首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We show that Bcl-2 expression in skeletal muscle cells identifies an early stage of the myogenic pathway, inhibits apoptosis, and promotes clonal expansion. Bcl-2 expression was limited to a small proportion of the mononucleate cells in muscle cell cultures, ranging from ∼1–4% of neonatal and adult mouse muscle cells to ∼5–15% of the cells from the C2C12 muscle cell line. In rapidly growing cultures, some of the Bcl-2–positive cells coexpressed markers of early stages of myogenesis, including desmin, MyoD, and Myf-5. In contrast, Bcl-2 was not expressed in multinucleate myotubes or in those mononucleate myoblasts that expressed markers of middle or late stages of myogenesis, such as myogenin, muscle regulatory factor 4 (MRF4), and myosin. The small subset of Bcl-2–positive C2C12 cells appeared to resist staurosporine-induced apoptosis. Furthermore, though myogenic cells from genetically Bcl-2–null mice formed myotubes normally, the muscle colonies produced by cloned Bcl-2–null cells contained only about half as many cells as the colonies produced by cells from wild-type mice. This result suggests that, during clonal expansion from a muscle progenitor cell, the number of progeny obtained is greater when Bcl-2 is expressed.  相似文献   

2.
鸡骨骼肌卫星细胞的分离培养、鉴定及生物学特性研究   总被引:6,自引:0,他引:6  
陈岩  王琨  朱大海 《遗传》2006,28(3):257-260
采用I型胶原酶和胰蛋白酶二步消化,经体外培养获得鸡骨骼肌卫星细胞,并通过检测肌卫星细胞特异基因的表达进行鉴定。结果表明:二步消化法适用于鸡骨骼肌卫星细胞的分离和获取,此方法分离得到的鸡骨骼肌卫星细胞表达卫星细胞特异的标志基因desmin和Pax7,并具有良好的增殖和分化能力,为鸡骨骼肌细胞增殖、分化和再生机制的研究提供技术平台。   相似文献   

3.
To improve the transformation efficiency of Zygosaccharomyces rouxii by electroporation, glycerol was added to the electroporation buffer and the cells were frozen at ?80 °C. These alterations drastically increased transformation efficiency, and we found that competent cells can be preserved at ?80 °C without decreasing their transformation efficiency for at least 30 d.  相似文献   

4.
肌肉生成抑制素(myostatin, MSTN)在动物机体骨骼肌的增殖、分化和生长中起着重要的负调控作用。MSTN基因的过表达会阻碍骨骼肌增殖分化及生长发育,而缺失或表达降低则会导致肌肉肥大,形成双肌现象(double muscle phenomenon, DMP)。MSTN能作用于多个基因及结合多种细胞因子广泛参与生理生化、物质代谢、病理调控等过程,在动物机体生长发育过程中扮演着重要的角色。本文将从MSTN基因的历史渊源、基因定位、时空表达特性、部分相关作用机制等方面进行论述,旨在对MSTN调控动物骨骼肌生长部分机制作梳理,以期为后期研究提供理论依据。  相似文献   

5.
Polyphosphate (polyP) is a pro-inflammatory agent and a potent modulator of the human blood-clotting system. The presence of polyP of 60 phosphate units was identified in rat basophilic leukemia (RBL-2H3) mast cells using specific enzymatic assays, urea-polyacrylamide gel electrophoresis of cell extracts, and staining of cells with 4,6-diamidino-2-phenylindole (DAPI), and the polyP-binding domain of Escherichia coli exopolyphosphatase. PolyP co-localizes with serotonin- but not with histamine-containing granules. PolyP levels greatly decreased in mast cells stimulated to degranulate by IgE. Mast cell granules were isolated and found to be acidic and decrease their polyP content upon alkalinization. In agreement with these results, when RBL-2H3 mast cells were loaded with the fluorescent calcium indicator fura-2 acetoxymethyl ester to measure their intracellular Ca(2+) concentration ([Ca(2+)](i)), they were shown to possess a significant amount of Ca(2+) stored in an acidic compartment different from lysosomes. PolyP derived from RBL-2H3 mast cells stimulated bradykinin formation, and it was also detected in human basophils. All of these characteristics of mast cell granules, together with their known elemental composition, and high density, are similar to those of acidocalcisomes. The results suggest that mast cells polyP could be an important mediator of their pro-inflammatory and pro-coagulant activities.  相似文献   

6.
Muscle development in domesticated animals is important for meat production. Furthermore, intramuscular fat content is an important trait of meat intended for consumption. Here, we examined differences in the expression of factors related to myogenesis, adipogenesis and skeletal muscle growth during fetal muscle development of lean (Yorkshire) and obese (Chenghua) pig breeds. At prenatal days 50 (d50) and 90 (d90), muscles and sera were collected from pig fetuses. Histology revealed larger diameters and numbers of myofibers in Chenghua pig fetuses than those in Yorkshire pig fetuses at d50 and d90. Yorkshire fetuses had higher serum concentrations of myostatin (d90), a negative regulator for muscle development, and higher mRNA expression of the growth hormone receptor Ghr (d90), myogenic MyoG (d90) and adipogenic LPL (d50). By contrast, Chenghua fetuses exhibited higher serum concentration of growth hormone (d90), and higher mRNA expression of myogenic MyoD (d90) as well as adipogenic PPARG and FABP4 (d50). Our results revealed distinct expression patterns in the two pig breeds at each developmental stage before birth. Compared with Chenghua pigs, development and maturation of fetal skeletal muscles may occur earlier in Yorkshire pigs, but the negative regulatory effects of myostatin may suppress muscle development at the later stage.  相似文献   

7.
肌肉生长抑制素(myostatin,MSTN)基因主要在骨骼肌中表达,参与调控骨骼肌的生长发育。MSTN基因在不同物种中具有极强的进化保守性,同时还具有较多的突变多态性。在牛的不同品种中,存在不同位点的有义突变,突变型牛均表现为骨骼肌发达,呈现双肌表型,生长速度与产肉率显著提高。同时,该基因突变也引起显著的生理性遗传效应。对国内外肉牛的MSTN基因突变类型、突变后遗传效应及在肉牛育种应用等方面作了重点阐述,以期为我国地方品种肉牛改良和选育研究提供参考。  相似文献   

8.
The gene expression pattern of the glucose transporters (GLUT1, GLUT3, GLUT8, and GLUT12) among pectoralis major and minor, biceps femoris, and sartorius muscles from newly hatched chicks was examined. GLUT1 mRNA level was higher in pectoralis major muscle than in the other muscles. Phosphorylated AKT level was also high in the same muscle, suggesting a relationship between AKT and GLUT1 expression.  相似文献   

9.
Muscle satellite cells are a stem cell population required for postnatal skeletal muscle development and regeneration, accounting for 2-5% of sublaminal nuclei in muscle fibers. In adult muscle, satellite cells are normally mitotically quiescent. Following injury, however, satellite cells initiate cellular proliferation to produce myoblasts, their progenies, to mediate the regeneration of muscle. Transplantation of satellite cell-derived myoblasts has been widely studied as a possible therapy for several regenerative diseases including muscular dystrophy, heart failure, and urological dysfunction. Myoblast transplantation into dystrophic skeletal muscle, infarcted heart, and dysfunctioning urinary ducts has shown that engrafted myoblasts can differentiate into muscle fibers in the host tissues and display partial functional improvement in these diseases. Therefore, the development of efficient purification methods of quiescent satellite cells from skeletal muscle, as well as the establishment of satellite cell-derived myoblast cultures and transplantation methods for myoblasts, are essential for understanding the molecular mechanisms behind satellite cell self-renewal, activation, and differentiation. Additionally, the development of cell-based therapies for muscular dystrophy and other regenerative diseases are also dependent upon these factors.However, current prospective purification methods of quiescent satellite cells require the use of expensive fluorescence-activated cell sorting (FACS) machines. Here, we present a new method for the rapid, economical, and reliable purification of quiescent satellite cells from adult mouse skeletal muscle by enzymatic dissociation followed by magnetic-activated cell sorting (MACS). Following isolation of pure quiescent satellite cells, these cells can be cultured to obtain large numbers of myoblasts after several passages. These freshly isolated quiescent satellite cells or ex vivo expanded myoblasts can be transplanted into cardiotoxin (CTX)-induced regenerating mouse skeletal muscle to examine the contribution of donor-derived cells to regenerating muscle fibers, as well as to satellite cell compartments for the examination of self-renewal activities.  相似文献   

10.
The calponin 3 (CNN3) gene has important functions involved in skeletal muscle development. MicroRNAs (miRNAs) play critical role in myogenesis by influencing the mRNA stability or protein translation of target gene. Based on paired microRNA and mRNA profiling in the prenatal skeletal muscle of pigs, our previous study suggested that CNN3 was differentially expressed and a potential target for miR-1. To further understand the biological function and regulation mechanism of CNN3, we performed co-expression analysis of CNN3 and miR-1 in developmental skeletal muscle tissues (16 stages) from Tongcheng (a Chinese domestic breed, obese-type) and Landrace (a Western, lean-type) pigs, respectively. Subsequently, dual luciferase and western blot assays were carried out. During skeletal muscle development, we observe a significantly negative expression correlation between the miR-1 and CNN3 at mRNA level. Our dual luciferase and western blot results suggested that the CNN3 gene was regulated by miR-1. We identified four single nucleotide polymorphisms (SNPs) contained within the CNN3 gene. Association analysis indicated that these CNN3 SNPs are significantly associated with birth weight (BW) and the 21-day weaning weight of the piglets examined. These facts indicate that CNN3 is a candidate gene associated with growth traits and regulated by miR-1 during skeletal muscle development in pigs.  相似文献   

11.
Expression of the 180-kDa canine ribosome receptor in Saccharomyces cerevisiae leads to the accumulation of ER-like membranes. Gene expression patterns in strains expressing various forms of p180, each of which gives rise to unique membrane morphologies, were surveyed by microarray analysis. Several genes whose products regulate phospholipid biosynthesis were determined by Northern blotting to be differentially expressed in all strains that undergo membrane proliferation. Of these, the INO2 gene product was found to be essential for formation of p180-inducible membranes. Expression of p180 in ino2Delta cells failed to give rise to the p180-induced membrane proliferation seen in wild-type cells, whereas p180 expression in ino4Delta cells gave rise to membranes indistinguishable from wild type. Thus, Ino2p is required for the formation of p180-induced membranes and, in this case, appears to be functional in the absence of its putative binding partner, Ino4p.  相似文献   

12.
CARP, ankrd-2/Arpp, and DARP, are three members of a conserved gene family, referred to here as MARPs (muscle ankyrin repeat proteins). The expression of MARPs is induced upon injury and hypertrophy (CARP), stretch or denervation (ankrd2/Arpp), and during recovery following starvation (DARP), suggesting that they are involved in muscle stress response pathways. Here, we show that MARP family members contain within their ankyrin repeat region a binding site for the myofibrillar elastic protein titin. Within the myofibril, MARPs, myopalladin, and the calpain protease p94 appear to be components of a titin N2A-based signaling complex. Ultrastructural studies demonstrated that all three endogenous MARP proteins co-localize with I-band titin N2A epitopes in adult heart muscle tissues. In cultured fetal rat cardiac myocytes, passive stretch induced differential distribution patterns of CARP and DARP: staining for both proteins was increased in the nucleus and at the I-band region of myofibrils, while DARP staining also increased at intercalated discs. We speculate that the myofibrillar MARPs are regulated by stretch, and that this links titin-N2A-based myofibrillar stress/strain signals to a MARP-based regulation of muscle gene expression.  相似文献   

13.
Microelectrode array (MEA) technology holds tremendous potential in the fields of biodetection, lab-on-a-chip applications, and tissue engineering by facilitating noninvasive electrical interaction with cells in vitro. To date, significant efforts at integrating the cellular component with this detection technology have worked exclusively with neurons or cardiac myocytes. We investigate the feasibility of using MEAs to record from skeletal myotubes derived from primary myoblasts as a way of introducing a third electrogenic cell type and expanding the potential end applications for MEA-based biosensors. We find that the extracellular action potentials (EAPs) produced by spontaneously contractile myotubes have similar amplitudes to neuronal EAPs. It is possible to classify myotube EAPs by biological signal source using a shape-based spike sorting process similar to that used to analyze neural spike trains. Successful spike-sorting is indicated by a low within-unit variability of myotube EAPs. Additionally, myotube activity can cause simultaneous activation of multiple electrodes, in a similar fashion to the activation of electrodes by networks of neurons. The existence of multiple electrode activation patterns indicates the presence of several large, independent myotubes. The ability to identify these patterns suggests that MEAs may provide an electrophysiological basis for examining the process by which myotube independence is maintained despite rapid myoblast fusion during differentiation. Finally, it is possible to use the underlying electrodes to selectively stimulate individual myotubes without stimulating others nearby. Potential uses of skeletal myotubes grown on MEA substrates include lab-on-a-chip applications, tissue engineering, co-cultures with motor neurons, and neural interfaces.  相似文献   

14.
15.
Stress has been proposed to be a tumor promoting factor through the secretion of specific neuromediators, such as Urocortin2 and 3 (Ucn2/3), however its role in colorectal cancer (CRC) remains elusive. We observed that Ucn2/3 and their receptor the Corticotropin Releasing Factor receptor 2 (CRF2) were up-regulated in high grade and poorly differentiated CRC. This suggests a role for CRF2 in the loss of cellular organization and tumor progression. Using HT-29 and SW620 cells, two CRC cell lines differing in their abilities to perform cell-cell contacts, we found that CRF2 signals through Src/ERK pathway to induce the alteration of cell-cell junctions and the shuttle of p120ctn and Kaiso in the nucleus. In HT-29 cells, this signaling pathway also leads to the remodeling of cell adhesion by i) the phosphorylation of Focal Adhesion Kinase and ii) a modification of actin cytoskeleton and focal adhesion complexes. These events stimulate cell migration and invasion. In conclusion, our findings indicate that CRF2 signaling controls cellular organization and may promote metastatic potential of human CRC cells through an epithelial-mesenchymal transition like process. This contributes to the comprehension of the tumor-promoting effects of stress molecules and designates Ucn2/3-CRF2 tandem as a target to prevent CRC progression and aggressiveness.  相似文献   

16.
Adequate membrane fluidity is required for a variety of key cellular processes and in particular for proper function of membrane proteins. In most eukaryotic cells, membrane fluidity is known to be regulated by fatty acid desaturation and cholesterol, although some cells, such as insect cells, are almost devoid of sterol synthesis. We show here that insect and mammalian cells present similar microviscosity at their respective physiological temperature. To investigate how both sterols and phospholipids control fluidity homeostasis, we quantified the lipidic composition of insect SF9 and mammalian HEK 293T cells under normal or sterol-modified condition. As expected, insect cells show minimal sterols compared with mammalian cells. A major difference is also observed in phospholipid content as the ratio of phosphatidylethanolamine (PE) to phosphatidylcholine (PC) is inverted (4 times higher in SF9 cells). In vitro studies in liposomes confirm that both cholesterol and PE can increase rigidity of the bilayer, suggesting that both can be used by cells to maintain membrane fluidity. We then show that exogenously increasing the cholesterol amount in SF9 membranes leads to a significant decrease in PE:PC ratio whereas decreasing cholesterol in HEK 293T cells using statin treatment leads to an increase in the PE:PC ratio. In all cases, the membrane fluidity is maintained, indicating that both cell types combine regulation by sterols and phospholipids to control proper membrane fluidity.  相似文献   

17.
18.
19.
Summary A new computerized mechanical cell stimulator device for tissue cultured cells is described which maintains the cells in a horizontal position during mechanical stretching of up to 400% in substratum length. Mechanical stimulation of myogenic cells in this device initiates several aspects of in vivo skeletal muscle organogenesis not seen in normal static tissue culture environments. Embryonic skeletal muscle cells from avian m. pectoralis are grown in the device attached to the collagen-coated elastic substratum. Dynamic stretching of the substratum in one direction for 3 d at a rate (0.35 mm/h) that simulates in vivo bone elongation during development causes the myoblasts to fuse into parallel arrays of myotubes which are 2 to 4 times longer than myotubes grown under static culture conditions. This longitudinal myotube growth is accompanied by increased rates of cell proliferation and myoblast fusion. Prestretching the collagen-coated substratum before cell plating also results in increased cell proliferation, myotube orientation, and longitudinal myotube growth. The effects of substratum stretching on myogenesis in this model system thus occur by alterations in the cell’s extracellular matrix and not by acting directly on the cells. This work was supported by grant AR36266 from the National Institutes of Health, Bethesda, MD, and research grnat NAG2-414 from the National Aeronautics and Space Administration, Washington, DC. Parts of this work have appeard in abstract form, J. Cell. Biochem. 12C:360; 1988.  相似文献   

20.
LAPTM5 (lysosomal-associated protein transmembrane 5) is a protein that is preferentially expressed in immune cells, and it interacts with the Nedd4 family of ubiquitin ligases. Recent studies in T and B cells identified LAPTM5 as a negative regulator of T and B cell receptor levels at the plasma membrane. Here we investigated the function of LAPTM5 in macrophages. We demonstrate that expression of LAPTM5 is required for the secretion of proinflammatory cytokines in response to Toll-like receptor ligands. We also show that RAW264.7 cells knocked down for LAPTM5 or macrophages from LAPTM5(-/-) mice exhibit reduced activation of NF-κB and MAPK signaling pathways mediated by the TNF receptor, as well as multiple pattern recognition receptors in various cellular compartments. TNF stimulation of LAPTM5-deficient macrophages leads to reduced ubiquitination of RIP1 (receptor-interacting protein 1), suggesting a role for LAPTM5 at the receptor-proximate level. Interestingly, we find that macrophages from LAPTM5(-/-) mice display up-regulated levels of A20, a ubiquitin-editing enzyme responsible for deubiquitination of RIP1 and subsequent termination of NF-κB activation. Our studies thus indicate that, in contrast to its negative role in T and B cell activation, LAPTM5 acts as a positive modulator of inflammatory signaling pathways and hence cytokine secretion in macrophages. They also highlight a role for the endosomal/lysosomal system in regulating signaling via cytokine and pattern recognition receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号