首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
哺乳动物中的昼夜节律系统由位于下丘脑SCN核内的生物钟主钟和位于多数外周细胞中的子钟组成。在分子水平上,生物钟的节律振荡由生物钟基因及其编码蛋白的转录和翻译形成的自主的反馈环路组成,并接受外界因素的影响与环境周期保持同步。为此,就生物钟的调控机制而言,除了转录水平的基因表达调控外,生物钟转录产物和蛋白质的修饰也可以显著影响生物钟基因的表达时相。讨论了一些转录后与翻译后的修饰作用及其对生物钟的影响,并对其今后的研究方向作了展望。  相似文献   

2.
《生理学报》2021,73(5):734-744
生物钟(circadian clock)是机体内在的自主性计时系统,包括视交叉上核(suprachiasmatic nucleus, SCN)中枢生物钟与各组织外周生物钟。分子生物钟的核心机制包括CLOCK/BMAL1二聚体诱导抑制因子CRYs和PERs的转录,CRYs/PERs复合物反馈抑制前者转录活性,进而使这些生物钟核心因子以及节律输出基因的转录水平呈24 h振荡的反馈调节核心环路,以及REV-ERBα和RORα调控BMAL1转录的补充环路。机体大约80%的蛋白编码基因表达呈现明显的昼夜节律性特征,生物钟系统使生物能够适应地球自转所产生的昼夜节律(近日节律),使机体的代谢平衡与能量相互协同。生物钟与代谢稳态相互依存、互为基础,使机体能够高效利用能量,协同机体不同组织,快速适应内外环境变化。肝脏作为机体代谢的中枢器官,其进行的各种生理活动几乎都受到生物钟的控制。生物钟与肝脏代谢调控之间存在多重交互调控机制,两者的交互平衡失调是代谢性疾病的高风险因素。本文主要就肝脏的糖、脂和蛋白质代谢的节律性调控进行了综述,并强调了线粒体功能的振荡,讨论了肝脏代谢对生物钟的反馈调节,并对生物钟研究方法和应用进行展望。  相似文献   

3.
生物钟现象是一种普遍存在于生物界细胞的内源节律性保持机制。生物钟机制的存在可以使生物体的代谢行为产生并维持以24 h为周期的昼夜节律,从而更好地适应于地球自转所产生的环境条件昼夜间节律性变化。蓝藻是目前生物钟分子机制研究中的模式生物,其依赖于k ai基因家族成员的核心生物钟调控模式已经被众多研究者详细阐明。蓝藻生物钟的核心振荡器是由蓝藻k aiA/B/C的编码产物来调控的,Kai蛋白的表达模式具有节律性。KaiC蛋白磷酸化状态的节律性循环及输入、输出途径相关组成蛋白的翻译后修饰状态节律性循环共同组成其反馈回路,负责维持生物钟节律性振荡的持续进行并与环境周期保持同步。传统的蓝藻生物钟分子机制模型认为,节律性表达基因翻译产物的转录/翻译负反馈抑制环是生物节律性维持和输出的关键。遗憾的是,在其它物种生物钟分子机制研究中未发现由kai基因家族成员同源基因组成的节律性标签,这表明以k aiA/B/C为核心振荡器的生物钟系统并不是一种跨物种保守的生物钟系统。近期,人们发现非转录/翻译依赖的振荡器(NTO)也具有成为生物节律性产生和维持的“源动力”的可能。过氧化物氧化还原酶(PRX)氧化还原状态节律性是第一种被报道的跨物种保守的NTO节律性标签,这也日渐成为蓝藻生物钟分子机制研究新的热点。  相似文献   

4.
生物钟调控机制广泛存在于各种类型的细胞中,控制着细胞代谢的节律性变化.最近的研究发现,NAD+依赖的组蛋白去乙酰化酶Sirt1参与了生物钟调控过程,对维持正常的生物钟节律具有重要作用;另一方面,Sirt1的表达也受到生物钟系统的调控,呈现出昼夜节律性的表达.因此Sirt1能与生物钟进行相互调控,并且这一作用机制很可能广泛参与了不同类型细胞内的信号转导和能量代谢过程.本文总结了Sirt1与生物钟之间相互调控的一些研究进展,对它们之间的分子调控机制进行了概述.  相似文献   

5.
<正>哺乳动物的昼夜节律生物钟主要通过调控代谢开关或限速酶的表达来调节新陈代谢。真核生物的生物钟包括一个转录-翻译负反馈调节通路,通过这个通路,生物钟基因调节它们自身以及重要代谢基因的表达。多年前人们就已知道肝脏中大约10%的基因具有昼夜节律性,而近些年的RNA测序研究表明,在这些节律性的基因中,仅有大约五分之一是由从头转录所驱使的。这一发现提示对RNA剪接和加工的调控具有非常重要的生物学意义。  相似文献   

6.
生物体通过内在的昼夜节律生物钟调整生理行为和代谢生化反应来适应昼夜环境周期性变化。哺乳动物的昼夜节律生物钟核心连锁环通过驱动特异性的转录因子来维持整个基因组转录的节律性。生物钟与代谢的内稳态密切相关,生物钟的紊乱会引起各种疾病,该领域的研究能够促进时间疗法的发展来维持生命的健康,甚至可以延缓衰老。  相似文献   

7.
生物体通过内在的昼夜节律生物钟调整生理行为和代谢生化反应来适应昼夜环境周期性变化。哺乳动物的昼夜节律生物钟核心连锁环通过驱动特异性的转录因子来维持整个基因组转录的节律性。生物钟与代谢的内稳态密切相关,生物钟的紊乱会引起各种疾病,该领域的研究能够促进时间疗法的发展来维持生命的健康,甚至可以延缓衰老。  相似文献   

8.
冒姝羽  赵昌睿  刘畅 《遗传》2023,(2):99-114
哺乳动物的各项生理活动以24 h为周期呈现节律性变化。稳定的昼夜节律由生物钟系统所精细调控,而昼夜节律的紊乱会导致代谢性疾病的发生。核受体超家族成员REV-ERBα是哺乳动物生物钟的重要组成部分,参与代谢、炎症、免疫和昼夜节律等多种生理过程的调节,是代谢性疾病、炎症性疾病和癌症的潜在治疗靶点。近年来发现了一系列新的REV-ERBα配体,其中大部分在疾病治疗方面具有潜在的应用价值。本文主要介绍核受体REV-ERBα在能量代谢以及炎症反应中的调节作用,以期为代谢综合征及相关疾病的治疗提供新的策略和参考。  相似文献   

9.
哺乳动物昼夜节律生物钟研究进展   总被引:2,自引:0,他引:2  
徐祖元 《生命科学》2004,16(2):104-108
昼夜节律生物钟是一种以近似24小时为周期的自主维持的振荡器,在分子水平上,该振荡器是一个由9个基因组成的转录翻译反馈环路系统。它能受外界环境影响重新设置节律,使自身机体活动处于最佳状态。除了进行自我调节外,生物钟基因还能通过调节代谢途径中特定基因表达而影响机体生理生化过程。在过去的几年里,借用遗传学和分子生物学工具,我们对哺乳动物昼夜节律生物钟的分子基础有了新的认识,本文综述了这一进展,并展望了它们在研究人的昼夜节律行为异常领域的前景。  相似文献   

10.
蛋白质糖基化修饰结构多样、分布广泛,以N-糖基化、O-Gal NAc糖基化和O-Glc NAc糖基化等不同修饰形式存在。糖修饰以各种方式广泛参与基本生物学过程,包括基因转录、蛋白质翻译、信号转导、细胞-细胞间以及宿主-病原体相互作用等。糖基化修饰的异常变化与多种重要疾病的发生发展相关,包括免疫性疾病、肿瘤、先天性糖缺陷等。该文系统展示几种常见糖修饰的结构、参与的生理病理过程,以及最新的研究方法,尤其是糖修饰蛋白质或肽段的特异性富集方法和基于质谱的序列分析方法进展,以期丰富糖修饰蛋白质的研究手段,为糖蛋白质功能机制研究、疾病治疗靶标或候选标志物的发现提供新视角。  相似文献   

11.
生物钟是生物适应环境节律变化形成的特殊生理机制,具有一定的节律性。生物钟基因被证实参与调节多种生物生理活动,如生物的各种代谢活动、细胞的凋亡与坏死、肿瘤的发生与发展和炎症反应等。其中,脂质代谢作为一项重要的代谢活动,其紊乱可能诱发高血脂症、动脉粥样硬化等疾病。脂质代谢的调节受生物钟相关基因的调节。本文就有关生物钟的生理机制及生物钟基因参与脂质代谢调节的研究进行综述。  相似文献   

12.
生物体内源性生物钟产生的昼夜节律是以近24 h的节律性振荡对外界环境变化进行的综合性调节反应,其产生的分子基础是生物钟基因及其编码的蛋白质组成的转录-翻译反馈环路,其中生物钟基因可作用于下游钟控基因而调节机体各项生理功能。昼夜节律紊乱、生物钟基因表达改变,与许多疾病包括心血管疾病和消化疾病的发生发展相关,甚至是癌症发生的重要促进因素。对昼夜节律的研究为疾病的预防和治疗提供了新思路。  相似文献   

13.
昼夜节律生物钟包括输入途径、生物钟本身和输出途径。果蝇作为昼夜节律生物钟研究的前沿模式生物需被进一步了解。本文对果蝇昼夜节律生物钟的钟基因、激酶和磷酸酶的调控、两个相互依赖的转录/翻译反馈环路、生物钟细胞和昼夜节律行为进行了综述。  相似文献   

14.
蛋白质组学研究揭示的植物根盐胁迫响应机制   总被引:3,自引:0,他引:3  
赵琪  戴绍军 《生态学报》2012,32(1):274-283
植物根是感知外界盐胁迫信号的首要器官。近年来,人们利用高通量的差异表达蛋白质组学技术,分析了水稻(Oryzasativa)、拟南芥(Arabidopsis thaliana)、大豆(Glycine max)、大麦(Hordeum vulgare)、小麦(Triticum aestivum)、木榄(Bruguieragymnorhiza)和匍匐翦股颖(Agrostis stolonifera)等植物根应答盐胁迫过程中蛋白质组的动态变化特征。通过整合植物根响应盐胁迫蛋白质组学研究结果,揭示了植物根部响应盐胁迫的多种调节机制,包括:利用多种信号通路与蛋白质磷酸化/去磷酸化感知并传递盐胁迫信号;通过膜蛋白与转运蛋白调节离子吸收/外排与区室化;通过抗氧化酶系统活性清除活性氧,并通过合成多种渗透调节物质与防御物质减轻细胞受到的伤害;通过改变参与糖类与能量代谢相关酶的表达调节能量代谢水平;通过细胞骨架动态重塑保持正常的细胞结构、物质运输与信息传递;通过转录、翻译与翻译后调控调节各种蛋白质的动态变化与相互作用;通过调控各种基础代谢与次生代谢水平保持细胞结构与代谢状态正常。  相似文献   

15.
生物节律基因非编码RNA调控机制   总被引:1,自引:0,他引:1  
节律性的振荡不仅存在于生物节律中枢也存在于外周器官、组织及细胞中,其产生依赖于节律基因的转录、转录后及翻译后水平调控。近几年,生物节律转录后水平调控机制研究成为热点。非编码RNA(ncRNAs)调控组分小RNA(microRNA)与长链非编码RNA(lncRNA)作为参与转录后调控的重要分子,已有研究表明microRNA与lncRNA调控节律基因mRNA与蛋白的相位及振幅。本文概述microRNA与lncRNA参与昼夜节律中枢与外周调控的研究进展,为生物节律转录后调控机制的进一步研究提供参考。  相似文献   

16.
生物钟作为哺乳动物进化过程中产生的一种适应机体内外环境昼夜变化的内在机制,控制着机体的睡眠-觉醒及进食等生理活动,使生物体在每个昼夜周期的能量需求和营养供给呈现出与环境相适应的节律性变化。哺乳动物的肝脏、骨骼肌、胰腺、心血管等组织的葡萄糖代谢、脂质代谢和激素分泌等都受到生物钟的调控。作为宿主特殊的“器官”,肠道菌群在共同进化过程中与宿主微环境(组织、细胞、代谢产物)构成了一个微生态系统,在宿主对营养物质的消化和吸收过程中发挥重要作用。近年来的一些研究证据表明,肠道菌群的构成、数量、定植以及功能活动均具有显著的昼夜节律性变化,而这与生物钟调控下的各种生理功能变化是密切相关的。此外,有研究发现肠道菌群可通过分解宿主无法消化的膳食纤维等营养物质产生短链脂肪酸等代谢产物,部分代谢产物具有调节宿主生物钟并影响代谢的功能。本文将重点阐述生物钟与肠道菌群的互作及其对哺乳动物能量代谢的影响,以期为代谢性疾病的预防和治疗提供新的线索和思路。  相似文献   

17.
尽管真菌和哺乳动物进化上相差很远,但在分子水平上,它们的生物钟作用机理却保守相似,由正调控元件和负调控元件组成的负反馈环路驱动着节律基因的表达。粗糙脉孢菌生物钟的正调控元件WC-1和WC-2激活中心振荡器frq基因的表达,而负调控元件FRQ和FRH抑制正调控元件的转录活性。负反馈环路涉及转录、转录后、翻译和翻译后等不同水平的调节,多种蛋白激酶和磷酸酶参与这一过程,蛋白泛素化和蛋白酶体也是不可缺少的环节。  相似文献   

18.
昼夜节律生物钟是以24h为周期的自主维持的振荡器。在高等的多细胞生物中,生物钟可以分为母钟和子钟。研究表明哺乳动物的母钟位于下丘脑视交叉上核(suprachiasmatic nucleus,SCN),由此发出信息控制全身的节律活动;子钟位于组织细胞内,调控效应器的节律。在分子水平上,生物钟的振荡由自身调控反馈环路的转录和翻译组成,并接受外界环境因素的影响,通过下丘脑视叉上核(Suprachiasmatic Nucleus,SCN)中枢震荡器的同步整和而产生作用。视网膜是一种十分节律性的组织,许多生化的、细胞的和生理的过程都是以节律的方式来进行的,如视觉灵敏度、视网膜杆细胞外片层脱落和视网膜色素上皮细胞的吞噬作用、光受体中的视觉色素基因的快速表达等。生物钟存在于很多脊椎动物的视网膜中,被认为是一种外周生物钟。本文综述了视网膜生物钟,生物钟信号传输以及生物钟网络等的最新研究进展。  相似文献   

19.
RNA结合蛋白(RNA binding proteins,RBPs)是一类通过其RNA结合结构域与RNA相互作用的蛋白质,在细胞内发挥着非常重要的作用。RBPs参与从RNA代谢(包括RNA的可变剪接、稳定性、翻译)到表观遗传修饰等多种调控途径。已有大量文献报道转录因子、表观遗传修饰和细胞外信号通路参与调控干细胞的多能性维持、分化和体细胞重编程,但对于RBPs在细胞命运转变中作用的研究报道甚少。该文主要综述了RBPs通过调控RNA的可变剪接、mRNA稳定性、翻译水平、microRNA代谢及组蛋白修饰进而调控干细胞多能性维持和体细胞重编程。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号