共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
《The Journal of biological chemistry》2014,289(4):2260
3.
4.
5.
Amato AA Rajagopalan S Lin JZ Carvalho BM Figueira AC Lu J Ayers SD Mottin M Silveira RL Souza PC Mourão RH Saad MJ Togashi M Simeoni LA Abdalla DS Skaf MS Polikparpov I Lima MC Galdino SL Brennan RG Baxter JD Pitta IR Webb P Phillips KJ Neves FA 《The Journal of biological chemistry》2012,287(33):28169-28179
The recent discovery that peroxisome proliferator-activated receptor γ (PPARγ) targeted anti-diabetic drugs function by inhibiting Cdk5-mediated phosphorylation of the receptor has provided a new viewpoint to evaluate and perhaps develop improved insulin-sensitizing agents. Herein we report the development of a novel thiazolidinedione that retains similar anti-diabetic efficacy as rosiglitazone in mice yet does not elicit weight gain or edema, common side effects associated with full PPARγ activation. Further characterization of this compound shows GQ-16 to be an effective inhibitor of Cdk5-mediated phosphorylation of PPARγ. The structure of GQ-16 bound to PPARγ demonstrates that the compound utilizes a binding mode distinct from other reported PPARγ ligands, although it does share some structural features with other partial agonists, such as MRL-24 and PA-082, that have similarly been reported to dissociate insulin sensitization from weight gain. Hydrogen/deuterium exchange studies reveal that GQ-16 strongly stabilizes the β-sheet region of the receptor, presumably explaining the compound's efficacy in inhibiting Cdk5-mediated phosphorylation of Ser-273. Molecular dynamics simulations suggest that the partial agonist activity of GQ-16 results from the compound's weak ability to stabilize helix 12 in its active conformation. Our results suggest that the emerging model, whereby "ideal" PPARγ-based therapeutics stabilize the β-sheet/Ser-273 region and inhibit Cdk5-mediated phosphorylation while minimally invoking adipogenesis and classical agonism, is indeed a valid framework to develop improved PPARγ modulators that retain antidiabetic actions while minimizing untoward effects. 相似文献
6.
Yanhong Guo Yanbo Fan Jifeng Zhang Lin Chang Jiandie D. Lin Y. Eugene Chen 《The Journal of biological chemistry》2013,288(7):4625-4636
7.
8.
9.
Anne Bugge Majken Siersb?k Maria S. Madsen Anita G?nd?r Carole Rougier Susanne Mandrup 《The Journal of biological chemistry》2010,285(23):17310-17317
Uncoupling Proteins (UCPs) are integral ion channels residing in the inner mitochondrial membrane. UCP2 is ubiquitously expressed, while UCP3 is found primarily in muscles and adipose tissue. Although the exact molecular mechanism of action is controversial, it is generally agreed that both homologues function to facilitate mitochondrial fatty acid oxidation. UCP2 and -3 expression is activated by the peroxisome proliferator-activated receptors (PPARs), but so far no PPAR response element has been reported in the vicinity of the Ucp2 and Ucp3 genes. Using genome-wide profiling of PPARγ occupancy in 3T3-L1 adipocytes we demonstrate that PPARγ associates with three chromosomal regions in the vicinity of the Ucp3 locus and weakly with a site in intron 1 of the Ucp2 gene. These sites are isolated from the nearest neighboring sites by >900 kb. The most prominent PPARγ binding site in the Ucp2 and Ucp3 loci is located in intron 1 of the Ucp3 gene and is the only site that facilitates PPARγ transactivation of a heterologous promoter. This site furthermore transactivates the endogenous Ucp3 promoter, and using chromatin conformation capture we show that it loops out to specifically interact with the Ucp2 promoter and intron 1. Our data indicate that PPARγ transactivation of both UCP2 and -3 is mediated through this novel enhancer in Ucp3 intron 1. 相似文献
10.
Craig W. Younce Asim Azfer Pappachan E. Kolattukudy 《The Journal of biological chemistry》2009,284(40):27620-27628
11.
12.
13.
14.
15.
Xin Guo Kefeng Xu Jifeng Zhang Honggui Li Weiyu Zhang Huan Wang Alex J. Lange Y. Eugene Chen Yuqing Huo Chaodong Wu 《The Journal of biological chemistry》2010,285(31):23711-23720
PFKFB3 is the gene that codes for the inducible isoform of 6-phosphofructo-2-kinase (iPFK2), a key regulatory enzyme of glycolysis. As one of the targets of peroxisome proliferator-activated receptor γ (PPARγ), PFKFB3/iPFK2 is up-regulated by thiazolidinediones. In the present study, using PFKFB3/iPFK2-disrupted mice, the role of PFKFB3/iPFK2 in the anti-diabetic effect of PPARγ activation was determined. In wild-type littermate mice, PPARγ activation (i.e. treatment with rosiglitazone) restored euglycemia and reversed high fat diet-induced insulin resistance and glucose intolerance. In contrast, PPARγ activation did not reduce high fat diet-induced hyperglycemia and failed to reverse insulin resistance and glucose intolerance in PFKFB3+/− mice. The lack of anti-diabetic effect in PFKFB3+/− mice was associated with the inability of PPARγ activation to suppress adipose tissue lipolysis and proinflammatory cytokine production, stimulate visceral fat accumulation, enhance adipose tissue insulin signaling, and appropriately regulate adipokine expression. Similarly, in cultured 3T3-L1 adipocytes, knockdown of PFKFB3/iPFK2 lessened the effect of PPARγ activation on stimulating lipid accumulation. Furthermore, PPARγ activation did not suppress inflammatory signaling in PFKFB3/iPFK2-knockdown adipocytes as it did in control adipocytes. Upon inhibition of excessive fatty acid oxidation in PFKFB3/iPFK2-knockdown adipocytes, PPARγ activation was able to significantly reverse inflammatory signaling and proinflammatory cytokine expression and restore insulin signaling. Together, these data demonstrate that PFKFB3/iPFK2 is critically involved in the anti-diabetic effect of PPARγ activation. 相似文献
16.
17.
Yoshitake Cho Bethany C. Hazen Aaron P. Russell Anastasia Kralli 《The Journal of biological chemistry》2013,288(35):25207-25218
18.
19.
20.
In the Drosophila embryo, the correct association of muscles with their specific tendon cells is achieved through reciprocal interactions between these two distinct cell types. Tendon cell differentiation is initiated by activation of the EGF-receptor signaling pathway within these cells by Vein, a neuregulin-like factor secreted by the approaching myotube. Here, we describe the cloning and the molecular and genetic analyses of kakapo, a Drosophila gene, expressed in the tendons, that is essential for muscle-dependent tendon cell differentiation. Kakapo is a large intracellular protein and contains structural domains also found in cytoskeletal-related vertebrate proteins (including plakin, dystrophin, and Gas2 family members). kakapo mutant embryos exhibit abnormal muscle-dependent tendon cell differentiation. A major defect in the kakapo mutant tendon cells is the failure of Vein to be localized at the muscle–tendon junctional site; instead, Vein is dispersed and its levels are reduced. This may lead to aberrant differentiation of tendon cells and consequently to the kakapo mutant deranged somatic muscle phenotype. 相似文献