首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nod-like receptors (NLRs) serve as immune receptors in plants and animals. The stability of NLRs is tightly regulated, though its mechanism is not well understood. Here, we show the crucial impact of N-terminal acetylation on the turnover of one plant NLR, Suppressor of NPR1, Constitutive 1 (SNC1), in Arabidopsis thaliana. Genetic and biochemical analyses of SNC1 uncovered its multilayered regulation by different N-terminal acetyltransferase (Nat) complexes. SNC1 exhibits a few distinct N-terminal isoforms generated through alternative initiation and N-terminal acetylation. Its first Met is acetylated by N-terminal acetyltransferase complex A (NatA), while the second Met is acetylated by N-terminal acetyltransferase complex B (NatB). Unexpectedly, the NatA-mediated acetylation serves as a degradation signal, while NatB-mediated acetylation stabilizes the NLR protein, thus revealing antagonistic N-terminal acetylation of a single protein substrate. Moreover, NatA also contributes to the turnover of another NLR, RESISTANCE TO P. syringae pv maculicola 1. The intricate regulation of protein stability by Nats is speculated to provide flexibility for the target protein in maintaining its homeostasis.  相似文献   

2.
Plant mitogen-activated protein kinases (MAPKs) are involved in important processes, including stress signaling and development. In a functional yeast screen, we identified mutations that render Arabidopsis thaliana MAPKs constitutively active (CA). Importantly, CA-MAPKs maintain their specificity toward known activators and substrates. As a proof-of-concept, Arabidopsis MAPK4 (MPK4) function in plant immunity was investigated. In agreement with the phenotype of mpk4 mutants, CA-MPK4 plants were compromised in pathogen-induced salicylic acid accumulation and disease resistance. MPK4 activity was found to negatively regulate pathogen-associated molecular pattern-induced reactive oxygen species production but had no impact on callose deposition, indicating that CA-MPK4 allows discriminating between processes regulated by MPK4 activity from processes indirectly affected by mpk4 mutation. Finally, MPK4 activity was also found to compromise effector-triggered immunity conditioned by the Toll Interleukin-1 Receptor–nucleotide binding (NB)–Leu-rich repeat (LRR) receptors RPS4 and RPP4 but not by the coiled coil–NB-LRR receptors RPM1 and RPS2. Overall, these data reveal important insights on how MPK4 regulates plant defenses and establishes that CA-MAPKs offer a powerful tool to analyze the function of plant MAPK pathways.  相似文献   

3.
The recognition of pathogen effector proteins by plants is typically mediated by intracellular receptors belonging to the nucleotide-binding leucine-rich repeat (NLR) family. NLR proteins often detect pathogen effector proteins indirectly by detecting modification of their targets. How NLR proteins detect such modifications is poorly understood. To address these questions, we have been investigating the Arabidopsis (Arabidopsis thaliana) NLR protein RESISTANCE TO PSEUDOMONAS SYRINGAE5 (RPS5), which detects the Pseudomonas syringae effector protein Avirulence protein Pseudomonas phaseolicolaB (AvrPphB). AvrPphB is a cysteine protease that specifically targets a subfamily of receptor-like cytoplasmic kinases, including the Arabidopsis protein kinase AVRPPHB Susceptible1 (PBS1). RPS5 is activated by the cleavage of PBS1 at the apex of its activation loop. Here, we show that RPS5 activation requires that PBS1 be localized to the plasma membrane and that plasma membrane localization of PBS1 is mediated by amino-terminal S-acylation. We also describe the development of a high-throughput screen for mutations in PBS1 that block RPS5 activation, which uncovered four new pbs1 alleles, two of which blocked cleavage by AvrPphB. Lastly, we show that RPS5 distinguishes among closely related kinases by the amino acid sequence (SEMPH) within an exposed loop in the C-terminal one-third of PBS1. The SEMPH loop is located on the opposite side of PBS1 from the AvrPphB cleavage site, suggesting that RPS5 associates with the SEMPH loop while leaving the AvrPphB cleavage site exposed. These findings provide support for a model of NLR activation in which NLR proteins form a preactivation complex with effector targets and then sense a conformational change in the target induced by effector modification.Pathogen recognition by plants is mediated by both transmembrane cell surface receptors and intracellular receptors (Jones and Dangl, 2006). The latter receptors typically belong to the nucleotide-binding leucine-rich repeat (NLR) superfamily of proteins, which also play a central role in the innate immune systems of many animals, including humans (von Moltke et al., 2013). In plants, most NLR proteins detect pathogen “effector” proteins, which are proteins secreted by pathogens to promote virulence on susceptible hosts. The immune response activated by NLR proteins is thus referred to as effector-triggered immunity. In the majority of examples studied, effector-triggered immunity is accompanied by localized host cell death around the site of pathogen ingress, which is referred to as the hypersensitive response (HR; Goodman and Novacky, 1994).Several NLR proteins have been shown to detect pathogen effector proteins indirectly by detecting the modification of other host proteins mediated by the effectors (DeYoung and Innes, 2006). The best characterized examples of NLR proteins that employ indirect recognition mechanisms are the RESISTANCE TO PSEUDOMONAS MACULICOLA1 (RPM1) and RESISTANCE TO PSEUDOMONAS SYRINGAE2 (RPS2) proteins of Arabidopsis (Arabidopsis thaliana), which detect modification to the RPM1 INTERACTING4 (RIN4) protein (Mackey et al., 2002; Axtell and Staskawicz, 2003), the RESISTANCE TO PSEUDOMONAS SYRINGAE5 (RPS5) protein of Arabidopsis, which detects modification of the AVRPPHB SUSCEPTIBLE1 (PBS1) protein kinase (Ade et al., 2007), and the Pseudomonas resistance and fenthion sensitivity (Prf) protein of tomato (Solanum lycopersicum), which detects modification of the Pseudomonas syringae pv tomato resistance (Pto) protein kinase (Salmeron et al., 1996; Rathjen et al., 1999). Our group has focused on RPS5, which detects the effector protein Avirulence protein Pseudomonas phaseolicolaB (AvrPphB) from Pseudomonas syringae (Simonich and Innes, 1995). AvrPphB functions as a Cys protease (Zhu et al., 2004) and specifically targets a subclass of plant receptor-like cytoplasmic kinases that include PBS1 (Shao et al., 2003; Zhang et al., 2010). AvrPphB likely targets these kinases in order to suppress defense responses induced by cell surface-localized plant immune receptors such as FLAGELLIN SENSITIVE2 (FLS2; Zhang et al., 2010). PBS1 can be coimmunoprecipitated with FLS2, and mutation of PBS1 reduces FLS2-mediated production of hydrogen peroxide and callose deposits (Zhang et al., 2010), confirming that PBS1 functions in defense signaling.Cleavage of PBS1 by AvrPphB is both necessary and sufficient to activate RPS5 (Ade et al., 2007), and null mutations in PBS1 block RPS5 activation (Swiderski and Innes, 2001). Because AvrPphB can cleave multiple closely related kinases in Arabidopsis (Zhang et al., 2010), these observations indicate that RPS5 can distinguish among these kinases, with only PBS1 cleavage activating RPS5. The molecular basis for this specificity is unknown.One contributor to the specificity of RPS5 may be subcellular localization. RPS5 localizes to the plasma membrane (PM), and amino acid substitutions that displace RPS5 from the PM eliminate RPS5-mediated defense responses (Qi et al., 2012). PBS1 is also expected to localize to the PM, because fusion of the N-terminal 100 amino acids of PBS1 to GFP causes GFP to localize to the PM in both Arabidopsis and Nicotiana benthamiana (Takemoto et al., 2012). Consistent with this expectation, PBS1 and RPS5 can be coimmunoprecipitated when transiently overexpressed in N. benthamiana (Ade et al., 2007). Furthermore, AvrPphB is both myristoylated and palmitoylated upon entry into plant cells and localizes to the PM, with PM localization of AvrPphB being required for the activation of RPS5 (Dowen et al., 2009). Although these data all point to a PM localization for PBS1, full-length PBS1 protein has not yet been localized, nor has the functional significance of PBS1 localization been assessed relative to the activation of RPS5.In this study, we demonstrate that PBS1 is targeted to the PM via S-acylation at its N terminus and that PM localization is required for RPS5 activation. We also describe a high-throughput genetic screen for uncovering new mutations in PBS1 that block RPS5 activation, which uncovered four new pbs1 alleles. Lastly, we show that RPS5 distinguishes PBS1 from closely related kinases based on a specific loop in the C-terminal half of PBS1.  相似文献   

4.
5.
Strigolactones (SLs) are phytohormones that play a central role in regulating shoot branching. SL perception and signaling involves the F-box protein MAX2 and the hydrolase DWARF14 (D14), proposed to act as an SL receptor. We used strong loss-of-function alleles of the Arabidopsis thaliana D14 gene to characterize D14 function from early axillary bud development through to lateral shoot outgrowth and demonstrated a role of this gene in the control of flowering time. Our data show that D14 distribution in vivo overlaps with that reported for MAX2 at both the tissue and subcellular levels, allowing physical interactions between these proteins. Our grafting studies indicate that neither D14 mRNA nor the protein move over a long range upwards in the plant. Like MAX2, D14 is required locally in the aerial part of the plant to suppress shoot branching. We also identified a mechanism of SL-induced, MAX2-dependent proteasome-mediated degradation of D14. This negative feedback loop would cause a substantial drop in SL perception, which would effectively limit SL signaling duration and intensity.  相似文献   

6.
The retromer is involved in recycling lysosomal sorting receptors in mammals. A component of the retromer complex in Arabidopsis thaliana, vacuolar protein sorting 29 (VPS29), plays a crucial role in trafficking storage proteins to protein storage vacuoles. However, it is not known whether or how vacuolar sorting receptors (VSRs) are recycled from the prevacuolar compartment (PVC) to the trans-Golgi network (TGN) during trafficking to the lytic vacuole (LV). Here, we report that VPS29 plays an essential role in the trafficking of soluble proteins to the LV from the TGN to the PVC. maigo1-1 (mag1-1) mutants, which harbor a knockdown mutation in VPS29, were defective in trafficking of two soluble proteins, Arabidopsis aleurain-like protein (AALP):green fluorescent protein (GFP) and sporamin:GFP, to the LV but not in trafficking membrane proteins to the LV or plasma membrane or via the secretory pathway. AALP:GFP and sporamin:GFP in mag1-1 protoplasts accumulated in the TGN but were also secreted into the medium. In mag1-1 mutants, VSR1 failed to recycle from the PVC to the TGN; rather, a significant proportion was transported to the LV; VSR1 overexpression rescued this defect. Moreover, endogenous VSRs were expressed at higher levels in mag1-1 plants. Based on these results, we propose that VPS29 plays a crucial role in recycling VSRs from the PVC to the TGN during the trafficking of soluble proteins to the LV.  相似文献   

7.
8.
The vast majority of land plants develop gas-exchange tissues with intercellular spaces (ICSs) connected directly to the air. Although the developmental processes of ICS have been described in detail at the morphological and ultrastructural level in diverse land plants, little is known about the molecular mechanism responsible for ICS formation. The liverwort Marchantia polymorpha develops a multilayered tissue with a large ICS (air chamber), whose formation is initiated at selected positions of epidermal cells. We isolated a mutant of M. polymorpha showing impaired air-chamber formation, nopperabo1 (nop1), from T-DNA–tagged lines. In nop1 plants, no ICS was formed; consequently, a single-layered epidermis developed on the dorsal side of the thallus. The causal gene NOP1 encodes a Plant U-box (PUB) E3 ubiquitin ligase carrying tandem ARMADILLO (ARM) repeats in the C terminus. An in vitro ubiquitination assay indicated that the NOP1 protein possesses E3 ubiquitin ligase activity in a U-box–dependent manner. Confocal microscopy and biochemical analysis showed that NOP1 was localized to the plasma membrane. Our investigation demonstrated the essential role of the PUB-ARM–type ubiquitin ligase in ICS formation in M. polymorpha, which sheds light on the molecular mechanism of schizogenous ICS formation in land plants.  相似文献   

9.
F-box proteins constitute a large superfamily in plants and play important roles in controlling many biological processes, but the roles of F-box proteins in male meiosis in plants remain unclear. Here, we identify the rice (Oryza sativa) F-box gene MEIOTIC F-BOX (MOF), which is essential for male meiotic progression. MOF belongs to the FBX subfamily and is predominantly active during leptotene to pachytene of prophase I. mof meiocytes display disrupted telomere bouquet formation, impaired pairing and synapsis of homologous chromosomes, and arrested meiocytes at late prophase I, followed by apoptosis. Although normal, programmed double-stranded DNA breaks (DSBs) form in mof mutants, foci of the phosphorylated histone variant γH2AX, a marker for DSBs, persist in the mutant, indicating that many of the DSBs remained unrepaired. The recruitment of Completion of meiosis I (COM1) and Radiation sensitive51C (RAD51C) to DSBs is severely compromised in mutant meiocytes, indicating that MOF is crucial for DSB end-processing and repair. Further analyses showed that MOF could physically interact with the rice SKP1-like Protein1 (OSK1), indicating that MOF functions as a component of the SCF E3 ligase to regulate meiotic progression in rice. Thus, this study reveals the essential role of an F-box protein in plant meiosis and provides helpful information for elucidating the roles of the ubiquitin proteasome system in plant meiotic progression.  相似文献   

10.
11.
The model marine diatom Phaeodactylum tricornutum can accumulate high levels of triacylglycerols (TAGs) under nitrogen depletion and has attracted increasing attention as a potential system for biofuel production. However, the molecular mechanisms involved in TAG accumulation in diatoms are largely unknown. Here, we employed a label-free quantitative proteomics approach to estimate differences in protein abundance before and after TAG accumulation. We identified a total of 1193 proteins, 258 of which were significantly altered during TAG accumulation. Data analysis revealed major changes in proteins involved in branched-chain amino acid (BCAA) catabolic processes, glycolysis, and lipid metabolic processes. Subsequent quantitative RT-PCR and protein gel blot analysis confirmed that four genes associated with BCAA degradation were significantly upregulated at both the mRNA and protein levels during TAG accumulation. The most significantly upregulated gene, encoding the β-subunit of methylcrotonyl-CoA carboxylase (MCC2), was selected for further functional studies. Inhibition of MCC2 expression by RNA interference disturbed the flux of carbon (mainly in the form of leucine) toward BCAA degradation, resulting in decreased TAG accumulation. MCC2 inhibition also gave rise to incomplete utilization of nitrogen, thus lowering biomass during the stationary growth phase. These findings help elucidate the molecular and metabolic mechanisms leading to increased lipid production in diatoms.  相似文献   

12.
13.
14.
15.
16.
In a chemical genetics screen we identified the small-molecule [5-(3,4-dichlorophenyl)furan-2-yl]-piperidine-1-ylmethanethione (DFPM) that triggers rapid inhibition of early abscisic acid signal transduction via PHYTOALEXIN DEFICIENT4 (PAD4)- and ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1)-dependent immune signaling mechanisms. However, mechanisms upstream of EDS1 and PAD4 in DFPM-mediated signaling remain unknown. Here, we report that DFPM generates an Arabidopsis thaliana accession-specific root growth arrest in Columbia-0 (Col-0) plants. The genetic locus responsible for this natural variant, VICTR (VARIATION IN COMPOUND TRIGGERED ROOT growth response), encodes a TIR-NB-LRR (for Toll-Interleukin1 Receptor–nucleotide binding–Leucine-rich repeat) protein. Analyses of T-DNA insertion victr alleles showed that VICTR is necessary for DFPM-induced root growth arrest and inhibition of abscisic acid–induced stomatal closing. Transgenic expression of the Col-0 VICTR allele in DFPM-insensitive Arabidopsis accessions recapitulated the DFPM-induced root growth arrest. EDS1 and PAD4, both central regulators of basal resistance and effector-triggered immunity, as well as HSP90 chaperones and their cochaperones RAR1 and SGT1B, are required for the DFPM-induced root growth arrest. Salicylic acid and jasmonic acid signaling pathway components are dispensable. We further demonstrate that VICTR associates with EDS1 and PAD4 in a nuclear protein complex. These findings show a previously unexplored association between a TIR-NB-LRR protein and PAD4 and identify functions of plant immune signaling components in the regulation of root meristematic zone-targeted growth arrest.  相似文献   

17.
Under high-irradiance conditions, plants must efficiently protect photosystem II (PSII) from damage. In this study, we demonstrate that the chloroplast protein HYPERSENSITIVE TO HIGH LIGHT1 (HHL1) is expressed in response to high light and functions in protecting PSII against photodamage. Arabidopsis thaliana hhl1 mutants show hypersensitivity to high light, drastically decreased PSII photosynthetic activity, higher nonphotochemical quenching activity, a faster xanthophyll cycle, and increased accumulation of reactive oxygen species following high-light exposure. Moreover, HHL1 deficiency accelerated the degradation of PSII core subunits under high light, decreasing the accumulation of PSII core subunits and PSII–light-harvesting complex II supercomplex. HHL1 primarily localizes in the stroma-exposed thylakoid membranes and associates with the PSII core monomer complex through direct interaction with PSII core proteins CP43 and CP47. Interestingly, HHL1 also directly interacts, in vivo and in vitro, with LOW QUANTUM YIELD OF PHOTOSYSTEM II1 (LQY1), which functions in the repair and reassembly of PSII. Furthermore, the hhl1 lqy1 double mutants show increased photosensitivity compared with single mutants. Taken together, these results suggest that HHL1 forms a complex with LQY1 and participates in photodamage repair of PSII under high light.  相似文献   

18.
The 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) enzyme catalyzes the major rate-limiting step of the mevalonic acid (MVA) pathway from which sterols and other isoprenoids are synthesized. In contrast with our extensive knowledge of the regulation of HMGR in yeast and animals, little is known about this process in plants. To identify regulatory components of the MVA pathway in plants, we performed a genetic screen for second-site suppressor mutations of the Arabidopsis thaliana highly drought-sensitive drought hypersensitive2 (dry2) mutant that shows decreased squalene epoxidase activity. We show that mutations in SUPPRESSOR OF DRY2 DEFECTS1 (SUD1) gene recover most developmental defects in dry2 through changes in HMGR activity. SUD1 encodes a putative E3 ubiquitin ligase that shows sequence and structural similarity to yeast Degradation of α factor (Doα10) and human TEB4, components of the endoplasmic reticulum–associated degradation C (ERAD-C) pathway. While in yeast and animals, the alternative ERAD-L/ERAD-M pathway regulates HMGR activity by controlling protein stability, SUD1 regulates HMGR activity without apparent changes in protein content. These results highlight similarities, as well as important mechanistic differences, among the components involved in HMGR regulation in plants, yeast, and animals.  相似文献   

19.
Brassinosteroid (BR) and gibberellin (GA) are two predominant hormones regulating plant cell elongation. A defect in either of these leads to reduced plant growth and dwarfism. However, their relationship remains unknown in rice (Oryza sativa). Here, we demonstrated that BR regulates cell elongation by modulating GA metabolism in rice. Under physiological conditions, BR promotes GA accumulation by regulating the expression of GA metabolic genes to stimulate cell elongation. BR greatly induces the expression of D18/GA3ox-2, one of the GA biosynthetic genes, leading to increased GA1 levels, the bioactive GA in rice seedlings. Consequently, both d18 and loss-of-function GA-signaling mutants have decreased BR sensitivity. When excessive active BR is applied, the hormone mostly induces GA inactivation through upregulation of the GA inactivation gene GA2ox-3 and also represses BR biosynthesis, resulting in decreased hormone levels and growth inhibition. As a feedback mechanism, GA extensively inhibits BR biosynthesis and the BR response. GA treatment decreases the enlarged leaf angles in plants with enhanced BR biosynthesis or signaling. Our results revealed a previously unknown mechanism underlying BR and GA crosstalk depending on tissues and hormone levels, which greatly advances our understanding of hormone actions in crop plants and appears much different from that in Arabidopsis thaliana.  相似文献   

20.
Many unicellular microalgae produce large amounts (∼20 to 50% of cell dry weight) of triacylglycerols (TAGs) under stress (e.g., nutrient starvation and high light), but the synthesis and physiological role of TAG are poorly understood. We present detailed genetic, biochemical, functional, and physiological analyses of phospholipid:diacylglycerol acyltransferase (PDAT) in the green microalga Chlamydomonas reinhardtii, which catalyzes TAG synthesis via two pathways: transacylation of diacylglycerol (DAG) with acyl groups from phospholipids and galactolipids and DAG:DAG transacylation. We demonstrate that PDAT also possesses acyl hydrolase activities using TAG, phospholipids, galactolipids, and cholesteryl esters as substrates. Artificial microRNA silencing of PDAT in C. reinhardtii alters the membrane lipid composition, reducing the maximum specific growth rate. The data suggest that PDAT-mediated membrane lipid turnover and TAG synthesis is essential for vigorous growth under favorable culture conditions and for membrane lipid degradation with concomitant production of TAG for survival under stress. The strong lipase activity of PDAT with broad substrate specificity suggests that this enzyme could be a potential biocatalyst for industrial lipid hydrolysis and conversion, particularly for biofuel production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号