首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cavins are a family of proteins associated with caveolae, cavin-1, -2 and -3 being widely expressed while cavin-4 is restricted to striated muscle. Deletion of cavin-1 results in phenotypes including metabolic changes consistent with adipocyte dysfunction, and caveolae are completely absent. Deletion of cavin-2 causes tissue-specific loss of caveolae. The consequences of cavin-3 deletion are less clear, as there are divergent data on the abundance of caveolae in cavin-3 null mice. Here we examine the consequences of cavin-3 deficiency in vivo by making cavin-3 knockout mice. We find that loss of cavin-3 has minimal or no effects on the levels of other caveolar proteins, does not appear to play a major role in formation of protein complexes important for caveolar morphogenesis, and has no significant effect on caveolae abundance. Cavin-3 null mice have the same body weight and fat mass as wild type animals at ages 8 through 30 weeks on both normal chow and high fat diets. Likewise, the two mouse strains exhibit identical glucose tolerance tests on both diets. Microarray analysis from adipose tissue shows that the changes in mRNA expression between cavin-3 null and wild type mouse are minimal. We conclude that cavin-3 is not absolutely required for making caveolae, and suggest that the mechanistic link between cavin-3 and metabolic regulation remains uncertain.  相似文献   

2.
3.
High-fat diet (HFD) has been applied to a variety of inbred mouse strains to induce obesity and obesity related metabolic complications. In this study, we determined HFD induced development of metabolic disorders on outbred female CD-1 mice in a time dependent manner. Compared to mice on regular chow, HFD-fed CD-1 mice gradually gained more fat mass and consequently exhibited accelerated body weight gain, which was associated with adipocyte hypertrophy and up-regulated expression of adipose inflammatory chemokines and cytokines such as Mcp-1 and Tnf-α. Increased fat accumulation in white adipose tissue subsequently led to ectopic fat deposition in brown adipose tissue, giving rise to whitening of brown adipose tissue without altering plasma level of triglyceride. Ectopic fat deposition was also observed in the liver, which was associated with elevated expression of key genes involved in hepatic lipid sequestration, including Ppar-γ2, Cd36 and Mgat1. Notably, adipose chronic inflammation and ectopic lipid deposition in the liver and brown fat were accompanied by glucose intolerance and insulin resistance, which was correlated with hyperinsulinemia and pancreatic islet hypertrophy. Collectively, these results demonstrate sequentially the events that HFD induces physiological changes leading to metabolic disorders in an outbred mouse model more closely resembling heterogeneity of the human population.  相似文献   

4.
Hypoxia in adipose tissue has been postulated as a possible contributor to obesity-related chronic inflammation, insulin resistance, and metabolic dysfunction. HIF1α (hypoxia-inducible factor 1α), a master signal mediator of hypoxia response, is elevated in obese adipose tissue. However, the role of HIF1α in obesity-related pathologies remains to be determined. Here we show that transgenic mice with adipose tissue-selective expression of a dominant negative version of HIF1α developed more severe obesity and were more susceptible to high fat diet-induced glucose intolerance and insulin resistance compared with their wild type littermates. Obesity in the transgenic mice was attributed to impaired energy expenditure and reduced thermogenesis. Histological examination of interscapular brown adipose tissue (BAT) in the transgenic mice demonstrated a markedly increased size of lipid droplets and decreased mitochondrial density in adipocytes, a phenotype similar to that in white adipose tissue. These changes in BAT of the transgenic mice were accompanied by decreased mitochondrial biogenesis and reduced expression of key thermogenic genes. In the transgenic mice, angiogenesis in BAT was decreased but was little affected in white adipose tissue. These findings support an indispensable role of HIF1α in maintaining the thermogenic functions of BAT, possibly through promoting angiogenesis and mitochondrial biogenesis in this tissue.  相似文献   

5.
6.
7.
Aging is associated with increased adiposity in white adipose tissues and impaired thermogenesis in brown adipose tissues; both contribute to increased incidences of obesity and type 2 diabetes. Ghrelin is the only known circulating orexigenic hormone that promotes adiposity. In this study, we show that ablation of the ghrelin receptor (growth hormone secretagogue receptor, GHS-R) improves insulin sensitivity during aging. Compared to wild-type (WT) mice, old Ghsr(-/-) mice have reduced fat and preserve a healthier lipid profile. Old Ghsr(-/-) mice also exhibit elevated energy expenditure and resting metabolic rate, yet have similar food intake and locomotor activity. While GHS-R expression in white and brown adipose tissues was below the detectable level in the young mice, GHS-R expression was readily detectable in visceral white fat and interscapular brown fat of the old mice. Gene expression profiles reveal that Ghsr ablation reduced glucose/lipid uptake and lipogenesis in white adipose tissues but increased thermogenic capacity in brown adipose tissues. Ghsr ablation prevents age-associated decline in thermogenic gene expression of uncoupling protein 1 (UCP1). Cell culture studies in brown adipocytes further demonstrate that ghrelin suppresses the expression of adipogenic and thermogenic genes, while GHS-R antagonist abolishes ghrelin's effects and increases UCP1 expression. Hence, GHS-R plays an important role in thermogenic impairment during aging. Ghsr ablation improves aging-associated obesity and insulin resistance by reducing adiposity and increasing thermogenesis. Growth hormone secretagogue receptor antagonists may be a new means of combating obesity by shifting the energy balance from obesogenesis to thermogenesis.  相似文献   

8.
White adipose tissue (WAT) functions as an energy reservoir where excess circulating fatty acids are transported to WAT, converted to triglycerides, and stored as unilocular lipid droplets. Fat-specific protein 27 (FSP27, CIDEC in humans) is a lipid-coating protein highly expressed in mature white adipocytes that contributes to unilocular lipid droplet formation. However, the influence of FSP27 in adipose tissue on whole-body energy homeostasis remains unclear. Mice with adipocyte-specific disruption of the Fsp27 gene (Fsp27ΔAd) were generated using an aP2-Cre transgene with the Cre/LoxP system. Upon high-fat diet feeding, Fsp27ΔAd mice were resistant to weight gain. In the small WAT of these mice, small adipocytes containing multilocular lipid droplets were dispersed. The expression levels of the genes associated with mitochondrial abundance and brown adipocyte identity were increased, and basal lipolytic activities were significantly augmented in adipocytes isolated from Fsp27ΔAd mice compared with the Fsp27F/F counterparts. The impaired fat-storing function in Fsp27ΔAd adipocytes and the resultant lipid overflow from WAT led to marked hepatosteatosis, dyslipidemia, and systemic insulin resistance in high-fat diet-treated Fsp27ΔAd mice. These results demonstrate a critical role for FSP27 in the storage of excess fat in WAT with minimizing ectopic fat accumulation that causes insulin-resistant diabetes and non-alcoholic fatty liver disease. This mouse model may be useful for understanding the significance of fat-storing properties of white adipocytes and the role of local FSP27 in whole-body metabolism and estimating the pathogenesis of human partial lipodystrophy caused by CIDEC mutations.  相似文献   

9.
10.
Proper regulation of white and brown adipogenic differentiation is important for maintaining an organism''s metabolic profile in a homeostatic state. The recent observations showing that the p53 tumor suppressor plays a role in metabolism raise the question of whether it is involved in the regulation of white and brown adipocyte differentiation. By using several in vitro models, representing various stages of white adipocyte differentiation, we found that p53 exerts a suppressive effect on white adipocyte differentiation in both mouse and human cells. Moreover, our in vivo analysis indicated that p53 is implicated in protection against diet-induced obesity. In striking contrast, our data shows that p53 exerts a positive regulatory effect on brown adipocyte differentiation. Abrogation of p53 function in skeletal muscle committed cells reduced their capacity to differentiate into brown adipocytes and histological analysis of brown adipose tissue revealed an impaired morphology in both embryonic and adult p53-null mice. Thus, depending on the specific adipogenic differentiation program, p53 may exert a positive or a negative effect. This cell type dependent regulation reflects an additional modality of p53 in maintaining a homeostatic state, not only in the cell, but also in the organism at large.  相似文献   

11.
Excess lipid storage in adipose tissue results in the development of obesity and other metabolic disorders including diabetes,fatty liver and cardiovascular diseases.The lipid droplet(LD)is an important subcellular organelle responsible for lipid storage.We previously observed that Fsp27,a member of the CIDE family proteins,is localized to LD-contact sites and promotes atypical LD fusion and growth.Cidea,a close homolog of Fsp27,is expressed at high levels in brown adipose tissue.However,the exact role of Cidea in promoting LD fusion and lipid storage in adipose tissue remains unknown.Here,we expressed Cidea in Fsp27-knockdown adipocytes and observed that Cidea has similar activity to Fsp27 in promoting lipid storage and LD fusion and growth.Next,we generated Cidea and Fsp27 double-deficient mice and observed that these animals had drastically reduced adipose tissue mass and a strong lean phenotype.In addition,Cidea/Fsp27 double-deficient mice had improved insulin sensitivity and were intolerant to cold.Furthermore,we observed that the brown and white adipose tissues of Cidea/Fsp27double-deficient mice had significantly reduced lipid storage and contained smaller LDs compared to those of Cidea or Fsp27single deficient mice.Overall,these data reveal an important role of Cidea in controlling lipid droplet fusion,lipid storage in brown and white adipose tissue,and the development of obesity.  相似文献   

12.
Triglycerides within the cytosol of cells are stored in a phylogenetically conserved organelle called the lipid droplet (LD). LDs can be formed at the endoplasmic reticulum, but mechanisms that regulate the formation of LDs are incompletely understood. Adipose tissue has a high capacity to form lipid droplets and store triglycerides. Fat storage-inducing transmembrane protein 2 (FITM2/FIT2) is highly expressed in adipocytes, and data indicate that FIT2 has an important role in the formation of LDs in cells, but whether FIT2 has a physiological role in triglyceride storage in adipose tissue remains unproven. Here we show that adipose-specific deficiency of FIT2 (AF2KO) in mice results in progressive lipodystrophy of white adipose depots and metabolic dysfunction. In contrast, interscapular brown adipose tissue of AF2KO mice accumulated few but large LDs without changes in cellular triglyceride levels. High fat feeding of AF2KO mice or AF2KO mice on the genetically obese ob/ob background accelerated the onset of lipodystrophy. At the cellular level, primary adipocyte precursors of white and brown adipose tissue differentiated in vitro produced fewer but larger LDs without changes in total cellular triglyceride or triglyceride biosynthesis. These data support the conclusion that FIT2 plays an essential, physiological role in fat storage in vivo.  相似文献   

13.
Lipogenic gene expression in liver is repressed in mice upon leucine deprivation. The hormone fibroblast growth factor 21 (FGF21), which is critical to the adaptive metabolic response to starvation, is also induced under amino acid deprivation. Upon leucine deprivation, we found that FGF21 is needed to repress expression of lipogenic genes in liver and white adipose tissue, and stimulate phosphorylation of hormone-sensitive lipase in white adipose tissue. The increased expression of Ucp1 in brown adipose tissue under these circumstances is also impaired in FGF21-deficient mice. Our results demonstrate the important role of FGF21 in the regulation of lipid metabolism during amino acid starvation.  相似文献   

14.
Caveolae organelles and caveolin-1 protein expression are most abundant in adipocytes and endothelial cells. Our initial report on mice lacking caveolin-1 (Cav-1) demonstrated a loss of caveolae and perturbations in endothelial cell function. More recently, however, observation of the Cav-1-deficient cohorts into old age revealed significantly lower body weights, as compared with wild-type controls. These results suggest that Cav-1 null mice may have problems with lipid metabolism and/or adipocyte functioning. To test this hypothesis directly, we placed a cohort of wild-type and Cav-1 null mice on a high fat diet. Interestingly, despite being hyperphagic, Cav-1 null mice show overt resistance to diet-induced obesity. As predicted, adipocytes from Cav-1 null null mice lack caveolae membranes. Early on, a lack of caveolin-1 selectively affects only the female mammary gland fat pad and results in a near complete ablation of the hypo-dermal fat layer. There are also indications of generalized adipose tissue pathology. With increasing age, a systemic decompensation in lipid accumulation occurs resulting in dramatically smaller fat pads, histologically reduced adipocyte cell diameter, and a poorly differentiated/hypercellular white adipose parenchyma. To gain mechanistic insights into this phenotype, we show that, although serum insulin, glucose, and cholesterol levels are entirely normal, Cav-1 null mice have severely elevated triglyceride and free fatty acid levels, especially in the post-prandial state. However, this build-up of triglyceride-rich chylomicrons/very low density lipoproteins is not due to perturbed lipoprotein lipase activity, a major culprit of isolated hypertriglyceridemia. The lean body phenotype and metabolic defects observed in Cav-1 null mice are consistent with the previously proposed functions of caveolin-1 and caveolae in adipocytes. Our results show for the first time a clear role for caveolins in systemic lipid homeostasis in vivo and place caveolin-1/caveolae as major factors in hyperlipidemias and obesity.  相似文献   

15.
16.
17.
Brown adipose tissue (BAT) plays a critical role in lipid metabolism and may protect from hyperlipidemia; however, its beneficial effect appears to depend on the ambient temperature of the environment. In this study, we investigated the effects of uncoupling protein 1 (UCP1) deficiency on lipid metabolism, including the pathophysiology of hyperlipidemia, in apolipoprotein E knockout (APOE-KO) mice at a normal (23 °C) and thermoneutral (30 °C) temperature. Unexpectedly, UCP1 deficiency caused improvements in hyperlipidemia, atherosclerosis, and glucose metabolism, regardless of an increase in hepatic lipid deposition, in Ucp1/Apoe double-knockout (DKO) mice fed a high-fat diet at 23 °C, with BAT hyperplasia and robust browning of inguinal white adipose tissue (IWAT) observed. Proteomics and gene expression analyses revealed significant increases in many proteins involved in energy metabolism and strong upregulation of brown/beige adipocyte-related genes and fatty acid metabolism-related genes in browned IWAT, suggesting an induction of beige fat formation and stimulation of lipid metabolism in DKO mice at 23 °C. Conversely, mRNA levels of fatty acid oxidation-related genes decreased in the liver of DKO mice. The favorable phenotypic changes were lost at 30 °C, with BAT whitening and disappearance of IWAT browning, while fatty liver further deteriorated in DKO mice compared with that in APOE-KO mice. Finally, longevity analysis revealed a significant lifespan extension of DKO mice compared with that of APOE-KO mice at 23 °C. Irrespective of the fundamental role of UCP1 thermogenesis, our results highlight the importance of beige fat for the improvement of hyperlipidemia and longevity under the atherogenic status at normal room temperature.  相似文献   

18.
Tribbles homolog 1 (TRIB1) belongs to the Tribbles family of pseudokinases, which plays a key role in tumorigenesis and inflammation. Although genome-wide analysis shows that TRIB1 expression is highly correlated with blood lipid levels, the relationship between TRIB1 and adipose tissue metabolism remains unclear. Accordingly, the aim of the present study was to explore the role of TRIB1 on mitochondrial function in the brown adipose tissue (BAT). Trib1-knockout mice were established using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology. The metabolic function of the BAT was induced by a β3-adrenoceptor agonist and the energy metabolism function of mitochondria in the BAT of mice was evaluated. Trib1-knockout mice exhibited obesity and impaired BAT thermogenesis. In particular, Trib1 knockout reduced the ability of the BAT to maintain body temperature, inhibited β3-adrenoceptor agonist-induced thermogenesis, and accelerated lipid accumulation in the liver and adipose tissues. In addition, Trib1 knockout reduced mitochondrial respiratory chain complex III activity, produced an imbalance between mitochondrial fusion and fission, caused mitochondrial structural damage and dysfunction, and affected heat production and lipid metabolism in the BAT. Conversely, overexpression of Trib1 in 3T3-L1 adipocytes increased the number of mitochondria and improved respiratory function. These findings support the role of Trib1 in regulating the mitochondrial respiratory chain and mitochondrial dynamics by affecting mitochondrial function and thermogenesis in the BAT.Subject terms: Energy metabolism, Obesity  相似文献   

19.

Background

Free fatty acids released from adipose tissue affect the synthesis of apolipoprotein B-containing lipoproteins and glucose metabolism in the liver. Whether there also exists a reciprocal metabolic arm affecting energy metabolism in white adipose tissue is unknown.

Methods and Findings

We investigated the effects of apoB-containing lipoproteins on catecholamine-induced lipolysis in adipocytes from subcutaneous fat cells of obese but otherwise healthy men, fat pads from mice with plasma lipoproteins containing high or intermediate levels of apoB100 or no apoB100, primary cultured adipocytes, and 3T3-L1 cells. In subcutaneous fat cells, the rate of lipolysis was inversely related to plasma apoB levels. In human primary adipocytes, LDL inhibited lipolysis in a concentration-dependent fashion. In contrast, VLDL had no effect. Lipolysis was increased in fat pads from mice lacking plasma apoB100, reduced in apoB100-only mice, and intermediate in wild-type mice. Mice lacking apoB100 also had higher oxygen consumption and lipid oxidation. In 3T3-L1 cells, apoB100-containing lipoproteins inhibited lipolysis in a dose-dependent fashion, but lipoproteins containing apoB48 had no effect. ApoB100-LDL mediated inhibition of lipolysis was abolished in fat pads of mice deficient in the LDL receptor (Ldlr−/−Apob 100/100).

Conclusions

Our results show that the binding of apoB100-LDL to adipocytes via the LDL receptor inhibits intracellular noradrenaline-induced lipolysis in adipocytes. Thus, apoB100-LDL is a novel signaling molecule from the liver to peripheral fat deposits that may be an important link between atherogenic dyslipidemias and facets of the metabolic syndrome.  相似文献   

20.

Background

A low-carbohydrate, high-fat ketogenic diet (KD) induces hepatic ketogenesis and is believed to affect energy metabolism in mice. As hepatic Fgf21 expression was markedly induced in mice fed KD, we examined the effects of KD feeding on metabolism and the roles of Fgf21 in metabolism in mice fed KD using Fgf21 knockout mice.

Methodology/Principal Findings

We examined C57BL/6 mice fed KD for 6 or 14 days. Blood β-hydroxybutyrate levels were greatly increased at 6 days, indicating that hepatic ketogenesis was induced effectively by KD feeding for 6 days. KD feeding for 6 and 14 days impaired glucose tolerance and insulin sensitivity, although it did not affect body weight, blood NEFA, and triglyceride levels. Hepatic Fgf21 expression and blood Fgf21 levels were markedly increased in mice fed KD for 6 days. Blood β-hydroxybutyrate levels in the knockout mice fed KD for 6 days were comparable to those in wild-type mice fed KD, indicating that Fgf21 is not required for ketogenesis. However, the impaired glucose tolerance and insulin sensitivity caused by KD feeding were improved in the knockout mice. Insulin-stimulated Akt phosphorylation was significantly decreased in the white adipose tissue in wild-type mice fed KD compared with those fed normal chow, but not in the muscle and liver. Its phosphorylation in the white adipose tissue was significantly increased in the knockout mice fed KD compared with wild-type mice fed KD. In contrast, hepatic gluconeogenic gene expression in Fgf21 knockout mice fed KD was comparable to those in the wild-type mice fed KD.

Conclusions/Significance

The present findings indicate that KD feeding impairs insulin sensitivity in mice due to insulin resistance in white adipose tissue. In addition, our findings indicate that Fgf21 induced to express by KD is a negative regulator of adipocyte insulin sensitivity in adaptation to a low-carbohydrate malnutritional state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号