首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The function of group II introns depends on positively charged divalent metal ions that stabilize the ribozyme structure and may be directly involved in catalysis. We investigated Mn2+- and Zn2+-induced site-specific RNA cleavage to identify metal ions that fit into binding pockets within the structurally conserved bI1 group II intron domains (DI-DVI), which might fulfill essential roles in intron function. Ten cleavage sites were identified in DI, two sites in DIII and two in DVI. All cleavage sites are located in the center or close to single-stranded and flexible RNA structures. Strand scissions mediated by Mn2+/Zn2+ are competed for by Mg2+, indicating the existence of Mg2+ binding pockets in physical proximity to the observed Mn2+-/Zn2+-induced cleavage positions. To distinguish between metal ions with a role in structure stabilization and those that play a more specific and critical role in the catalytic process of intron splicing, we combined structural and functional assays, comparing wild-type precursor and multiple splicing-deficient mutants. We identified six regions with binding pockets for Mg2+ ions presumably playing an important role in bI1 structure stabilization. Remarkably, assays with DI deletions and branch point mutants revealed the existence of one Mg2+ binding pocket near the branching A, which is involved in first-step catalysis. This pocket formation depends on precise interaction between the branching nucleotide and the 5' splice site, but does not require exon-binding site 1/intron binding site 1 interaction. This Mg2+ ion might support the correct placing of the branching A into the 'first-step active site'.  相似文献   

2.
3.
Group II introns are some of the largest ribozymes in nature, and they are a major source of information about RNA assembly and tertiary structural organization. These introns are of biological significance because they are self-splicing mobile elements that have migrated into diverse genomes and played a major role in the genomic organization and metabolism of most life forms. The tertiary structure of group II introns has been the subject of many phylogenetic, genetic, biochemical and biophysical investigations, all of which are consistent with the recent crystal structure of an intact group IIC intron from the alkaliphilic eubacterium Oceanobacillus iheyensis. The crystal structure reveals that catalytic intron domain V is enfolded within the other intronic domains through an elaborate network of diverse tertiary interactions. Within the folded core, DV adopts an activated conformation that readily binds catalytic metal ions and positions them in a manner appropriate for reaction with nucleic acid targets. The tertiary structure of the group II intron reveals new information on motifs for RNA architectural organization, mechanisms of group II intron catalysis, and the evolutionary relationships among RNA processing systems. Guided by the structure and the wealth of previous genetic and biochemical work, it is now possible to deduce the probable location of DVI and the site of additional domains that contribute to the function of the highly derived group IIB and IIA introns.  相似文献   

4.
Group II introns are catalytic RNA molecules that require divalent metal ions for folding, substrate binding, and chemical catalysis. Metal ion binding sites in the group II core have now been elucidated by monitoring the site-specific RNA hydrolysis patterns of bound ions such as Tb(3+) and Mg(2+). Major sites are localized near active site elements such as domain 5 and its surrounding tertiary interaction partners. Numerous sites are also observed at intron substructures that are involved in binding and potentially activating the splice sites. These results highlight the locations of specific metal ions that are likely to play a role in ribozyme catalysis.  相似文献   

5.
The trnK intron of plants encodes the matK open reading frame (ORF), which has been used extensively as a phylogenetic marker for classification of plants. Here we examined the evolution of the trnK intron itself as a model for group II intron evolution in plants. Representative trnK intron sequences were compiled from species spanning algae to angiosperms, and four introns were newly sequenced. Phylogenetic analyses showed that the matK ORFs belong to the ML (mitochondrial-like) subclass of group II intron ORFs, indicating that they were derived from a mobile group II intron of the class. RNA structures of the introns were folded and analyzed, which revealed progressive RNA structural deviations and degenerations throughout plant evolution. The data support a model in which plant organellar group II introns were derived from bacterial-like introns that had "standard" RNA structures and were competent for self-splicing and mobility and that subsequently the ribozyme structures degenerated to ultimately become dependent upon host-splicing factors. We propose that the patterns of RNA structure evolution seen for the trnK intron will apply to the other group II introns in plants.  相似文献   

6.
7.
The influence of the cellular environment on the structures and properties of catalytic RNAs is not well understood, despite great interest in ribozyme function. Here we report on ribosome association of group II introns, which are ribozymes that are important because of their putative ancestry to spliceosomal introns and retrotransposons, their retromobility via an RNA intermediate, and their application as gene delivery agents. We show that group II intron RNA, in complex with the intron-encoded protein from the native Lactoccocus lactis host, associates strongly with ribosomes in vivo. Ribosomes have little effect on intron ribozyme activities; rather, the association with host ribosomes protects the intron RNA against degradation by RNase E, an enzyme previously shown to be a silencer of retromobility in Escherichia coli. The ribosome interacts strongly with the intron, exerting protective effects in vivo and in vitro, as demonstrated by genetic and biochemical experiments. These results are consistent with the ribosome influencing the integrity of catalytic RNAs in bacteria in the face of degradative nucleases that regulate intron mobility.  相似文献   

8.
The mitochondrial tyrosyl-tRNA synthetases (mt TyrRSs) of Pezizomycotina fungi are bifunctional proteins that aminoacylate mitochondrial tRNA(Tyr) and are structure-stabilizing splicing cofactors for group I introns. Studies with the Neurospora crassa synthetase (CYT-18 protein) showed that splicing activity is dependent upon Pezizomycotina-specific structural adaptations that form a distinct group I intron-binding site in the N-terminal catalytic domain. Although CYT-18's C-terminal domain also binds group I introns, it has been intractable to X-ray crystallography in the full-length protein. Here, we determined an NMR structure of the isolated C-terminal domain of the Aspergillus nidulans mt TyrRS, which is closely related to but smaller than CYT-18's. The structure shows an S4 fold like that of bacterial TyrRSs, but with novel features, including three Pezizomycontia-specific insertions. (15)N-(1)H two-dimensional NMR showed that C-terminal domains of the full-length A. nidulans and Geobacillus stearothermophilus synthetases do not tumble independently in solution, suggesting restricted orientations. Modeling onto a CYT-18/group I intron cocrystal structure indicates that the C-terminal domains of both subunits of the homodimeric protein bind different ends of the intron RNA, with one C-terminal domain having to undergo a large shift on its flexible linker to bind tRNA(Tyr) or the intron RNA on either side of the catalytic domain. The modeling suggests that the C-terminal domain acts together with the N-terminal domain to clamp parts of the intron's catalytic core, that at least one C-terminal domain insertion functions in group I intron binding, and that some C-terminal domain regions bind both tRNA(Tyr) and group I intron RNAs.  相似文献   

9.
Group II introns are self-splicing, mobile genetic elements that have fundamentally influenced the organization of terrestrial genomes. These large ribozymes remain important for gene expression in almost all forms of bacteria and eukaryotes and they are believed to share a common ancestry with the eukaryotic spliceosome that is required for processing all nuclear pre-mRNAs. The three-dimensional structure of a group IIC intron was recently determined by X-ray crystallography, making it possible to visualize the active site and the elaborate network of tertiary interactions that stabilize the molecule. Here we describe the molecular features of the active site in detail and evaluate their correspondence with prior biochemical, genetic, and phylogenetic analyses on group II introns. In addition, we evaluate the structural significance of RNA motifs within the intron core, such as the major-groove triple helix and the domain 5 bulge. Having combined what is known about the group II intron core, we then compare it with known structural features of U6 snRNA in the eukaryotic spliceosome. This analysis leads to a set of predictions for the molecular structure of the spliceosomal active site.  相似文献   

10.
Although the active site of group I introns is phylogenetically conserved, subclasses of introns have evolved different mechanisms of stabilizing the catalytic core. Large introns contain weakly conserved 'peripheral' domains that buttress the core through predicted interhelical contacts, while smaller introns use loop-helix interactions for stability. In all cases, specific and non-specific magnesium ion binding accompanies folding into the active structure. Whether similar RNA-RNA and RNA-magnesium ion contacts play related functional roles in different introns is not clear, particularly since it can be difficult to distinguish interactions directly involved in catalysis from those important for RNA folding. Using phosphorothioate interference with RNA activity and structure in the small (249 nt) group I intron from Anabaena, we used two independent assays to detect backbone phosphates important for catalysis and those involved in intron folding. Comparison of the interference sites identified in each assay shows that positions affecting catalysis cluster primarily in the conserved core of the intron, consistent with conservation of functionally important phosphates, many of which are magnesium ion binding sites, in diverse group I introns, including those from Azoarcus and Tetrahymena. However, unique sites of folding interference located outside the catalytic core imply that different group I introns, even within the same subclass, use distinct sets of tertiary interactions to stabilize the structure of the catalytic core.  相似文献   

11.
12.
13.
Group II introns: structure, folding and splicing mechanism   总被引:4,自引:0,他引:4  
Group II introns are large autocatalytic RNAs found in organellar genomes of plants and lower eukaryotes, as well as in some bacterial genomes. Interestingly, these ribozymes share characteristic traits with both spliceosomal introns and non-LTR retrotransposons and may have a common evolutionary ancestor. Furthermore, group II intron features such as structure, folding and catalytic mechanism differ considerably from those of other large ribozymes, making group II introns an attractive model system to gain novel insights into RNA biology and biochemistry. This review explores recent advances in the structural and mechanistic characterization of group II intron architecture and self-splicing.  相似文献   

14.
The yeast mitochondrial group II intron bI1 is self-splicing in vitro. We have introduced a deletion of hairpin C1 within the structural domain 1 that abolishes catalytic activity of the intron in the normal splicing reaction in cis, but does less severely affect a reaction in trans, the reopening of ligated exons. Since exon reopening is supposed to correspond to a reverse 3' cleavage this suggests that the deletion specifically blocks the first reaction step. The intron regains its activity to self-splice in cis by intermolecular complementation with a small RNA harbouring sequences lacking in the mutant intron. These results demonstrate the feasibility to reconstitute a functionally active structure of the truncated intron by intermolecular complementation in vitro. Furthermore, the data support the hypothesis that group II introns are predecessors of nuclear pre-mRNA introns and that the small nuclear RNAs of the spliceosome arose by segregation from the original intron.  相似文献   

15.
16.
Group I introns are catalytic RNAs capable of orchestrating two sequential phosphotransesterification reactions that result in self-splicing. To understand how the group I intron active site facilitates catalysis, we have solved the structure of an active ribozyme derived from the orf142-I2 intron from phage Twort bound to a four-nucleotide product RNA at a resolution of 3.6 A. In addition to the three conserved domains characteristic of all group I introns, the Twort ribozyme has peripheral insertions characteristic of phage introns. These elements form a ring that completely envelops the active site, where a snug pocket for guanosine is formed by a series of stacked base triples. The structure of the active site reveals three potential binding sites for catalytic metals, and invokes a role for the 2' hydroxyl of the guanosine substrate in organization of the active site for catalysis.  相似文献   

17.
18.
In the first step of self-splicing, group I introns utilize an exogenous guanosine nucleophile to attack the 5'-splice site. Removal of the 2'-hydroxyl of this guanosine results in a 10 (6)-fold loss in activity, indicating that this functional group plays a critical role in catalysis. Biochemical and structural data have shown that this hydroxyl group provides a ligand for one of the catalytic metal ions at the active site. However, whether this hydroxyl group also engages in hydrogen-bonding interactions remains unclear, as attempts to elaborate its function further usually disrupt the interactions with the catalytic metal ion. To address the possibility that this 2'-hydroxyl contributes to catalysis by donating a hydrogen bond, we have used an atomic mutation cycle to probe the functional importance of the guanosine 2'-hydroxyl hydrogen atom. This analysis indicates that, beyond its role as a ligand for a catalytic metal ion, the guanosine 2'-hydroxyl group donates a hydrogen bond in both the ground state and the transition state, thereby contributing to cofactor recognition and catalysis by the intron. Our findings continue an emerging theme in group I intron catalysis: the oxygen atoms at the reaction center form multidentate interactions that function as a cooperative network. The ability to delineate such networks represents a key step in dissecting the complex relationship between RNA structure and catalysis.  相似文献   

19.
20.
As for nuclear pre-mRNA introns, the splicing pathway of group II self-splicing introns proceeds by two successive transesterifications involving substrates with different chemical configurations. These two reactions have been proposed to be catalysed by two active sites, or alternatively by a single active site rearranging its components to accommodate the successive substrates. Here we show that the structural elements specific for the second splicing step are clustered in peripheral structures of domains II and VI. We show that these structures are not required for catalysis of the second chemical step but, instead, take part in a conformational change that occurs between the two catalytic steps. This rearrangement involves the formation of a tertiary contact between part of domain II and a GNRA tetraloop at the tip of domain VI. The fact that domain VI, which carries the branched structure, is involved in this structural rearrangement and the fact that modifications affecting the structures involved have almost no effect when splicing proceeds without branch formation, suggest that the conformational change results in the displacement of the first-step product out of the active site. These observations give further support to the existence of a single active site in group II introns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号