首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A number of recent studies have shown that heparan sulfate can control several important biological events on the cell surface through changes in sulfation pattern. The in vivo modification of sugar chains with sulfates, however, is complicated, and the discrimination of different sulfation patterns is difficult. Heparin, which is primarily produced by mast cells, is closely approximated by the structural analog heparan sulfate. Screening of heparin-associating peptides using phage display and antithrombin-bound affinity chromatography identified a peptide, heparin-associating peptide Y (HappY), that acts as a target of immobilized heparin. The peptide consists of 12 amino acid residues with characteristic three arginines and exclusively binds to heparin and heparan sulfate but does not associate with other glycosaminoglycans. HappY recognizes three consecutive monosaccharide residues in heparin through its three arginine residues. HappY should be a useful probe to detect heparin and heparan sulfate in studies of glycobiology.  相似文献   

2.
Bovine aortic endothelial cells were cultured in medium containing [3H]glucosamine and concentrations of [35S]sulfate ranging from 0.01 to 0.31 mM. While the amount of [3H]hexosamine incorporated into chondroitin sulfate and heparan sulfate was constant, decreasing concentrations of sulfate resulted in lower [35S]sulfate incorporation. Sulfate concentrations greater than 0.11 mM were required for maximal [35S]sulfate incorporation. Chondroitin sulfate was particularly affected so that the sulfate to hexosamine ratio in [3H]chondroitin [35S]sulfate dropped considerably more than the sulfate to hexosamine ratio in [3H] heparan [35S]sulfate. Sulfate concentration had no effect on the ratio of chondroitin 4-sulfate to chondroitin 6-sulfate. The ratios of sulfate to hexosamine in cell-associated glycosaminoglycans were essentially identical with the ratios in media glycosaminoglycans at all sulfate concentrations. DEAE-cellulose chromatography confirmed that sulfation of chondroitin sulfate was particularly sensitive to low sulfate concentrations. While cells incubated in medium containing 0.31 mM sulfate produced chondroitin sulfate which eluted later than heparan sulfate, cells incubated in medium containing less than 0.04 mM sulfate produced chondroitin sulfate which eluted before heparan sulfate and near hyaluronic acid, indicating that many chains were essentially unsulfated. At intermediate concentrations of sulfate, chondroitin sulfate was found in very broad elution patterns suggesting that most did not fit an "all or nothing" mechanism. Heparan sulfate produced at low concentrations of sulfate eluted with narrower elution patterns than chondroitin sulfate, and there was no indication of any "all or nothing" sulfation.  相似文献   

3.
Incubation of microsomal fractions with labelled 3'-phosphoadenylyl sulfate results in incorporation of [35S]sulfate into endogenous glycosaminoglycans. Specific radioactivity observed incorporated into heparan sulfate chains is 10-fold greater than that incorporated into chondro?tin sulfate chains. This is in agreement with the results obtained for glycosylation of glycosaminoglycans in arterial wall membrane fractions. Sulfation of heparan sulfate was studied since it contains N- and O-sulfate groups in contrast with the other sulfated glycosaminoglycans which contain only O-sulfate groups. Sulfation of heparan sulfate occurs rapidly, since sulfate incorporation is detected after exposure for only 0.5 min. Heparan sulfate was identified on the basis of its resistance to hyaluronidase and chondro?tin ABC lyase, its susceptibility to heparitinase, its sensitivity to nitrous acid and the presence of glucosamine as the only hexosamine. The chemical composition of the purified heparan sulfate fractions provides evidence for the high degree of sulfation of its chains. Studies into the distribution of sulfate residues on heparan sulfate at different times of sulfation indicate that N-sulfate groups are not randomly introduced into the polymer. The relationship between the processes of N- and O-sulfation was studied. The present results demonstrate that preferential N-sulfation is obtained for incorporation of labelled precursor over a short period, the O-sulfation occurring on previously N-sulfated heparan sulfate.  相似文献   

4.
Heparan sulfate is a sulfated glycan that exhibits essential physiological functions. Interrogation of the specificity of heparan sulfate-mediated activities demands a library of structurally defined oligosaccharides. Chemical synthesis of large heparan sulfate oligosaccharides remains challenging. We report the synthesis of oligosaccharides with different sulfation patterns and sizes from a disaccharide building block using glycosyltransferases, heparan sulfate C5-epimerase, and sulfotransferases. This method offers a generic approach to prepare heparan sulfate oligosaccharides possessing predictable structures.  相似文献   

5.
A difference in the expression and metabolism of sulfated glycosaminoglycans between rat mammary tumor cells derived from a primary tumor and those from its metastatic lesions has been observed. Cells from the primary tumor possessed about equal quantities of chondroitin sulfate and heparan sulfate on their cell surfaces but released fourfold more chondroitin sulfate than heparan sulfate into their medium. In contrast, cells from distal metastatic lesions expressed approximately 5 times more heparan sulfate than chondroitin sulfate in both medium and cell surface fractions. This was observed to be the result of differential synthesis of the glycosaminoglycans and not of major structural alterations of the individual glycosaminoglycans. The degree of sulfation and size of heparan sulfate were similar for all cells examined. However, chondroitin sulfate, observed to be only chondroitin 4-sulfate, from the metastases-derived cells had a smaller average molecular weight on gel filtration chromatography and showed a decreased quantity of sulfated disaccharides upon degradation with chondroitin ABC lyase compared to the primary tumor derived cells. Major qualitative or quantitative alterations were not observed for hyaluronic acid among the various 13762NF cells. The metabolism of newly synthesized sulfated glycosaminoglycans was also different between cells from primary tumor and metastases. Cells from the primary tumor continued to accumulate glycosaminoglycans in their medium over a 72-h period, while the accumulation of sulfated glycosaminoglycans in the medium of metastases-derived cells showed a plateau after 18-24 h. A pulse-chase kinetics study demonstrated that both heparan sulfate and chondroitin sulfate were degraded by the metastases-derived cells, whereas the primary tumor derived cells degraded only heparan sulfate and degraded it at a slower rate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
A culture system was developed to analyze the relationship between proteoglycans and growth factors during corneal injury. Specifically, the effects of transforming growth factor beta-1 (TGF-beta1) and fetal calf serum on proteoglycan synthesis in corneal fibroblasts were examined. Glycosaminoglycan synthesis and sulfation were determined using selective polysaccharidases. Proteoglycan core proteins were analyzed using gel electrophoresis and Western blotting. Cells cultured in 10% dialyzed fetal calf serum exhibited decreased synthesis of more highly sulfated chondroitin sulfate and heparan sulfate compared with cells cultured in 1% dialyzed fetal calf serum. The amount and sulfation of the glycosaminoglycans was not significantly influenced by TGF-beta1. The major proteoglycan species secreted into the media were decorin and perlecan. Decorin was glycanated with chondroitin sulfate. Perlecan was linked to either chondroitin sulfate, heparan sulfate, or both chondroitin sulfate and heparan sulfate. Decorin synthesis was reduced by either TGF-beta1 or serum. At early time points, both TGF-beta1 and serum induced substantial increases in perlecan bearing chondroitin sulfate and/or heparan sulfate chains. In contrast, after extended periods in culture, the amount of perlecan bearing heparan sulfate chains was unaffected by TGF-beta1 and decreased by serum. The levels of perlecan bearing chondroitin sulfate chains were elevated with TGF-beta1 treatment and were decreased with serum. Because both decorin and perlecan bind growth factors and are proposed to modulate their activity, changes in the expression of either of these proteoglycans could substantially affect the cellular response to injury.  相似文献   

7.
Hageman factor (FXIIa) initiates the intrinsic coagulation pathway and triggers the kallikrein-kinin and the complement systems. In addition, it functions as a growth factor by expressing promitogenic activities toward several cell types. FXIIa binds to the cell surface via a number of structurally unrelated surface receptors; however, the underlying mechanisms are not yet fully understood. Here, we demonstrate that FXIIa utilizes cell membrane-bound glycosaminoglycans to interact with the cell surface of human lung fibroblasts (HLF). The combination of enzymatic, inhibitory, and overexpression approaches identified a heparan sulfate (HS) component of proteoglycans as an important determinant of the FXIIa binding capacity of HLF. Moreover, cell-free assays and competition experiments revealed preferential binding of FXIIa to HS and heparin over dextran sulfate, dermatan sulfate, and chondroitin sulfate A and C. Finally, we demonstrate that fibroblasts isolated from the lungs of the patients suffering from idiopathic pulmonary fibrosis (IPF) exhibit enhanced FXIIa binding capacity. Increased sulfation of HS resulting from elevated HS 6-O-sulfotransferase-1 expression in IPF HLF accounted, in part, for this phenomenon. Application of RNA interference technology and inhibitors of intracellular sulfation revealed the cooperative action of cell surface-associated HS and urokinase-type plasminogen activator receptor in the accumulation of FXIIa on the cell surface of IPF HLF. Moreover, FXIIa stimulated IPF HLF migration, which was abrogated by pretreatment of cells with heparinase I. Collectively, our study uncovers a novel role of HS-type glycosaminoglycans in a local accumulation of FXIIa on the cell membrane. The enhanced association of FXIIa with IPF HLF suggests its contribution to fibrogenesis.  相似文献   

8.
Heparan sulfate endosulfatases Sulf1 and Sulf2 hydrolyze 6-O-sulfate in heparan sulfate, thereby regulating cellular signaling. Previous studies have revealed that Sulfs act predominantly on UA2S-GlcNS6S disaccharides and weakly on UA-GlcNS6S disaccharides. However, the specificity of Sulfs and their role in sulfation patterning of heparan sulfate in vivo remained unknown. Here, we performed disaccharide analysis of heparan sulfate in Sulf1 and Sulf2 knock-out mice. Significant increases in ΔUA2S-GlcNS6S were observed in the brain, small intestine, lung, spleen, testis, and skeletal muscle of adult Sulf1(-/-) mice and in the brain, liver, kidney, spleen, and testis of adult Sulf2(-/-) mice. In addition, increases in ΔUA-GlcNS6S were seen in the Sulf1(-/-) lung and small intestine. In contrast, the disaccharide compositions of chondroitin sulfate were not primarily altered, indicating specificity of Sulfs for heparan sulfate. For Sulf1, but not for Sulf2, mRNA expression levels in eight organs of wild-type mice were highly correlated with increases in ΔUA2S-GlcNS6S in the corresponding organs of knock-out mice. Moreover, overall changes in heparan sulfate compositions were greater in Sulf1(-/-) mice than in Sulf2(-/-) mice despite lower levels of Sulf1 mRNA expression, suggesting predominant roles of Sulf1 in heparan sulfate desulfation and distinct regulation of Sulf activities in vivo. Sulf1 and Sulf2 mRNAs were differentially expressed in restricted types of cells in organs, and consequently, the sulfation patterns of heparan sulfate were locally and distinctly altered in Sulf1 and Sulf2 knock-out mice. These findings indicate that Sulf1 and Sulf2 differentially contribute to the generation of organ-specific sulfation patterns of heparan sulfate.  相似文献   

9.
The glycosaminoglycan composition of AH-130 ascites hepatoma cells and fluid were examined using enzymatic digestion, electrophoresis, and sequential partition fractionation. The cell-associated glycosaminoglycans were found to consist of 93% heparan sulfate, with the remainder consisting primarily of chondroitin sulfate. The glycosaminoglycans isolated from the ascitic fluid were found to consist of 58% heparan sulfate, 26% hyaluronic acid and 16% chondroitin sulfate. Dermatan sulfate was not detected in either cells or fluid. The heparan sulfate isolated from AH-130 cells is low-sulfate and highly heterogeneous with respect to biochemical composition. Fractions isolated by partition fractionation varied from 0.14 mol sulfate/mol uronic acid to 0.6 mol sulfate/mol uronic acid. Of the total sulfate 70–80% is N-sulfate in the former and 50% in the latter. Electrophoresis in 0.1 M HCl showed a highly heterogeneous material with mobility between that of hyaluronic acid and beef lung heparan sulfate. The heparan sulfate isolated from the fluid was similar to that isolated from the cells but was, however, somewhat more homogeneous with respect to charge.  相似文献   

10.
Heparan sulfate proteoglycans are hypothesized to contribute to the filtration barrier in kidney glomeruli and the glycocalyx of endothelial cells. To investigate potential changes in proteoglycans in diabetic kidney, we isolated glycosaminoglycans from kidney cortex from healthy db/+ and diabetic db/db mice. Disaccharide analysis of chondroitin sulfate revealed a significant decrease in the 4-O-sulfated disaccharides (D0a4) from 65% to 40%, whereas 6-O-sulfated disaccharides (D0a6) were reduced from 11% to 6%, with a corresponding increase in unsulfated disaccharides. In contrast, no structural differences were observed in heparan sulfate. Furthermore, no difference was found in the molar amount of glycosaminoglycans, or in the ratio of hyaluronan/heparan sulfate/chondroitin sulfate. Immunohistochemical staining for the heparan sulfate proteoglycan perlecan was similar in both types of material but reduced staining of 4-O-sulfated chondroitin and dermatan was observed in kidney sections from diabetic mice. In support of this, using qRT-PCR, a 53.5% decrease in the expression level of Chst-11 (chondroitin 4-O sulfotransferase) was demonstrated in diabetic kidney. These results suggest that changes in the sulfation of chondroitin need to be addressed in future studies on proteoglycans and kidney function in diabetes.  相似文献   

11.
During organ differentiation, cell-extracellular matrix (ECM) interactions are required. The components of the ECM, such as glycosaminoglycans, fibronectin, laminin, and collagens, change in relation to cytokine and enzyme activity. Moreover, glycosaminoglycans (GAGs) are components of the ECM that play an important role in both cytokine regulation and cell activities. In this work we studied the accumulation of hyaluronic acid and chondroitin sulfate and heparan sulfate proteoglycans (PGs), beta-N-acetyl-D-glucosaminidase activity, the presence of transforming growth factor beta(2) (TGF beta(2)), and interleukin-1 (IL-1), and the localization of fibronectin, laminin, and collagen I and IV during the early stages of chick embryo lung development. We also determined the levels of hyaluronic acid, chondroitin sulfate, dermatan sulfate, and heparan sulfate GAGs and the activity of beta-N-acetyl-D-glucosaminidase with biochemical methods. Our data show that beta-N-acetyl-D-glucosaminidase activity increases in each cell, especially in the epithelial growth front at the emergence of each bronchial bud, where hyaluronic acid and IL-1 are located in the surrounding mesenchymal areas. Chondroitin sulfate and heparan sulfate PGs, fibronectin, laminin, and collagen I and IV are evident in the area near the basal membrane along the sides where the forming structures are stabilized. Biochemical data show that beta-N-acetyl-D-glucosaminidase activity increases in cells during lung development and is related to GAG decrease and to modifications of the nonsulfated/sulfated GAG ratio. These modifications could change cytokine activity and play an important role in bronchial branching development.  相似文献   

12.
The glycosaminoglycan of rat liver can be separated into five distinct fractions; a hyaluronic acid franction, a heparan sulfate fraction with a molar ratio of sulfate to hexosamine (S/HexN) around 0.7, a heparan sulfate fraction with a S/HexN ratio around 1.4, a dermatan sulfate fraction with a S/HexN ratio near unity, and a dermatan sulfate fraction with a S/HexN ratio around 1.3.Enzymatic analysis of the two dermatan sulfate fractions indicates that they differ significantly in that the high sulfated fraction contains relatively more N-acetylgalactosamine 4,6-bissulfate units (about 26% of the total hexosamine). In experimental injury produced by carbon tetrachloride, the low sulfated fraction increases as much as 9-fold on a dry weight basis, bearing no linear relationship to the amount of the high sulfated fraction which increases only 2-fold. A significant shift is also observed in the levels of the two heparan sulfate fractions. In this case, however, the high sulfated fraction shows a much more pronounced increase than does the low sulfated fraction. On the basis of these observations, it is suggested that for each of the dermatan sulfate and heparan sulfate classes are at least two pools, distinguished by sulfation degree and perhaps by turnover rate and physiological function.  相似文献   

13.
Heparin stimulates 2-3-fold, in a concentration-dependent manner, the synthesis of heparan sulfate secreted by cultured endothelial cells. The increase in synthetic rate takes place immediately after exposure of the cells to heparin, affects only heparan sulfate, and is specific for the endothelial cell. No stimulation by other glycosaminoglycans was observed. Analysis of the disaccharide products formed by the action of heparitinases reveals a higher degree of sulfation of the uronic acid residues in the heparan sulfate of cells exposed to heparin.  相似文献   

14.
The glycosaminoglycan of rat liver can be separated into five distinct fractions; a hyaluronic acid fraction, a heparan sulfate fraction with a molar ratio of sulfate to hexosamine (S/HexN) around 0.7, a heparan sulfate fraction with a S/HexN ratio around 1.4, a dermatan sulfate fraction with a S/HexN ratio near unity, and a dermatan sulfate fraction with a S/HexN ratio around 1.3. Enzymatic analysis of the two dermatan sulfate fractions indicates that they differ significantly in that the high sulfated fraction contains relatively more N-acetylgalactosamine 4,6-bissulfate units (about 26% of the total hexosamine). In experimental injury produced by carbon tetrachloride, the low sulfated fraction increases as much as 9-fold on a dry weight basis, bearing no linear relationship to the amount of the high sulfated fraction which increases only 2-fold. A significant shift is also observed in the levels of the two heparan sulfate fractions. In this case, however, the high sulfated fraction shows a much more pronounced increase than does the low sulfated fraction. On the basis of these observations, it is suggested that for each of the dermatan sulfate and heparan sulfate classes there are at least two pools, distinguished by sulfation degree and perhaps by turnover rate and physiological function.  相似文献   

15.
Heparan sulfate is a highly sulfated polysaccharide abundantly present in the extracellular matrix. Heparan sulfate consists of a disaccharide repeating unit of glucosamine and glucuronic and iduronic acid residues. The functions of heparan sulfate are largely dictated by its size as well as the sulfation patterns. Heparanase is an enzyme that cleaves heparan sulfate polysaccharide into smaller fragments, regulating the functions of heparan sulfate. Understanding the substrate specificity plays a critical role in dissecting the biological functions of heparanase and heparan sulfate. The prevailing view is that heparanase recognizes specific sulfation patterns in heparan sulfate. However, emerging evidence suggests that heparanase is capable of varying its substrate specificities depending on the saccharide structures around the cleavage site. The plastic substrate specificity suggests a complex role of heparanase in regulating the structures of heparan sulfate in matrix biology.  相似文献   

16.
We determined the synthesis and secretion of glycosaminoglycans by three distinct preparations of mouse cultured thymic epithelial cells. These comprised primary cultures of thymic nurse cells (TNCs), which are normally located within the cortex of the thymic lobules, as well as two murine thymic epithelial cells, bearing a mixed, yet distinct, cortico-medullary phenotype. We first identified and measured the relative proportions of the various glycosaminoglycans in the three epithelial cells. Non-sulfated glycosaminoglycans are preponderantly secreted by the TNCs, while the sulfated glycans (particularly heparan sulfate) are relatively more abundant on the cell surface. The three types of epithelial cells differ markedly in their heparan sulfate composition, mainly due to different patterns of N- and O-sulfation. In addition, the cells differ in the synthesis and secretion of other glycosaminoglycans. Thus, TNCs secrete high amounts of dermatan sulfate + chondroitin sulfate to the culture medium. IT-76M1 cells secrete high proportions of heparan sulfate while 2BH4 cells show a more equilibrated proportion of dermatan sulfate/chondroitin sulfate and heparan sulfate. The three epithelial cells also differ in their capacity to produce hyaluronic acid and 2BH4 cells are distinguished by their high rate of synthesis of this glycosaminoglycan. In conclusion, our results show that distinct thymic epithelial cells can synthesize different types of glycosaminoglycans. Although it remains to be definitely determined whether these differences reflect the in vivo situation, our data provide new clues for further understanding of how glycosaminoglycan-mediated interactions behave in the thymus.  相似文献   

17.
Membranes of fat globules of cow milk contained 163 μg/100 mg (dry weight) of glycosaminoglycans (expressed as uronic acid); 62.5% of the uronic acids corresponded to hyaluronic acid, the remaining consisted of sulfated glycosaminoglycans (chondroitin-4-(-6) sulfates, and dermatan and heparan sulfates) with different degrees of sulfation.  相似文献   

18.
Infiltration of peripheral immune cells after blood-brain barrier dysfunction causes severe inflammation after a stroke. Although the endothelial glycocalyx, a network of membrane-bound glycoproteins and proteoglycans that covers the lumen of endothelial cells, functions as a barrier to circulating cells, the relationship between stroke severity and glycocalyx dysfunction remains unclear. In this study, glycosaminoglycans, a component of the endothelial glycocalyx, were studied in the context of ischemic stroke using a photochemically induced thrombosis mouse model. Decreased levels of heparan sulfate and chondroitin sulfate and increased activity of hyaluronidase 1 and heparanase (HPSE) were observed in ischemic brain tissues. HPSE expression in cerebral vessels increased after stroke onset and infarct volume greatly decreased after co-administration of N-acetylcysteine + glycosaminoglycan oligosaccharides as compared with N-acetylcysteine administration alone. These results suggest that the endothelial glycocalyx was injured after the onset of stroke. Interestingly, scission activity of proHPSE produced by immortalized endothelial cells and HEK293 cells transfected with hHPSE1 cDNA were activated by acrolein (ACR) exposure. We identified the ACR-modified amino acid residues of proHPSE using nano LC–MS/MS, suggesting that ACR modification of Lys139 (6-kDa linker), Lys107, and Lys161, located in the immediate vicinity of the 6-kDa linker, at least in part is attributed to the activation of proHPSE. Because proHPSE, but not HPSE, localizes outside cells by binding with heparan sulfate proteoglycans, ACR-modified proHPSE represents a promising target to protect the endothelial glycocalyx.  相似文献   

19.
《Fly》2013,7(4):175-179
Spatial information embedded in the extracellular matrix establishes the dorsoventral polarity of the Drosophila embryo through the ventral activity of a serine protease cascade. Pipe is a Golgi-localized protein responsible for generating this spatial information during oogenesis through sulfation of unknown glycans. Although Pipe has sequence homology to glycosaminoglycan 2-O-sulfotransferases, its activity and authentic substrates have not been demonstrated and genetic evidence has argued against a role for glycosaminoglycans in dorsoventral polarity establishment. Here, direct examination of matrix glycosaminoglycans demonstrates that pipe-mutant matrix shows decreased tri-sulfated heparan sulfate compared to wild-type matrix, with correspondingly increased 2-O-sulfated heparan sulfate. Chondroitin sulfate was not detected in this matrix. These results suggest that Pipe promotes 6-O- and/or N-sulfation of heparan sulfate but is not required for heparan sulfate 2-O-sulfation. We discuss the possible significance of these unexpected findings and how they might be reconciled with the genetic data.  相似文献   

20.
Park Y  Zhang Z  Linhardt RJ  LeMosy EK 《Fly》2008,2(4):175-179
Spatial information embedded in the extracellular matrix establishes the dorsoventral polarity of the Drosophila embryo through the ventral activity of a serine protease cascade. Pipe is a Golgi-localized protein responsible for generating this spatial information during oogenesis through sulfation of unknown glycans. Although Pipe has sequence homology to glycosaminoglycan 2-O-sulfotransferases, its activity and authentic substrates have not been demonstrated and genetic evidence has argued against a role for glycosaminoglycans in dorsoventral polarity establishment. Here, direct examination of matrix glycosaminoglycans demonstrates that pipe-mutant matrix shows decreased tri-sulfated heparan sulfate compared to wild-type matrix, with correspondingly increased 2-O-sulfated heparan sulfate. Chondroitin sulfate was not detected in this matrix. These results suggest that Pipe promotes 6-O- and/or N-sulfation of heparan sulfate but is not required for heparan sulfate 2-O-sulfation. We discuss the possible significance of these unexpected findings and how they might be reconciled with the genetic data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号