN) (7), of an immunocytokine composed of IL2 and L19, and of a tetravalent dual specificity antibody composed of L19 and the scFv D2E7, a human antibody able to neutralize TNF-α activity (8). We report and discuss the characterization, properties, and the biological activity, both in vitro and in vivo, of these molecules. 相似文献
19.
Istvan Boldogh Nikola Vojtov Sharon Karmon Liza A. Pon 《The Journal of cell biology》1998,141(6):1371-1381
Transfer of mitochondria to daughter cells during yeast cell division is essential for viable progeny. The actin cytoskeleton is required for this process, potentially as a track to direct mitochondrial movement into the bud. Sedimentation assays reveal two different components required for mitochondria–actin interactions: (1) mitochondrial actin binding protein(s) (mABP), a peripheral mitochondrial outer membrane protein(s) with ATP-sensitive actin binding activity, and (2) a salt-inextractable, presumably integral, membrane protein(s) required for docking of mABP on the organelle. mABP activity is abolished by treatment of mitochondria with high salt. Addition of either the salt-extracted mitochondrial peripheral membrane proteins (SE), or a protein fraction with ATP-sensitive actin-binding activity isolated from SE, to salt-washed mitochondria restores this activity. mABP docking activity is saturable, resistant to high salt, and inhibited by pre-treatment of salt-washed mitochondria with papain. Two integral mitochondrial outer membrane proteins, Mmm1p (Burgess, S.M., M. Delannoy, and R.E. Jensen. 1994. J.Cell Biol. 126:1375–1391) and Mdm10p, (Sogo, L.F., and M.P. Yaffe. 1994. J.Cell Biol. 126:1361– 1373) are required for these actin–mitochondria interactions. Mitochondria isolated from an mmm1-1 temperature-sensitive mutant or from an mdm10 deletion mutant show no mABP activity and no mABP docking activity. Consistent with this, mitochondrial motility in vivo in mmm1-1 and mdm10Δ mutants appears to be actin independent. Depolymerization of F-actin using latrunculin-A results in loss of long-distance, linear movement and a fivefold decrease in the velocity of mitochondrial movement. Mitochondrial motility in mmm1-1 and mdm10Δ mutants is indistinguishable from that in latrunculin-A–treated wild-type cells. We propose that Mmm1p and Mdm10p are required for docking of mABP on the surface of yeast mitochondria and coupling the organelle to the actin cytoskeleton.Mitochondria are indispensable organelles for normal eukaryotic cell function. Since mitochondria cannot be synthesized de novo, these organelles are inherited, i.e., transferred from mother to daughter during cell division. In the yeast Saccharomyces cerevisiae, vegetative cell division occurs by budding, a form of proliferation in which growth is directed toward the developing bud. Previous studies indicate that mitochondria undergo a series of cell cycle–linked motility events during normal inheritance in yeast (Simon et al., 1997). These are: (a) polarization of mitochondria towards the site of bud emergence in G1 phase; (b) linear, polarized movement of mitochondria from mother cells to developing buds in S phase; (c) immobilization of newly inherited mitochondria in the bud tip during S and G2 phases; and (d) release of immobilized mitochondria from the bud tip during M phase.There is mounting evidence that the actin cytoskeleton controls mitochondrial morphology and inheritance during vegetative yeast cell growth. The two major actin structures of yeast observed by light microscopy are patches and cables. Actin cables are bundles of actin filaments that extend from the mother into the bud. Mitochondria colocalize with these actin cables (Drubin et al., 1993; Lazzarino et al., 1994). Moreover, mutations such as deletion of the tropomyosin I gene, TPM1, or the mitochondrial distribution and morphology gene, MDM20, which selectively destabilize actin cables, result in the loss of polarized mitochondrial movement and reduce transfer of mitochondria into buds (Herman et al., 1997; Simon et al., 1997). Together, these studies indicate that normal mitochondrial inheritance in yeast requires association of mitochondria with actin cables.Cell-free studies reveal a possible mechanism underlying actin control of mitochondrial inheritance. Sedimentation assays document binding of mitochondria to the lateral surface of F-actin. This mitochondrial actin-binding activity is ATP-sensitive, saturable, reversible, and mediated by protein(s) on the mitochondrial surface (Lazzarino et al., 1994). In addition, ATP-driven, actin-dependent motor activity has been identified on the surface of mitochondria (Simon et al., 1995). These observations support a model of mitochondrial inheritance whereby mitochondria use an actin-dependent motor to drive their movement from mother to daughter cells along actin cable tracks.Yeast genetic screens have revealed several genes, collectively referred to as mdm (mitochondrial distribution and morphology) and mmm (maintenance of mitochondrial morphology), which are required for mitochondrial inheritance (McConnell et al., 1990; Burgess et al., 1994; Sogo and Yaffe, 1994). We have focused on two of these genes: MDM10 and MMM1. Deletion of MDM10 leads to the development of giant spherical mitochondria, presumably by the collapse of elongated mitochondria into a spherical mass (Sogo and Yaffe, 1994). Deletion of MMM1 (Burgess et al., 1994) produces a similar phenotype. In both mutants, the fraction of buds without mitochondria is high, indicating defective mitochondrial inheritance. The proteins encoded by these genes, Mdm10p and Mmm1p, appear to be integral membrane proteins in the mitochondrial outer membrane. Here, we report tests of the hypothesis that Mmm1p and Mdm10p are required to link mitochondria to the cytoskeleton. 相似文献
20.
Intercellular communication of vegetative cells and their subsequent cell fusion is vital for different aspects of growth, fitness, and differentiation of filamentous fungi. Cell fusion between germinating spores is important for early colony establishment, while hyphal fusion in the mature colony facilitates the movement of resources and organelles throughout an established colony. Approximately 50 proteins have been shown to be important for somatic cell-cell communication and fusion in the model filamentous fungus Neurospora crassa. Genetic, biochemical, and microscopic techniques were used to characterize the functions of seven previously poorly characterized cell fusion proteins. HAM-6, HAM-7 and HAM-8 share functional characteristics and are proposed to function in the same signaling network. Our data suggest that these proteins may form a sensor complex at the cell wall/plasma membrane for the MAK-1 cell wall integrity mitogen-activated protein kinase (MAPK) pathway. We also demonstrate that HAM-9, HAM-10, AMPH-1 and WHI-2 have more general functions and are required for normal growth and development. The activation status of the MAK-1 and MAK-2 MAPK pathways are altered in mutants lacking these proteins. We propose that these proteins may function to coordinate the activities of the two MAPK modules with other signaling pathways during cell fusion. 相似文献