首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Group-wise diversity of sediment methylotrophs of Chilika lake (Lat. 19°28′–19°54′N; Long. 85°06′–85°35′E) Odisha, India at various identified sites was studied. Both the culturable and unculturable (metagenome) methylotrophs were investigated in the lake sediments employing both mxaF and 16S rRNA genes as markers. ARDRA profiling, 16S rRNA gene sequencing, PAGE profiling of HaeIII, EcoRI restricted mxaF gene and the mxaF gene sequences using culture-dependent approach revealed the relatedness of α-proteobacteria and Methylobacterium, Hyphomicrobium and Ancyclobacter sp. The total viable counts of the culturable aerobic methylotrophs were relatively higher in sediments near the sea mouth (S3; Panaspada), also demonstrated relatively high salinity (0.1 M NaCl) tolerance. Metagenomic DNA from the sediments, amplified using GC clamp mxaF primers and resolved through DGGE, revealed the diversity within the unculturable methylotrophic bacterium Methylobacterium organophilum, Ancyclobacter aquaticus, Burkholderiales and Hyphomicrobium sp. Culture-independent analyses revealed that up to 90 % of the methylotrophs were unculturable. The study enhances the general understandings of the metagenomic methylotrophs from such a special ecological niche.

Electronic supplementary material

The online version of this article (doi:10.1007/s12088-015-0510-3) contains supplementary material, which is available to authorized users.  相似文献   

2.
Comparative phylogeography of deep-sea hydrothermal vent species has uncovered several genetic breaks between populations inhabiting northern and southern latitudes of the East Pacific Rise. However, the geographic width and position of genetic clines are variable among species. In this report, we further characterize the position and strength of barriers to gene flow between populations of the deep-sea vent mussel Bathymodiolus thermophilus. Eight allozyme loci and DNA sequences of four nuclear genes were added to previously published sequences of the cytochrome c oxidase subunit I gene. Our data confirm the presence of two barriers to gene flow, one located at the Easter Microplate (between 21°33′S and 31°S) recently described as a hybrid zone, and the second positioned between 7°25′S and 14°S with each affecting different loci. Coalescence analysis indicates a single vicariant event at the origin of divergence between clades for all nuclear loci, although the clines are now spatially discordant. We thus hypothesize that the Easter Microplate barrier has recently been relaxed after a long period of isolation and that some genetic clines have escaped the barrier and moved northward where they have subsequently been trapped by a reinforcing barrier to gene flow between 7°25′S and 14°S.  相似文献   

3.
4.
A new ketoreductase useful for asymmetric synthesis of chiral alcohols was identified in the cyanobacterium Synechococcus sp. strain PCC 7942. Mass spectrometry of trypsin-digested peptides identified the protein as 3-ketoacyl-[acyl-carrier-protein] reductase (KR) (EC 1.1.1.100). The gene, referred to as fabG, was cloned, functionally expressed in Escherichia coli, and subsequently purified to homogeneity. The enzyme displayed a temperature optimum at 44°C and a broad pH optimum between pH 7 and pH 9. The NADPH-dependent KR was able to asymmetrically reduce a variety of prochiral ketones with good to excellent enantioselectivities (>99.8%). The KR showed particular high specific activity for asymmetric reduction of ethyl 4-chloroacetoacetate (38.29 ± 2.15 U mg−1) and 2′,3′,4′,5′,6′-pentafluoroacetophenone (8.57 ± 0.49 U mg−1) to the corresponding (S)-alcohols. In comparison with an established industrial enzyme like the alcohol dehydrogenase from Lactobacillus brevis, the KR showed seven-times-higher activity toward 2′,3′,4′,5′,6′-pentafluoroacetophenone, with a remarkably higher enantiomeric excess (>99.8% [S] versus 43.3% [S]).  相似文献   

5.
Although generally considered, with few exceptions, to be restricted to the acidic, tropical soils of the southern hemisphere, Beijerinckia species, resembling B. indica, were found at three sites on Devon Island (75°33′N, 84°40′W) in the Canadian Arctic.  相似文献   

6.
Knowledge of reproductive rates and life cycle of the Cladocera species is essential for population dynamic studies, secondary production and food webs, as well as the management and preservation of aquatic ecosystems. The present study aimed to understand the life cycle and growth of Alona iheringula Kotov & Sinev, 2004 (Crustacea, Anomopoda, Chydoridae), a Neotropical species, as well as its DNA barcoding, providing new information on the Aloninae taxonomy. The specimens were collected in the dammed portion of the Cabo Verde River (21°26′05″ S and 46°10′57″ W), in the Furnas Reservoir, Minas Gerais State, Brazil. Forty neonates were observed individually two or three times a day under controlled temperature (25±1°C), photoperiod (12 h light/12 h dark) and feeding (Pseudokirchneriella subcapitata at a concentration of 105 cells.mL−1 and a mixed suspension of yeast and fish feed in equal proportion). Individual body growth was measured daily under optical microscope using a micrometric grid and 40× magnification. The species had a mean size of 413(±29) µm, a maximum size of 510 µm and reached maturity at 3.24(±0.69) days of age. Mean fecundity was 2 eggs per female per brood and the mean number of eggs produced per female during the entire life cycle was 47.6(±6.3) eggs per female. The embryonic development time was 1.79(±0.23) days and the maximum longevity was 54 days. The species had eight instars throughout its life cycle and four instars between neonate and primipara stage. The present study using molecular data (a 461 bp smaller COI fragment) demonstrated a deep divergence in the Aloninae subfamily.  相似文献   

7.
Acetylene reduction (AR) rates by cyanobacteria epiphytic on a moss at Marion Island (46°54′ S, 37°45′ E) increased from −5°C to a maximum at 25 to 27°C. Q10 values between 0 and 25°C were between 2.3 and 2.9, depending on photosynthetic photon flux density. AR rates declined sharply at temperatures above the optimum and were lower at 35°C than at 0°C. Photosynthetic photon flux density at low levels markedly influenced AR, and half of the maximum rate occurred at 84 μmol m−2 s−1, saturation occurring at ca. 1,000 μmol m−2 s−1. Higher photosynthetic photon flux density levels decreased AR rates. AR increased up to the highest sample moisture content investigated (3,405%), and the pH optimum was between 5.9 and 6.2. The addition of P, Co, and Mo, individually or together, depressed AR.  相似文献   

8.
The base-pairing fidelity of oligonucleotides depends on the identity of the nucleobases involved and the position of matched or mismatched base pairs in the duplex. Nucleobases forming weak base pairs, as well as a terminal position favor mispairing. We have searched for 5′-appended acylamido caps that enhance the stability and base-pairing fidelity of oligonucleotides with a 5′-terminal 2′-deoxyadenosine residue using combinatorial synthesis and MALDI-monitored nuclease selections. This provided the residue of 4-(pyren-1-yl)butyric acid as a lead. Lead optimization gave (S)-N-(pyren-1-ylmethyl)pyrrolidine-3-phosphate as a cap that increases duplex stability and base-pairing fidelity. For the duplex of 5′-AGGTTGAC-3′ with its fully complementary target, this cap gives an increase in the UV melting point Tm of +10.9°C. The Tm is 6.3–8.3°C lower when a mismatched nucleobase faces the 5′-terminal dA residue. The optimized cap can be introduced via automated DNA synthesis. It was combined with an anthraquinone carboxylic acid residue as a cap for the 3′-terminal residue. A doubly capped dodecamer thus prepared gives a melting point decrease for double-terminal mismatches that is 5.7–5.9°C greater than that for the unmodified control duplex.  相似文献   

9.
The flexibility of pyrimidine nucleosides has been investigated by measuring their circular dichroism in hydroalcoholic solutions over a large temperature range (-100° to +40°C). It was observed that ß-Uridine (Urd) and ß-Cytidine (Cyd) showed a decrease of the main dichroic band of about 40 percent, while sterically hindered nucleosides (αUrd, ara-Uracile, 02-2′ anhy-dro-Urd, 2′3′-0-isopropylidene-Urd) showed only small decreases. It is concluded that the flexibility of the glycosidic linkage in conjunction with the pseudo-rotation of the sugar residue is responsible for these changes; the thermodynamic values which can be deduced from these decreases are compatible with an oscillatory motion around the glycosidic bond, but exclude anti-syn transformations in pyrimidine nucleosides.  相似文献   

10.
The environmental carcinogen benzo[a]pyrene (BP) is metabolized to reactive diol epoxides that bind to cellular DNA by predominantly forming N2-guanine adducts (G*). Mutation hotspots for these adducts are frequently found in 5′-···GG··· dinucleotide sequences, but their origins are poorly understood. Here we used high resolution NMR and molecular dynamics simulations to investigate differences in G* adduct conformations in 5′-···CG*GC··· and 5′-···CGG*C··· sequence contexts in otherwise identical 12-mer duplexes. The BP rings are positioned 5′ along the modified strand in the minor groove in both cases. However, subtle orientational differences cause strong distinctions in structural distortions of the DNA duplexes, because the exocyclic amino groups of flanking guanines on both strands compete for space with the BP rings in the minor groove, acting as guideposts for placement of the BP. In the 5′-···CGG*C··· case, the 5′-flanking G · C base pair is severely untwisted, concomitant with a bend deduced from electrophoretic mobility. In the 5′-···CG*GC··· context, there is no untwisting, but there is significant destabilization of the 5′-flanking Watson–Crick base pair. The minor groove width opens near the lesion in both cases, but more for 5′-···CGG*C···. Differential sequence-dependent removal rates of this lesion result and may contribute to the mutation hotspot phenomenon.  相似文献   

11.
The reaction mechanism for the formation of 2′-deoxyoxanosine from 2′-deoxyguanosine by nitrous acid was explored using methyl derivatives of guanosine and an isolated intermediate of the reaction. When 1-methylguanosine was incubated with NaNO2 under acidic conditions, N5-methyloxanosine and 1-methylxanthosine were generated, whereas the same treatment of N2,N2-dimethylguanosine generated no product. In a similar experiment without NO2, participation of a Dimroth rearrangement was ruled out. In the guanosine–HNO2 reaction system, an intermediate with a half-life of 5.6 min (pH 7.0, 20°C) was isolated and tentatively identified as a diazoate derivative of guanosine. The diazoate intermediate was converted into oxanosine and xanthosine at a molar ratio (oxanosine:xanthosine) of 0.26 at pH 7.0 and 20°C. The ratio was not affected by the incubation pH between 2 and 10, but increased linearly with temperature from 0.22 (0°C) to 0.32 (50°C). The addition of acetone also increased the ratio up to 0.85 (98% acetone). Based on these results, a con-ceivable pathway for the formation of 2′-deoxyoxanosine from 2′-deoxyguanosine by HNO2 is proposed.  相似文献   

12.
Ultrasonic-assisted extraction (UAE) was developed to extract phenolic and flavonoid antioxidants from Clerodendrum cyrtophyllum Turcz leaves. The optimal experimental parameters for antioxidant extraction from C. cyrtophyllum leaves were measured using single-factor experimentation combined with response surface methodology (RSM). Total phenolic content (TPC) and total flavonoid content (TFC) assays were used to quantify antioxidant compounds. Next, antioxidant radical scavenging capacity was measured using 2,2′-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′ -azino-bis(3-ethylbenzothiazoline-6-sulphonicacid) (ABTS) radicals. Optimized extraction conditions for UAE from C. cyrtophyllum leaves were as follows: 60.9% ethanol, 85.4 min, and 63.3°C for maximal TPC extraction (16.8±0.2 mg GAE/g DW); 67.7% ethanol, 82.9 min, and 63.0°C for maximal TFC extraction (49.3±0.4 mg RT/g DW); 48.8% ethanol, 85.1 min, and 63.9°C for maximal DPPH radical-scavenging capacity (86.8±0.2%); and 50.6% ethanol, 81.3 min, and 63.4°C for maximal ABTS radical-scavenging capacity (92.9±0.5%). Ethanol concentration was the most important factor in the extraction process. Our work offers optimal extraction conditions for C. cyrtophyllum as a potential source of natural antioxidants.  相似文献   

13.
The interactions of pyrimidine deoxyribo- or 2′-O-methylribo-psoralen-conjugated, triplex-forming oligonucleotides, psTFOs, with a 17-bp env-DNA whose purine tract is 5′-AGAGAGAAAAAAGAG-3′, or an 18-bp gag-DNA whose purine tract is 5′-AGG GGGAAAGAAAAAA-3′, were studied over the pH range 6.0–7.5. The stability of the triplex formed by a deoxy-env-psTFO containing 5-methylcytosines and thymines decreased with increasing pH (Tm = 56°C at pH 6.0; 27°C at pH 7.5). Replacement of 5-methylcytosines with 8-oxo-adenines reduced the pH dependence, but lowered triplex stability. A 2′-O-methyl-env-psTFO containing uracil and cytosine did not form a triplex at pH 7.5. Surprisingly, replacement of the cytosines in this oligomer with 5-methylcytosines dramatically increased triplex stability (Tm = 25°C at pH 7.5), and even greater stability was achieved by selective replacement of uracils with thymines (Tm = 37°C at pH 7.5). Substitution of the contiguous 5-methylcytosines of the deoxy-gag-psTFO with 8-oxo-adenines significantly reduced pH dependence and increased triplex stability. In contrast to the behavior of env-specific TFOs, triplexes formed by 2′-O-methyl-gag-psTFOs did not show enhanced stability. Replacement of the 3′-terminal phosphodiester of the TFO with a methylphosphonate group significantly increased the resistance of both deoxy- and 2′-O-methyl-TFOs to degradation by 3′-exonucleases, while maintaining triplex stability.  相似文献   

14.
Cinerone [2-(2′-cis-butenyl)-3-methyl-2-cyclopenten-1-one] is hydroxylated to cinerolone [2-(2′-cis-butenyl)-3-methyl-4-hydroxy-2-cyclopenten-1-one] by a number of streptomycetes, bacteria, and fungi. Aspergillus niger ATCC 9,142 and Streptomyces aureofaciens ATCC 10,762 were found to be the most effective hydroxylators. The optical activity of the product was found to range from [α]D25 0° to -8.6°, depending on the organism and conditions of culture. Two additional hydroxylated products of cinerone have been isolated and identified as 2-n-butyl-4-hydroxy-3-methyl-2-cyclopenten-1-one and 2-(2′-cis-butenyl-4′-hydroxy)-3-methyl-2-cyclopenten-1-one, respectively.  相似文献   

15.
A novel death-specific gene, ScDSP, was obtained from a death stage subtraction cDNA library of the diatom Skeletonema costatum. The full length of ScDSP cDNA was 921 bp in length, containing a 699-bp open reading frame encoding 232 amino acids and two stretches of 66 and 156 bp in the 5′ and 3′ untranslated regions, respectively. Analysis of the peptide structure revealed that ScDSP contained a signal peptide domain, a transmembrane domain, and a pair of EF-hand motifs. When S. costatum grew exponentially at a rate of 1.3 day−1, the ScDSP mRNA level was at 2 μmol·mole 18S rRNA−1. In contrast, when the culture entered the death phase with a growth rate decreasing to 0.5 day−1, ScDSP mRNA increased dramatically to 668 μmol·mole 18S rRNA−1, and a high degree of DNA fragmentation was simultaneously observed. Under the influence of a light-dark cycle, ScDSP expression in both exponential and stationary phases clearly showed a diel rhythm, but the daily mean mRNA level was significantly higher in the stationary phase. Our results suggest that ScDSP may play a role in the molecular mechanism of self-destructive autolysis in phytoplankton under stress.  相似文献   

16.
The effects of 3′ single-strand dangling-ends of different lengths, sequence identity of hairpin loop, and hairpin loop biotinylation at different loop residues on DNA hairpin thermodynamic stability were investigated. Hairpins contained 16 bp stem regions and five base loops formed from the sequence, 5′-TAGTCGACGTGGTCC-N5-GGACCACGTCGACTAG-En-3′. The length of the 3′ dangling-ends (En) was n = 13 or 22 bases. The identities of loop bases at positions 2 and 4 were varied. Biotinylation was varied at loop base positions 2, 3 or 4. Melting buffers contained 25 or 115 mM Na+. Average tm values for all molecules were 73.5 and 84.0°C in 25 and 115 mM Na+, respectively. Average two-state parameters evaluated from van’t Hoff analysis of the melting curve shapes in 25 mM Na+ were ΔHvH = 84.8 ± 15.5 kcal/mol, ΔSvH = 244.8 ± 45.0 cal/K·mol and ΔGvH = 11.9 ± 2.1 kcal/mol. In 115 mM Na+, two-state parameters were not very different at ΔHvH = 80.42 ± 12.74 kcal/mol, ΔSvH = 225.24 ± 35.88 cal/K·mol and ΔGvH = 13.3 ± 2.0 kcal/mol. Differential scanning calorimetry (DSC) was performed to test the validity of the two-state assumption and evaluated van’t Hoff parameters. Thermodynamic parameters from DSC measurements (within experimental error) agreed with van’t Hoff parameters, consistent with a two-state process. Overall, dangling-end DNA hairpin stabilities are not affected by dangling-end length, loop biotinylation or sequence and vary uniformly with [Na+]. Consider able freedom is afforded when designing DNA hairpins as probes in nucleic acid based detection assays, such as microarrays.  相似文献   

17.
Alstroemeria L., one of the most diverse genera of the Chilean flora and of high floricultural value, is represented by 35 species, most of them distributed between 28–38° S in the Mediterranean zone of Central Chile. There are 24 complex-forming taxa, of which 18 have conservation problems (8 are considered “endangered” and 10 as “vulnerable”). One of these complexes is Alstroemeria presliana Herb. with two subspecies: subsp. presliana and subsp. australis Bayer. Alstroemeria presliana grows in Chile and Argentina: subsp. presliana is distributed from Reserva Nacional Siete Tazas (35°27′ S, Region of Maule) to Antuco, (37°25′ S, Region of Bío-Bío), and is also found in Neuquén, Argentina; subsp. australis is endemic to the Cordillera of Nahuelbuta. A comparative karyotype study was carried out among six populations of A. presliana subsp. presliana and five populations of A. presliana subsp. australis. The eleven populations presented an asymmetric karyotype, with 2n = 2× = 16 chromosomes but with different karyotype formulae. A. presliana subsp. presliana shows the haploid formula 2m + 2m-sat + 1sm-sat + 1st-sat + 1t + 1 t-sat, and A. preslianasubsp. australis presents a formula 1m + 2m-sat + 1sm + 2t + 2t-sat chromosomes. The architecture of the karyotype between the subspecies is very different. The scatter plot among CVCL vs. MCA shows different groupings between populations of the two subspecies. According to the results obtained it is possible to consider raising Alstroemeria presliana subsp. australis at species level.  相似文献   

18.
19.
An oligonucleotide primer, NITRO821R, targeting the 16S rRNA gene of unicellular cyanobacterial N2 fixers was developed based on newly derived sequences from Crocosphaera sp. strain WH 8501 and Cyanothece sp. strains WH 8902 and WH 8904 as well as several previously described sequences of Cyanothece sp. and sequences of intracellular cyanobacterial symbionts of the marine diatom Climacodium frauenfeldianum. This oligonucleotide is specific for the targeted organisms, which represent a well-defined phylogenetic lineage, and can detect as few as 50 cells in a standard PCR when it is used as a reverse primer together with the cyanobacterium- and plastid-specific forward primer CYA359F (U. Nübel, F. Garcia-Pichel, and G. Muyzer, Appl. Environ. Microbiol. 63:3327-3332, 1997). Use of this primer pair in the PCR allowed analysis of the distribution of marine unicellular cyanobacterial diazotrophs along a transect following the 67°E meridian from Victoria, Seychelles, to Muscat, Oman (0.5°S to 26°N) in the Arabian Sea. These organisms were found to be preferentially located in warm (>29°C) oligotrophic subsurface waters between 0 and 7°N, but they were also found at a station north of Oman at 26°N, 56°35′E, where similar water column conditions prevailed. Slightly cooler oligotrophic waters (<29°C) did not contain these organisms or the numbers were considerably reduced, suggesting that temperature is a key factor in dictating the abundance of this unicellular cyanobacterial diazotroph lineage in marine environments.  相似文献   

20.
Differential scanning calorimetry (DSC) and fatty acid analysis were used to determine how cold shocking reduces the thermal stability of Listeria monocytogenes. Additionally, antibiotics that can elicit production of cold or heat shock proteins were used to determine the effect of translation blockage on ribosome thermal stability. Fatty acid profiles showed no significant variations as a result of cold shock, indicating that changes in membrane fatty acids were not responsible for the cold shock-induced reduction in thermal tolerance. Following a 3-h cold shock from 37 to 0°C, the maximum denaturation temperature of the 50S ribosomal subunit and 70S ribosomal particle peak was reduced from 73.4 ± 0.1°C (mean ± standard deviation) to 72.1 ± 0.5°C (P ≤ 0.05), indicating that cold shock induced instability in the associated ribosome structure. The maximum denaturation temperature of the 30S ribosomal subunit peak did not show a significant shift in temperature (from 67.5 ± 0.4°C to 66.8 ± 0.5°C) as a result of cold shock, suggesting that either 50S subunit or 70S particle sensitivity was responsible for the intact ribosome fragility. Antibiotics that elicited changes in maximum denaturation temperature in ribosomal components also elicited reductions in thermotolerance. Together, these data suggest that ribosomal changes resulting from cold shock may be responsible for the decrease in D value observed when L. monocytogenes is cold shocked.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号