首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There are a variety of complex metabolic processes ongoing simultaneously in the single, large mitochondrion of Trypanosoma brucei. Understanding the organellar environment and dynamics of mitochondrial proteins requires quantitative measurement in vivo. In this study, we have validated a method for immobilizing both procyclic stage (PS) and bloodstream stage (BS) T. brucei brucei with a high level of cell viability over several hours and verified its suitability for undertaking fluorescence recovery after photobleaching (FRAP), with mitochondrion-targeted yellow fluorescent protein (YFP). Next, we used this method for comparative analysis of the translational diffusion of mitochondrial RNA-binding protein 1 (MRP1) in the BS and in T. b. evansi. The latter flagellate is like petite mutant Saccharomyces cerevisiae because it lacks organelle-encoded nucleic acids. FRAP measurement of YFP-tagged MRP1 in both cell lines illuminated from a new perspective how the absence or presence of RNA affects proteins involved in mitochondrial RNA metabolism. This work represents the first attempt to examine this process in live trypanosomes.  相似文献   

2.
Depletion of the mitochondrial matrix protein frataxin is the molecular cause of the neurodegenerative disease Friedreich ataxia. The function of frataxin is unclear, although recent studies have suggested a function of frataxin (yeast Yfh1) in iron/sulphur (Fe/S) protein biogenesis. Here, we show that Yfh1 specifically binds to the central Fe/S-cluster (ISC)-assembly complex, which is composed of the scaffold protein Isu1 and the cysteine desulphurase Nfs1. Association between Yfh1 and Isu1/Nfs1 was markedly increased by ferrous iron, but did not depend on ISCs on Isu1. Functional analyses in vivo showed an involvement of Yfh1 in de novo ISC synthesis on Isu1. Our data demonstrate a crucial function of Yfh1 in Fe/S protein biogenesis by defining its function in an early step of this essential process. The iron-dependent binding of Yfh1 to Isu1/Nfs1 suggests a role of frataxin/Yfh1 in iron loading of the Isu scaffold proteins.  相似文献   

3.
Fe/S clusters are part of the active site of many enzymes and are essential for cell viability. In eukaryotes the cysteine desulfurase Nfs (IscS) donates the sulfur during Fe/S cluster assembly and was thought sufficient for this reaction. Moreover, Nfs is indispensable for tRNA thiolation, a modification generally required for tRNA function and protein synthesis. Recently, Isd11 was discovered as an integral part of the Nfs activity at an early step of Fe/S cluster assembly. Here we show, using a combination of genetic, molecular, and biochemical approaches, that Isd11, in line with its strong association with Nfs, is localized in the mitochondrion of T. brucei. In addition to its involvement in Fe/S assembly, Isd11 also partakes in both cytoplasmic and mitochondrial tRNA thiolation, whereas Mtu1, another protein proposed to collaborate with Nfs in tRNA thiolation, is required for this process solely within the mitochondrion. Taken together these data place Isd11 at the center of these sulfur transactions and raises the possibility of a connection between Fe/S metabolism and protein synthesis, helping integrate two seemingly unrelated pathways.  相似文献   

4.
Biogenesis of mitochondrial iron-sulfur (Fe/S) cluster proteins requires the interaction of multiple proteins with the highly conserved 14-kDa scaffold protein Isu, on which clusters are built prior to their transfer to recipient proteins. For example, the assembly process requires the cysteine desulfurase Nfs1, which serves as the sulfur donor for cluster assembly. The transfer process requires Jac1, a J-protein Hsp70 cochaperone. We recently identified three residues on the surface of Jac1 that form a hydrophobic patch critical for interaction with Isu. The results of molecular modeling of the Isu1-Jac1 interaction, which was guided by these experimental data and structural/biophysical information available for bacterial homologs, predicted the importance of three hydrophobic residues forming a patch on the surface of Isu1 for interaction with Jac1. Using Isu variants having alterations in residues that form the hydrophobic patch on the surface of Isu, this prediction was experimentally validated by in vitro binding assays. In addition, Nfs1 was found to require the same hydrophobic residues of Isu for binding, as does Jac1, suggesting that Jac1 and Nfs1 binding is mutually exclusive. In support of this conclusion, Jac1 and Nfs1 compete for binding to Isu. Evolutionary analysis revealed that residues involved in these interactions are conserved and that they are critical residues for the biogenesis of Fe/S cluster protein in vivo. We propose that competition between Jac1 and Nfs1 for Isu binding plays an important role in transitioning the Fe/S cluster biogenesis machinery from the cluster assembly step to the Hsp70-mediated transfer of the Fe/S cluster to recipient proteins.  相似文献   

5.
α-Ketoglutarate decarboxylase (α-KDE1) is a Krebs cycle enzyme found in the mitochondrion of the procyclic form (PF) of Trypanosoma brucei. The bloodstream form (BF) of T. brucei lacks a functional Krebs cycle and relies exclusively on glycolysis for ATP production. Despite the lack of a functional Krebs cycle, α-KDE1 was expressed in BF T. brucei and RNA interference knockdown of α-KDE1 mRNA resulted in rapid growth arrest and killing. Cell death was preceded by progressive swelling of the flagellar pocket as a consequence of recruitment of both flagellar and plasma membranes into the pocket. BF T. brucei expressing an epitope-tagged copy of α-KDE1 showed localization to glycosomes and not the mitochondrion. We used a cell line transfected with a reporter construct containing the N-terminal sequence of α-KDE1 fused to green fluorescent protein to examine the requirements for glycosome targeting. We found that the N-terminal 18 amino acids of α-KDE1 contain overlapping mitochondrion- and peroxisome-targeting sequences and are sufficient to direct localization to the glycosome in BF T. brucei. These results suggest that α-KDE1 has a novel moonlighting function outside the mitochondrion in BF T. brucei.  相似文献   

6.
7.
Frataxin (Yfh1 in yeast) is a conserved protein and deficiency leads to the neurodegenerative disease Friedreich’s ataxia. Frataxin is a critical protein for Fe-S cluster assembly in mitochondria, interacting with other components of the Fe-S cluster machinery, including cysteine desulfurase Nfs1, Isd11 and the Isu1 scaffold protein. Yeast Isu1 with the methionine to isoleucine substitution (M141I), in which the E. coli amino acid is inserted at this position, corrected most of the phenotypes that result from lack of Yfh1 in yeast. This suppressor Isu1 behaved as a genetic dominant. Furthermore frataxin-bypass activity required a completely functional Nfs1 and correlated with the presence of efficient scaffold function. A screen of random Isu1 mutations for frataxin-bypass activity identified only M141 substitutions, including Ile, Cys, Leu, or Val. In each case, mitochondrial Nfs1 persulfide formation was enhanced, and mitochondrial Fe-S cluster assembly was improved in the absence of frataxin. Direct targeting of the entire E. coli IscU to ∆yfh1 mitochondria also ameliorated the mutant phenotypes. In contrast, expression of IscU with the reverse substitution i.e. IscU with Ile to Met change led to worsening of the ∆yfh1 phenotypes, including severely compromised growth, increased sensitivity to oxygen, deficiency in Fe-S clusters and heme, and impaired iron homeostasis. A bioinformatic survey of eukaryotic Isu1/prokaryotic IscU database entries sorted on the amino acid utilized at the M141 position identified unique groupings, with virtually all of the eukaryotic scaffolds using Met, and the preponderance of prokaryotic scaffolds using other amino acids. The frataxin-bypassing amino acids Cys, Ile, Leu, or Val, were found predominantly in prokaryotes. This amino acid position 141 is unique in Isu1, and the frataxin-bypass effect likely mimics a conserved and ancient feature of the prokaryotic Fe-S cluster assembly machinery.  相似文献   

8.
9.
In mitochondria FeS clusters, prosthetic groups critical for the activity of many proteins, are first assembled on Isu, a 14-kDa scaffold protein, and then transferred to recipient apoproteins. The assembly process involves interaction of Isu with both Nfs1, the cysteine desulfurase serving as a sulfur donor, and the yeast frataxin homolog (Yfh1) serving as a regulator of desulfurase activity and/or iron donor. Here, based on the results of biochemical experiments with purified wild-type and variant proteins, we report that interaction of Yfh1 with both Nfs1 and Isu are required for formation of a stable tripartite assembly complex. Disruption of either Yfh1-Isu or Nfs1-Isu interactions destabilizes the complex. Cluster transfer to recipient apoprotein is known to require the interaction of Isu with the J-protein/Hsp70 molecular chaperone pair, Jac1 and Ssq1. Here we show that the Yfh1 interaction with Isu involves the PVK sequence motif, which is also the site key for the interaction of Isu with Hsp70 Ssq1. Coupled with our previous observation that Nfs1 and Jac1 binding to Isu is mutually exclusive due to partially overlapping binding sites, we propose that such mutual exclusivity of cluster assembly factor (Nfs1/Yfh1) and cluster transfer factor (Jac1/Ssq1) binding to Isu has functional consequences for the transition from the assembly process to the transfer process, and thus regulation of the biogenesis of FeS cluster proteins.  相似文献   

10.
In mitochondria, cysteine desulfurase (Nfs1) plays a central role in the biosynthesis of iron–sulfur (FeS) clusters, cofactors critical for activity of many cellular proteins. Nfs1 functions both as a sulfur donor for cluster assembly and as a binding platform for other proteins functioning in the process. These include not only the dedicated scaffold protein (Isu1) on which FeS clusters are synthesized but also accessory FeS cluster biogenesis proteins frataxin (Yfh1) and ferredoxin (Yah1). Yfh1 has been shown to activate cysteine desulfurase enzymatic activity, whereas Yah1 supplies electrons for the persulfide reduction. While Yfh1 interaction with Nfs1 is well understood, the Yah1–Nfs1 interaction is not. Here, based on the results of biochemical experiments involving purified WT and variant proteins, we report that in Saccharomyces cerevisiae, Yah1 and Yfh1 share an evolutionary conserved interaction site on Nfs1. Consistent with this notion, Yah1 and Yfh1 can each displace the other from Nfs1 but are inefficient competitors when a variant with an altered interaction site is used. Thus, the binding mode of Yah1 and Yfh1 interacting with Nfs1 in mitochondria of S. cerevisiae resembles the mutually exclusive binding of ferredoxin and frataxin with cysteine desulfurase reported for the bacterial FeS cluster assembly system. Our findings are consistent with the generally accepted scenario that the mitochondrial FeS cluster assembly system was inherited from bacterial ancestors of mitochondria.  相似文献   

11.
Iron–sulfur (Fe–S) clusters, essential protein cofactors, are assembled on the mitochondrial scaffold protein Isu and then transferred to recipient proteins via a multistep process in which Isu interacts sequentially with multiple protein factors. This pathway is in part regulated posttranslationally by modulation of the degradation of Isu, whose abundance increases >10-fold upon perturbation of the biogenesis process. We tested a model in which direct interaction with protein partners protects Isu from degradation by the mitochondrial Lon-type protease. Using purified components, we demonstrated that Isu is indeed a substrate of the Lon-type protease and that it is protected from degradation by Nfs1, the sulfur donor for Fe–S cluster assembly, as well as by Jac1, the J-protein Hsp70 cochaperone that functions in cluster transfer from Isu. Nfs1 and Jac1 variants known to be defective in interaction with Isu were also defective in protecting Isu from degradation. Furthermore, overproduction of Jac1 protected Isu from degradation in vivo, as did Nfs1. Taken together, our results lead to a model of dynamic interplay between a protease and protein factors throughout the Fe–S cluster assembly and transfer process, leading to up-regulation of Isu levels under conditions when Fe–S cluster biogenesis does not meet cellular demands.  相似文献   

12.
Letm1 is a conserved protein in eukaryotes bearing energized mitochondria. Hemizygous deletion of its gene has been implicated in symptoms of the human disease Wolf-Hirschhorn syndrome. Studies almost exclusively performed in opisthokonts have attributed several roles to Letm1, including maintaining mitochondrial morphology, mediating either calcium or potassium/proton antiport, and facilitating mitochondrial translation. We address the ancestral function of Letm1 in the highly diverged protist and significant pathogen, Trypanosoma brucei. We demonstrate that Letm1 is involved in maintaining mitochondrial volume via potassium/proton exchange across the inner membrane. This role is essential in the vector-dwelling procyclic and mammal-infecting bloodstream stages as well as in Trypanosoma brucei evansi, a form of the latter stage lacking an organellar genome. In the pathogenic bloodstream stage, the mitochondrion consumes ATP to maintain an energized state, whereas that of T. brucei evansi also lacks a conventional proton-driven membrane potential. Thus, Letm1 performs its function in different physiological states, suggesting that ion homeostasis is among the few characterized essential pathways of the mitochondrion at this T. brucei life stage. Interestingly, Letm1 depletion in the procyclic stage can be complemented by exogenous expression of its human counterpart, highlighting the conservation of protein function between highly divergent species. Furthermore, although mitochondrial translation is affected upon Letm1 ablation, it is an indirect consequence of K+ accumulation in the matrix.  相似文献   

13.
Phosphatidylethanolamine (PE) and phosphatidylserine (PS) are ubiquitously expressed and metabolically interconnected glycerophospholipids in eukaryotes and prokaryotes. In Trypanosoma brucei, PE synthesis has been shown to occur mainly via the Kennedy pathway, one of the three routes leading to PE synthesis in eukaryotes, while PS synthesis has not been studied experimentally. We now reveal the importance of T. brucei PS synthase 2 (TbPSS2) and T. brucei PS decarboxylase (TbPSD), two key enzymes involved in aminophospholipid synthesis, for trypanosome viability. By using tetracycline‐inducible down‐regulation of gene expression and in vivo and in vitro metabolic labeling, we found that TbPSS2 (i) is necessary for normal growth of procyclic trypanosomes, (ii) localizes to the endoplasmic reticulum and (iii) represents the unique route for PS formation in T. brucei. In addition, we identified TbPSD as type I PS decarboxylase in the mitochondrion and found that it is processed proteolytically at a WGSS cleavage site into a heterodimer. Down‐regulation of TbPSD expression affected mitochondrial integrity in both procyclic and bloodstream form trypanosomes, decreased ATP production via oxidative phosphorylation in procyclic form and affected parasite growth.  相似文献   

14.
The specialized yeast mitochondrial chaperone system, composed of the Hsp70 Ssq1p, its co-chaperone J-protein Jac1p, and the nucleotide release factor Mge1p, perform a critical function in the biogenesis of iron-sulfur (Fe/S) proteins. Using a spectroscopic assay, we have analyzed the potential role of the chaperones in Fe/S cluster assembly on the scaffold protein Isu1p in vitro in the presence of the cysteine desulfurase Nfs1p. In the absence of chaperones, the kinetics of Fe/S cluster formation on Isu1p were compatible with a chemical reconstitution pathway with Nfs1p functioning as a sulfide donor. Addition of Ssq1p improved the rates of Fe/S cluster assembly 3-fold. However, this stimulatory effect of Ssq1p required neither ATP nor Jac1p and could be fully attributed to the activation of the Nfs1p desulfurase activity by Ssq1p. Furthermore, chaperone-stimulated Fe/S cluster assembly did not involve the specific interaction between Isu1p and Ssq1p, since the effect was observed with Isu1p mutant proteins defective in this interaction, suggesting that nonspecific binding of Ssq1p to Nfs1p helped to prevent its unfolding. Consistent with this idea, these Isu1p mutants were capable of binding an Fe/S cluster in vivo but failed to restore the growth and Fe/S cluster assembly defects of a Isu1p/Isu2p-deficient yeast strain. Taken together, these data suggest that Ssq1p/Jac1p/Mge1p are not important for Fe/S cluster synthesis on Isu1p. Hence, consistent with previous in vivo data, these chaperones likely function in steps subsequent to the de novo synthesis of the Fe/S cluster on Isu1p.  相似文献   

15.
Nucleoporins are evolutionary conserved proteins mainly involved in the constitution of the nuclear pores and trafficking between the nucleus and cytoplasm, but are also increasingly viewed as main actors in chromatin dynamics and intra-nuclear mitotic events. Here, we determined the cellular localization of the nucleoporin Mlp2 in the ‘divergent’ eukaryotes Leishmania major and Trypanosoma brucei. In both protozoa, Mlp2 displayed an atypical localization for a nucleoporin, essentially intranuclear, and preferentially in the periphery of the nucleolus during interphase; moreover, it relocated at the mitotic spindle poles during mitosis. In T. brucei, where most centromeres have been identified, TbMlp2 was found adjacent to the centromeric sequences, as well as to a recently described unconventional kinetochore protein, in the periphery of the nucleolus, during interphase and from the end of anaphase onwards. TbMlp2 and the centromeres/kinetochores exhibited a differential migration towards the poles during mitosis. RNAi knockdown of TbMlp2 disrupted the mitotic distribution of chromosomes, leading to a surprisingly well-tolerated aneuploidy. In addition, diploidy was restored in a complementation assay where LmMlp2, the orthologue of TbMlp2 in Leishmania, was expressed in TbMlp2-RNAi-knockdown parasites. Taken together, our results demonstrate that Mlp2 is involved in the distribution of chromosomes during mitosis in trypanosomatids.  相似文献   

16.
Glycerol-3-phosphate dehydrogenases (G3PDHs) constitute a shuttle that serves for regeneration of NAD+ reduced during glycolysis. This NAD-dependent enzyme is employed in glycolysis and produces glycerol-3-phosphate from dihydroxyacetone phosphate, while its flavin adenine dinucleotide (FAD)-dependent homologue catalyzes a reverse reaction coupled to the respiratory chain. Trypanosoma brucei possesses two FAD-dependent G3PDHs. While one of them (mitochondrial G3PDH [mtG3PDH]) has been attributed to the mitochondrion and seems to be directly involved in G3PDH shuttle reactions, the function of the other enzyme (putative G3PDH [putG3PDH]) remains unknown. In this work, we used RNA interference and protein overexpression and tagging to shed light on the relative contributions of both FAD-G3PDHs to overall cellular metabolism. Our results indicate that mtG3PDH is essential for the bloodstream stage of T. brucei, while in the procyclic stage the enzyme is dispensable. Expressed putG3PDH-V5 was localized to the mitochondrion, and the data obtained by digitonin permeabilization, Western blot analysis, and immunofluorescence indicate that putG3PDH is located within the mitochondrion.  相似文献   

17.
BackgroundEvery eukaryote requires iron, which is also true for the parasitic protist Trypanosoma brucei, the causative agent of sleeping sickness in humans and nagana in cattle. T. brucei undergoes a complex life cycle during which its single mitochondrion is subject to major metabolic and morphological changes.Scope of reviewThis review covers what is known about processes associated with iron–sulfur clusters and heme metabolism in T. brucei. We discuss strategies by which iron and heme are acquired and utilized by this model parasite, emphasizing the differences between its two life cycle stages residing in the bloodstream of the mammalian host and gut of the insect vector. Finally, the role of iron in the host–parasite interactions is discussed along with their possible exploitation in fighting these deadly parasites.Major conclusionsThe processes associated with acquisition and utilization of iron, distinct in the two life stages of T. brucei, are fine tuned for the dramatically different host environment occupied by them. Although the composition and compartmentalization of the iron–sulfur cluster assembly seem to be conserved, some unique features of the iron acquisition strategies may be exploited for medical interventions against these parasites.General significanceAs early-branching protists, trypanosomes and related flagellates are known to harbor an array of unique features, with the acquisition of iron being another peculiarity. Thanks to intense research within the last decade, understanding of iron–sulfur cluster assembly and iron metabolism in T. brucei is among the most advanced of all eukaryotes.  相似文献   

18.
For iron-sulfur (Fe-S) cluster synthesis in mitochondria, the sulfur is derived from the amino acid cysteine by the cysteine desulfurase activity of Nfs1. The enzyme binds the substrate cysteine in the pyridoxal phosphate-containing site, and a persulfide is formed on the active site cysteine in a manner depending on the accessory protein Isd11. The persulfide is then transferred to the scaffold Isu, where it combines with iron to form the Fe-S cluster intermediate. Frataxin is implicated in the process, although it is unclear where and how, and deficiency causes Friedreich ataxia. Using purified proteins and isolated mitochondria, we show here that the yeast frataxin homolog (Yfh1) directly and specifically stimulates cysteine binding to Nfs1 by exposing substrate-binding sites. This novel function of frataxin does not require iron, Isu1, or Isd11. Once bound to Nfs1, the substrate cysteine is the source of the Nfs1 persulfide, but this step is independent of frataxin and strictly dependent on Isd11. Recently, a point mutation in Isu1 was found to bypass many frataxin functions. The data presented here show that the Isu1 suppressor mimics the frataxin effects on Nfs1, explaining the bypassing activity. We propose a regulatory mechanism for the Nfs1 persulfide-forming activity. Specifically, at least two separate conformational changes must occur in the enzyme for optimum activity as follows: one is mediated by frataxin interaction that exposes the “buried” substrate-binding sites, and the other is mediated by Isd11 interaction that brings the bound substrate cysteine and the active site cysteine in proximity for persulfide formation.  相似文献   

19.
Mitochondrial biosynthesis of iron-sulfur clusters (ISCs) is a vital process involving the delivery of elemental iron and sulfur to a scaffold protein via molecular interactions that are still poorly defined. Analysis of highly conserved components of the yeast ISC assembly machinery shows that the iron-chaperone, Yfh1, and the sulfur-donor complex, Nfs1-Isd11, directly bind to each other. This interaction is mediated by direct Yfh1-Isd11 contacts. Moreover, both Yfh1 and Nfs1-Isd11 can directly bind to the scaffold, Isu1. Binding of Yfh1 to Nfs1-Isd11 or Isu1 requires oligomerization of Yfh1 and can occur in an iron-independent manner. However, more stable contacts are formed when Yfh1 oligomerization is normally coupled with the binding and oxidation of Fe2+. Our observations challenge the view that iron delivery for ISC synthesis is mediated by Fe2+-loaded monomeric Yfh1. Rather, we find that the iron oxidation-driven oligomerization of Yfh1 promotes the assembly of stable multicomponent complexes in which the iron donor and the sulfur donor simultaneously interact with each other as well as with the scaffold. Moreover, the ability to store ferric iron enables oligomeric Yfh1 to adjust iron release depending on the presence of Isu1 and the availability of elemental sulfur and reducing equivalents. In contrast, the use of anaerobic conditions that prevent Yfh1 oligomerization results in inhibition of ISC assembly on Isu1. These findings suggest that iron-dependent oligomerization is a mechanism by which the iron donor promotes assembly of the core machinery for mitochondrial ISC synthesis.ISC3 biosynthesis is an essential function that eukaryotic cells initiate in mitochondria and probably other cellular compartments using three core components: a sulfur donor, an iron donor, and an ISC assembly scaffold (1, 2). In yeast mitochondria, the cysteine-desulfurase, Nfs1, and the iron-chaperone, Yfh1, are believed to provide sulfur and iron, respectively, for ISC assembly on the Isu1 scaffold (1), whereas the Nfs1-binding protein, Isd11, has been shown to stabilize Nfs1 (3). These components are highly conserved and the human orthologues of Yfh1 (frataxin), Isu1 (ISCU), and Isd11 (ISD11) are implicated in the etiology of severe disorders including Friedreich ataxia and mitochondrial myopathy (4).Previous studies have underscored the complexity of the interactions among eukaryotic ISC assembly components as well as their metal dependence. Supplementation of mitochondrial lysates with Fe2+ under aerobic conditions led to co-isolation of Yfh1 and Isu1 along with Nfs1 and Isd11 by pulldown or immunoprecipitation assays (57). Furthermore, aerobic preincubation of histidine-tagged Yfh1 monomer with Fe2+ enabled Isu1 to be pulled down by Yfh1 in the absence of other proteins (5). These studies have led to the current view that iron delivery for yeast ISC synthesis involves direct contacts between iron-loaded monomeric Yfh1 and Isu1 (57). Although Yfh1 oligomerization is normally coupled with iron binding, oxidation, and storage (5, 8), the possibility that Isu1 might also interact with oligomeric Yfh1 has remained largely unexplored.Similar to Yfh1, human frataxin was found to interact with multiple ISC assembly components in human cells; however, in this case immunoprecipitation data suggested that frataxin binds to ISCU indirectly, via nickel-dependent contacts with ISD11 (9). Whether direct interactions occur between Yfh1 and Isd11 has not yet been examined.While previous studies focused primarily on Yfh1-Isu1 and frataxin-ISD11 interactions, it is likely that the coordinate delivery of potentially toxic sulfur and iron to Isu1/ISCU involves multiple close interactions whereby the sulfur donor and the iron donor simultaneously interact with each other and with the ISC scaffold, as proposed for prokaryotic ISC assembly (10). However, it is currently unknown whether monomeric Yfh1/frataxin may form direct contacts with more than one partner, and the structure of the eukaryotic ISC assembly machinery is completely undefined. We show that iron oxidation-dependent oligomerization enables Yfh1 to have simultaneous direct interactions with Nfs1-Isd11 and Isu1. Our data provide insights about the sequence of events and the molecular architecture required for the initial step in mitochondrial ISC assembly.  相似文献   

20.
Defects in the yeast cysteine desulfurase Nfs1 cause a severe impairment in the 2-thio modification of uridine of mitochondrial tRNAs (mt-tRNAs) and cytosolic tRNAs (cy-tRNAs). Nfs1 can also provide the sulfur atoms of the iron-sulfur (Fe/S) clusters generated by the mitochondrial and cytosolic Fe/S cluster assembly machineries, termed ISC and CIA, respectively. Therefore, a key question remains as to whether the biosynthesis of Fe/S clusters is a prerequisite for the 2-thio modification of the tRNAs in both of the subcellular compartments of yeast cells. To elucidate this question, we asked whether mitochondrial ISC and/or cytosolic CIA components besides Nfs1 were involved in the 2-thio modification of these tRNAs. We demonstrate here that the three CIA components, Cfd1, Nbp35, and Cia1, are required for the 2-thio modification of cy-tRNAs but not of mt-tRNAs. Interestingly, the mitochondrial scaffold proteins Isu1 and Isu2 are required for the 2-thio modification of the cy-tRNAs but not of the mt-tRNAs, while mitochondrial Nfs1 is required for both 2-thio modifications. These results clearly indicate that the 2-thio modification of cy-tRNAs is Fe/S protein dependent and thus requires both CIA and ISC machineries but that of mt-tRNAs is Fe/S cluster independent and does not require key mitochondrial ISC components except for Nfs1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号