首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To examine whether cultivation reduced genetic variation in the important Chinese medicinal plant Rheum tanguticum, the levels and distribution of genetic variation were investigated using ISSR markers. Fifty-eight R. tanguticum individuals from five cultivated populations were studied. Thirteen primers were used and a total of 320 DNA bands were scored. High levels of genetic diversity were detected in cultivated R. tanguticum (PPB = 82.19, H = 0.2498, HB = 0.3231, I = 0.3812) and could be explained by the outcrossing system, as well as long-lived and human-mediated seed exchanges. Analysis of molecular variance (AMOVA) showed that more genetic variation was found within populations (76.1%) than among them (23.9%). This was supported by the coefficient of gene differentiation (Gst = 0.2742) and Bayesian analysis (θB = 0.1963). The Mantel test revealed no significant correlation between genetic and geographic distances among populations (r = 0.1176, p = 0.3686). UPGMA showed that the five cultivated populations were separated into three clusters, which was in good accordance with the results provided by the Bayesian software STRUCTURE (K = 3). A short domestication history and no artificial selection may be an effective way of maintaining and conserving the gene pools of wild R. tanguticum.  相似文献   

2.
Population genetics model based Bayesian methods have been proposed and widely applied to making unsupervised inference of population structure from a sample of multilocus genotypes. Usually they provide good estimates of the ancestry (or population membership) of sampled individuals by clustering them probabilistically or proportionally into (anonymous) populations. However, they have difficulties in accurately estimating the number of populations (K) represented by the sampled individuals. This study proposed a new ad hoc estimator of K, calculable from the output of a population clustering program such as STRUCTURE or ADMIXTURE. The new criterion, called parsimony index (PI), aims to identify the number of populations (K) which yields consistently the minimal admixture estimates of sampled individuals. Extensive simulated and empirical data were used to compare the accuracy of PI and two popular K estimators based on Pr[X|K] (i.e., the probability of genotype data X given K) and ΔK (i.e., the rate of change of the probability of data as a function of K) calculated from STRUCTURE outputs, and the accuracy of PI and the cross‐validation method calculated from ADMIXTURE outputs. It was shown that PI was more accurate than the other methods consistently in various population structure (e.g., hierarchical island model, different extents of differentiation) and sampling (e.g., unbalanced sample sizes, different marker information contents) scenarios. The ΔK method was more accurate than the Pr[X|K] method only for hierarchically structured or highly inbred populations, and the opposite was true in the other scenarios. The PI method was implemented in a computer program, KFinder, which can be run on all major computer platforms.  相似文献   

3.
4.
Different analytical techniques used on the same data set may lead to different conclusions about the existence and strength of genetic structure. Therefore, reliable interpretation of the results from different methods depends on the efficacy and reliability of different statistical methods. In this paper, we evaluated the performance of multiple analytical methods to detect the presence of a linear barrier dividing populations. We were specifically interested in determining if simulation conditions, such as dispersal ability and genetic equilibrium, affect the power of different analytical methods for detecting barriers. We evaluated two boundary detection methods (Monmonier's algorithm and WOMBLING), two spatial Bayesian clustering methods (TESS and GENELAND), an aspatial clustering approach (STRUCTURE), and two recently developed, non-Bayesian clustering methods [PSMIX and discriminant analysis of principal components (DAPC)]. We found that clustering methods had higher success rates than boundary detection methods and also detected the barrier more quickly. All methods detected the barrier more quickly when dispersal was long distance in comparison to short-distance dispersal scenarios. Bayesian clustering methods performed best overall, both in terms of highest success rates and lowest time to barrier detection, with GENELAND showing the highest power. None of the methods suggested a continuous linear barrier when the data were generated under an isolation-by-distance (IBD) model. However, the clustering methods had higher potential for leading to incorrect barrier inferences under IBD unless strict criteria for successful barrier detection were implemented. Based on our findings and those of previous simulation studies, we discuss the utility of different methods for detecting linear barriers to gene flow.  相似文献   

5.

Background and Aims Adansonia

comprises nine species, six of which are endemic to Madagascar. Genetic relationships between the Malagasy species remain unresolved due to conflicting results between nuclear and plastid DNA variation. Morphologically intermediate individuals between distinct species have been identified, indicative of interspecific hybridization. In this paper, microsatellite data are used to identify potential cases of hybridization and to provide insights into the evolutionary history of the genus on Madagascar.

Methods

Eleven microsatellites amplified with new primers developed for Adansonia rubrostipa were used to analyse 672 individuals collected at 27 sites for the six Malagasy species and morphologically intermediate individuals. Rates of individual admixture were examined using three Bayesian clustering programs, STRUCTURE, BAPS and NewHybrids, with no a priori species assignment.

Key Results

Population differentiation was coherent, with recognized species boundaries. In the four Malagasy species of section Longitubae, 8·0, 9·0 and 9·5 % of individuals with mixed genotypes were identified by BAPS, NewHybrids and STRUCTURE, respectively. At sites with sympatric populations of A. rubrostipa and A. za, NewHybrids indicated these individuals to be F2 and, predominantly, backcrosses with both parental species. In northern Madagascar, two populations of trees combining A. za and A. perrieri morphology and microsatellite alleles were identified in the current absence of the parental species.

Conclusions

The clear genetic differentiation observed between the six species may reflect their adaptation to different assortments of climate regimes and habitats during the colonization of the island. Microsatellite variation reveals that hybridization probably occurred in secondary contact between species of section Longitubae. This type of hybridization may also have been involved in the differentiation of a local new stabilized entity showing specific microsatellite alleles and morphological characters, suggesting a potential role of hybridization in the recent history of diversification on Madagascar.  相似文献   

6.
Estimating the genetic structure of a population is important for the conservation and management of wildlife. In the present study, our aim was to estimate the genetic structure of the brown bear (Ursus arctos) population in eastern Hokkaido by performing a Bayesian clustering analysis. To accomplish this goal, we used 15 microsatellites to generate genotypic data from tissue samples collected from 646 bears between 1996 and 2008. Using this genotypic data and the geographic locations where the bears were captured, GENELAND analysis detected six subpopulations. Based on the genotypic data, the STRUCTURE analysis revealed three subpopulations. As inferred from the GENELAND analysis, the core zones of the subpopulations (G-a through G-f) were located in the Shiranuka Hills (G-a), the northern area of the Shiranuka Hills (G-b), the eastern slope of the Daisetsuzan Mountains (G-c), the northern slope of the Akan Mountain Range (G-d), the Shiretoko Peninsula (G-e), and Akkeshi District (G-f). The STRUCTURE analysis indicated that G-b and G-d were influenced by gene flow from other subpopulations. National routes, towns, and farm fields were considered to have formed the distribution boundaries among the subpopulations. A high level of genetic differentiation was not observed among the six subpopulations, with the exception of G-f (F st?=?1.35–0.176, D s?=?0.246–0.349), which showed a geographically discontinuous distribution. We suggest that the loss of forest areas through future regional development and road building should be avoided to facilitate gene flow in brown bears in Hokkaido.  相似文献   

7.

Background and Aim

Anagenesis (also known as phyletic speciation) is an important process of speciation in endemic species of oceanic islands. We investigated genetic variation in Acer okamotoanum, an anagenetically derived species endemic to Ullung Island, South Korea, to infer genetic consequences of anagenesis in comparison with other groups that have undergone cladogenesis (and adaptive radiation).

Methods

We examined genetic variation based on eight polymorphic microsatellite markers from 145 individuals of A. okamotoanum and 134 individuals of its putative progenitor A. mono. We employed standard population genetic analyses, clustering analyses, Bayesian clustering analyses in STRUCTURE and bottleneck analyses.

Key Results

Based on both the Neighbor–Joining tree and Bayesian clustering analyses, clear genetic distinctions were found between the two species. Genetic diversity in terms of allelic richness and heterozygosity shows slightly lower levels in A. okamotoanum in comparison with A. mono. Bayesian clustering analyses showed a relatively high F-value in the cluster of A. okamotoanum, suggesting a strong episode of genetic drift during colonization and speciation. There was no clear evidence of a bottleneck based on allelic frequency distribution and excess of observed heterozygotes, but the M-ratio indicated a historical bottleneck in several populations of A. okamotoanum. No geographical genetic structure within the island was found, and the genetic variation among populations of A. okamotoanum was quite low.

Conclusions

We hypothesized that genetic consequences of oceanic-endemic plants derived via anagenesis would be quite different from those derived via cladogenesis. Populations of A. okamotoanum form a cluster and are clearly differentiated from A. mono, which suggests a single origin for the anagenetically derived island endemic. No pattern of geographical differentiation of populations occurs in A. okamotoanum, which supports the concept of initial founder populations diverging through time by accumulation of mutations in a relatively uniform environment without further specific differentiation.  相似文献   

8.
Previous attempts to resolve the Ceratitis FAR complex (Ceratitis fasciventris, Ceratitis anonae, Ceratitis rosa, Diptera, Tephritidae) showed contrasting results and revealed the occurrence of five microsatellite genotypic clusters (A, F1, F2, R1, R2). In this paper we explore the potential of wing morphometrics for the diagnosis of FAR morphospecies and genotypic clusters. We considered a set of 227 specimens previously morphologically identified and genotyped at 16 microsatellite loci. Seventeen wing landmarks and 6 wing band areas were used for morphometric analyses. Permutational multivariate analysis of variance detected significant differences both across morphospecies and genotypic clusters (for both males and females). Unconstrained and constrained ordinations did not properly resolve groups corresponding to morphospecies or genotypic clusters. However, posterior group membership probabilities (PGMPs) of the Discriminant Analysis of Principal Components (DAPC) allowed the consistent identification of a relevant proportion of specimens (but with performances differing across morphospecies and genotypic clusters). This study suggests that wing morphometrics and PGMPs might represent a possible tool for the diagnosis of species within the FAR complex. Here, we propose a tentative diagnostic method and provide a first reference library of morphometric measures that might be used for the identification of additional and unidentified FAR specimens.  相似文献   

9.
10.

The native vs. exotic status of reed canarygrass (RCG), a major invasive species of Minnesota wetlands, is unknown. The aim of this study was to investigate this native vs. exotic status to enhance its management. Genetic comparison of wild RCG populations from six Minnesota and six Czech Republic rivers was performed. A total of 2521 polymorphic SNP markers (single nucleotide polymorphisms) were used to evaluate 478 RCG samples across all collections. In the PCoA, all (n = 256) tested extant wild, riparian RCG genotypes from six Minnesota Rivers and six Czech Republic Rivers were genetically distinct, although some SNPs were common in both populations since they are the same species. DAPC analysis also resulted in the formation of two primary clusters separating the Minnesota Rivers and Czech Republic Rivers riparian samples, with little overlap; STRUCTURE analysis also supported this clustering with k = 4 groups as it separated the Czech Republic Rivers populations into three groups, along with Minnesota Rivers. The uniformity of PCoA, DAPC, STRUCTURE, and Evanno results indicates the distinct separation of Minnesota Rivers and Czech Republic Rivers populations. Portions of the genome (specific SNPs) are preserved or in common across continents, as indicated by STRUCTURE similarities. Nonetheless, overall significant SNP differences between the continents indicate that the Minnesota riparian populations are distinct enough from the European (Czech) collections to be delineated as native N. American RCG. PCoA of all the Minnesota RCG collections clustered Minnesota Rivers, Herbarium, Extant Herbarium, Research Field and Native Field collections together. STRUCTURE analysis (k = 2; Evanno) divided these Minnesota collections from the Commercial Field and Cultivars collections. There are two genetically distinct groups of RCG in Minnesota and since the Minnesota Rivers, the Research Field, the Native Field and pre-1930 herbaria collections clustered together, they are most likely native N. American types. Analysis of molecular variance (AMOVA) indicated that the genetic variation was more significant within, rather than among, the RCG populations. Native, historic herbaria types cluster together with all wild RCG river populations in Minnesota, all of which were distinct from those in Central Europe, suggesting native RCG type persistence in N. America. Also, cultivated forage types of RCG are distinct from wild RCG Minnesota river populations. The SNP genetic data shows that riparian Minnesota RCG populations are native. These data will facilitate future management strategies to control RCG as a native, but invasive, species.

  相似文献   

11.
Peanut fields in four governorates of Egypt were surveyed to identify species of Meloidogyne present. Fourteen populations obtained from peanut roots were all identified as M. javanica based on perineal patterns, stylet and body lengths of second-stage juveniles, esterase phenotypes, and restriction fragment length polymorphisms of mtDNA. Three of 14 populations, all from contiguous fields in the Behara governorate, had individuals with a unique two-isozyme esterase phenotype. All populations of M. javanica tested on peanut had levels of reproduction on the M. arenaria-susceptible peanut cultivar Florunner that were not different from M. arenaria (P = 0.05), and had lower levels of reproduction on the M. arenaria-resistant genotype TxAG-7 than on Florunner (P = 0.05). Reproduction of the five Egyptian populations of M. javanica tested was lower on root-knot nematode resistant tomato cultivars Better Boy and Celebrity than on the root-knot nematode susceptible cultivar Rutgers (P = 0.05). These data are evidence that some populations of M. javanica are parasitic on peanut and that the peanut and tomato genotypes resistant to M. arenaria are also resistant to these populations of M. javanica.  相似文献   

12.
The European ground squirrel (Spermophilus citellus) is endangered and in decline. Populations are increasingly fragmented, and only a coordinated conservation effort at the European level may guarantee its long-term survival. To obtain a general population genetic picture on a larger geographic scale, we screened 117 individuals from seven local populations in Hungary, Romania, and Austria for allelic variation at eleven microsatellite loci. We found a high (23.4%) proportion of private alleles, and a moderate to somewhat elevated level (15.27%) of partitioning of genetic diversity among populations, compared to that found in many other terrestrial mammals. Genetic variability was significantly higher than in earlier studied Czech populations that are considered genetically depleted, but significantly lower than in undisturbed populations of S. suslicus and S. brunneus, that are similar to the European ground squirrel in their ecological requirements, reproductive biology, and social organization. Genetic diversity was also lower than in most presumably “undisturbed” populations of other Sciurid species. This, together with the observed level and pattern of genetic differentiation among populations, such as no significant increase of genetic differentiation with geographic distance and similar variance of genetic differentiation between populations independent of geographic distance, indicated the prevalence of relatively strong drift effects for all populations. A Bayesian STRUCTURE analysis and a factorial correspondence analysis concordantly revealed a fairly complex genetic composition of local populations, but no major geographic trend in the pattern of the genetic composition. Overall, the results suggest disintegration of local colonies that might earlier have been more connected genetically. The STRUCTURE analysis also suggested anthropogenic translocations among single Hungarian populations. Our data on genetic diversity and its distribution do not object to such conservation measures. Translocation of individuals particularly from nearby populations may increase the chances of survival of small and isolated populations and counteract inbreeding at low densities.  相似文献   

13.
MethodsGenetic diversity and structure were examined using 20 microsatellite markers in 37 populations of C. japonica. The locations of glacial refugia were assessed using STRUCTURE analysis, and potential habitats under current and past climate conditions were predicted using SDM. The process of genetic divergence was also examined using the approximate Bayesian computation procedure (ABC) in DIY ABC to test the divergence time between the gene pools detected by the STRUCTURE analysis.ConclusionsThe combined evidence from microsatellites and SDM clearly indicates that climatic changes have shaped the genetic structure of C. japonica. The gene pool detected in northern Tohoku district is likely to have been established by cryptic northern refugia on the coast of the Japan Sea to the west of the Archipelago. The gene pool in Yakushima Island can probably be explained simply by long-term isolation from the other gene pools since the LGM. These results are supported by those of SDM and the predicted divergence time determined using ABC analysis.  相似文献   

14.
Speciation may occur when the genomes of two populations accumulate genetic incompatibilities and/or chromosomal rearrangements that prevent inter-breeding in nature. Chromosome stability is critical for survival and faithful transmission of the genome, and hybridization can compromise this. However, the role of chromosomal stability on hybrid incompatibilities has rarely been tested in recently diverged populations. Here, we test for chromosomal instability in hybrids between nascent species, the ‘dwarf’ and ‘normal’ lake whitefish (Coregonus clupeaformis). We examined chromosomes in pure embryos, and healthy and malformed backcross embryos. While pure individuals displayed chromosome numbers corresponding to the expected diploid number (2n = 80), healthy backcrosses showed evidence of mitotic instability through an increased variance of chromosome numbers within an individual. In malformed backcrosses, extensive aneuploidy corresponding to multiples of the haploid number (1n = 40, 2n = 80, 3n = 120) was found, suggesting meiotic breakdown in their F1 parent. However, no detectable chromosome rearrangements between parental forms were identified. Genomic instability through aneuploidy thus appears to contribute to reproductive isolation between dwarf and normal lake whitefish, despite their very recent divergence (approx. 15–20 000 generations). Our data suggest that genetic incompatibilities may accumulate early during speciation and limit hybridization between nascent species.  相似文献   

15.
Admixture between wild and captive populations is an increasing concern in conservation biology. Understanding the extent of admixture and the processes involved requires identification of admixed and non-admixed individuals. This can be achieved by statistical methods employing Bayesian clustering, but resolution is low if genetic differentiation is weak. Here, we analyse stocked brown trout populations represented by historical (1943–1956) and contemporary (2000s) samples, where genetic differentiation between wild populations and stocked trout is weak (pairwise FST of 0.047 and 0.053). By analysing a high number of microsatellite DNA markers (50) and making use of linkage map information, we achieve clear identification of admixed and non-admixed trout. Moreover, despite strong population-level admixture by hatchery strain trout in one of the populations (70.8%), non-admixed individuals nevertheless persist (7 out of 53 individuals). These remnants of the indigenous population are characterized by later spawning time than the majority of the admixed individuals. We hypothesize that isolation by time mediated by spawning time differences between wild and hatchery strain trout is a major factor rescuing a part of the indigenous population from introgression.  相似文献   

16.
We present methods for imputing data for ungenotyped markers and for inferring haplotype phase in large data sets of unrelated individuals and parent-offspring trios. Our methods make use of known haplotype phase when it is available, and our methods are computationally efficient so that the full information in large reference panels with thousands of individuals is utilized. We demonstrate that substantial gains in imputation accuracy accrue with increasingly large reference panel sizes, particularly when imputing low-frequency variants, and that unphased reference panels can provide highly accurate genotype imputation. We place our methodology in a unified framework that enables the simultaneous use of unphased and phased data from trios and unrelated individuals in a single analysis. For unrelated individuals, our imputation methods produce well-calibrated posterior genotype probabilities and highly accurate allele-frequency estimates. For trios, our haplotype-inference method is four orders of magnitude faster than the gold-standard PHASE program and has excellent accuracy. Our methods enable genotype imputation to be performed with unphased trio or unrelated reference panels, thus accounting for haplotype-phase uncertainty in the reference panel. We present a useful measure of imputation accuracy, allelic R2, and show that this measure can be estimated accurately from posterior genotype probabilities. Our methods are implemented in version 3.0 of the BEAGLE software package.  相似文献   

17.

Background and Aims

A vast quantity of empirical evidence suggests that insufficient quantity or quality of pollen may lead to a reduction in fruit set, in particular for self-incompatible species. This study uses an integrative approach that combines field research with marker gene analysis to understand the factors affecting reproductive success in a widely distributed self-incompatible species, Prunus virginiana (Rosaceae).

Methods

Twelve patches of P. virginiana distributed within three populations that differed in degree of disturbance were examined. Two of the sites were small (7–35 km2) remnants of forest in an intensively used agricultural landscape, while the third was continuous (350 km2) and less disturbed. Field studies (natural and hand cross-pollinations) were combined with marker gene analyses (microsatellites and S-locus) in order to explore potential factors affecting pollen delivery and consequently reproductive success at landscape (between populations) and fine scales (within populations).

Key Results

Reductions in reproductive output were found in the two fragments compared with the continuous population, and suggest that pollen is an important factor limiting fruit production. Genetic analyses carried out in one of the fragments and in the continuous site suggest that even though S-allele diversity is high in both populations, the fragment exhibits an increase in biparental inbreeding and correlated paternity. The increase in biparental inbreeding in the fragment is potentially attributable to variation in the density of individuals and/or the spatial distribution of genotypes among populations, both of which could alter mating dynamics.

Conclusions

By using a novel integrative approach, this study shows that even though P. virginiana is a widespread species, fragmented populations can experience significant reductions in fruit set and pollen limitation in the field. Deatiled examination of one fragmented population suggests that these linitations may be explained by an increase in biparental inbreeding, correlated paternity and fine-scale genetic structure. The consistency of the field and fine-scale genetic analyses, and the consistency of the results within patches and across years, suggest that these are important processes driving pollen limitation in the fragment.  相似文献   

18.
Traditional methods for characterizing genetic differentiation among populations rely on a priori grouping of individuals. Bayesian clustering methods avoid this limitation by using linkage and Hardy–Weinberg disequilibrium to decompose a sample of individuals into genetically distinct groups. There are several software programs available for Bayesian clustering analyses, all of which describe a decrease in the ability to detect distinct clusters as levels of genetic differentiation among populations decrease. However, no study has yet compared the performance of such methods at low levels of population differentiation, which may be common in species where populations have experienced recent separation or high levels of gene flow. We used simulated data to evaluate the performance of three Bayesian clustering software programs, PARTITION, STRUCTURE, and BAPS, at levels of population differentiation below F ST=0.1. PARTITION was unable to correctly identify the number of subpopulations until levels of F ST reached around 0.09. Both STRUCTURE and BAPS performed very well at low levels of population differentiation, and were able to correctly identify the number of subpopulations at F ST around 0.03. The average proportion of an individual’s genome assigned to its true population of origin increased with increasing F ST for both programs, reaching over 92% at an F ST of 0.05. The average number of misassignments (assignments to the incorrect subpopulation) continued to decrease as F ST increased, and when F ST was 0.05, fewer than 3% of individuals were misassigned using either program. Both STRUCTURE and BAPS worked extremely well for inferring the number of clusters when clusters were not well-differentiated (F ST=0.02–0.03), but our results suggest that F ST must be at least 0.05 to reach an assignment accuracy of greater than 97%.  相似文献   

19.
Corylus mandshurica, also known as pilose hazelnut, is an economically and ecologically important species in China. In this study, ten polymorphic simple sequence repeat (SSR) markers were applied to evaluate the genetic diversity and population structure of 348 C. mandshurica individuals among 12 populations in China. The SSR markers expressed a relatively high level of genetic diversity (Na = 15.3, Ne = 5.6604, I = 1.8853, Ho = 0.6668, and He = 0.7777). According to the coefficient of genetic differentiation (F st = 0.1215), genetic variation within the populations (87.85%) were remarkably higher than among populations (12.15%). The average gene flow (Nm = 1.8080) significantly impacts the genetic structure of C. mandshurica populations. The relatively high gene flow (Nm = 1.8080) among wild C. mandshurica may be caused by wind-pollinated flowers, highly nutritious seeds and self-incompatible mating system. The UPGMA (unweighted pair group method of arithmetic averages) dendrogram was divided into two main clusters. Moreover, the results of STRUCTURE analysis suggested that C. mandshurica populations fell into two main clusters. Comparison of the UPGMA dendrogram and the Bayesian STRUCTURE analysis showed general agreement between the population subdivisions and the genetic relationships among populations of C. mandshurica. Group I accessions were located in Northeast China, while Group II accessions were in North China. It is worth noting that a number of genetically similar populations were located in the same geographic region. The results further showed that there was obvious genetic differentiation among populations from Northeast China to North China. Results from the Mantel test showed a weak but still significant positive correlation between Nei’s genetic distance and geographic distance (km) among populations (r = 0.419, P = 0.005), suggesting that genetic differentiation in the 12 C. mandshurica populations might be related to geographic distance. These data provide comprehensive information for the development of conservation strategies of these valuable hazelnut resources.  相似文献   

20.
The fruit fly Ceratitis cosyra is an important agricultural pest negatively affecting the mango crop production throughout Africa and also feeding on a variety of other wild and cultivated hosts. The occurrence of deeply divergent haplotypes, as well as extensive morphological variability, previously suggested possible cryptic speciation within Ceratitis cosyra. Here we provide the first large-scale characterisation of the population structure of Ceratitis cosyra with the main objective of verifying cryptic genetic variation. A total of 348 specimens from 13 populations were genotyped at 16 polymorphic microsatellite loci. Hardy-Weinberg equilibrium (HWE) deviations were observed in 40.4% of locus-population combinations and suggested the occurrence of genetic substructuring within populations. Discriminant Analysis of Principal Components (DAPC) showed genetic divergence between the vast majority of vouchers from Burundi and Tanzania (plus a few outliers from other African countries) and all other specimens sampled. Individual Bayesian assignments confirmed the existence of two main genotypic groups also occurring in sympatry. These data provided further support to the hypothesis that Ceratitis cosyra might include cryptic species. However, additional integrative taxonomy, possibly combining morphological, ecological and physiological approaches, is required to provide the necessary experimental support to this model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号